

DIS/x: An Implementation of the IEEE 1278�Distributed Interactive Simulation Protocol

Version 1.0

Riley Rainey

�
Preface

Why another DIS implementation?

I have always been interested in distributed interactive simulations. In 1991, I released via Usenet a free X11-based multi-player air combat simulation which I had named “ACM”.

In the spring of 1994, Eyal Lebidinsky contacted me. He is the author of another freely available flight simulator, “fly8”. He introduced me to the IEEE DIS protocol and expressed interest in using DIS to integrate our two programs. He pointed me to the Naval Postgraduate School’s freely available DIS implementation, called NPSNET.

At the time I looked at it, the NPSNET DIS library is a reasonably complete, if somewhat literal implementation of the DIS protocol standard written for Sun and SGI UNIX systems. However, it had the significant portability drawback that it was written exclusively for big-endian machines. I set out to create a more functional and portable implementation but was quickly drawn back to work more directly related to my “real” job.

Early in 1995, I was contacted by Mats Loftkvist. Mats had independently taken the time to integrate a version of NPSNET into the current release of ACM. This prompted me to dust-off the work that I had dropped earlier and to begin considering in earnest how one might create an improved DIS interface.

My thinking is that a reasonably complete DIS library would automate these functions:

Allow for easy construction, transmission, reception and disassembly of DIS PDU’s. This implies that the library must standardize data structures that will correspond to all DIS PDU data structures.

Present the programmer with easy access to the wide variety of pre-defined DIS enumerated values.

Here is where I start to wish to go further than the NPSNET code:

Provide standardized mechanisms that will automatically generate values for many fields whose contents are defined to be outside the scope of the DIS protocol. For example, it would be nice to be able to generate application-id numbers (part of the simulation address structure) with little or no user-level coordination required.

Provide a mechanism that would allow an application to temporarily define new entity types. Those new entity types would have dynamically assigned enumeration values. Those temporary entity types could then be used by other applications.

Provide a mechanism to allow disparate DIS applications to share other simulation-related information. An example of this would be a database of all defined DIS entity types that could be queried at runtime to determine information about entities owned by other applications.

Implement the source code so that it is not big-endian specific.

Provide a mechanism to automate Dead Reckoning computation that might include the automated transmission of position updates.

Riley Rainey -- Dallas, Texas, August 15, 1995

My DIS library implementation is divided into three layers. Each layer is assigned a three or four character naming prefix. All subroutine calls and data structures belonging to a given layer have names that begin with the associated character prefix.

� EMBED Word.Picture.6 ���

The lowest level layer is called simply DIS. It defines routines used to broadcast and receive PDU’s on the network, translating those PDU’s to and from PDU data structures defined in this library. Translation is performed through calls to ONC XDR library routines.

There are a number of details to the DIS protocol that are undefined. For example, no guidance is provided on how various user-defined fields (e.g. a DIS application id) are actually allocated. The implication seems to be that these values are manually allocated and distributed before an exercise begins. That method seems unusable in an environment where you’d like to insulate users from the details of DIS. To remedy this problem, I have defined a central simulation management server, SIM/x. Individual DIS applications may elect to consult that server to be assured to be getting appropriate values for these fields.

The middle, SIM/x, layer implements an interface to this central SIM/x server. Server requests are communicated via ONC RPC.� EMBED Word.Picture.6 ���

The top layer, called DIS/x, integrates the two lower layers in a manner that allows DIS applications to interoperate whether they are consulting a common SIM/x server or not. This layer is implemented in such a way that the runtime environment can be tailored (through various environment variables and special configuration files) to allow the use of automatic (SIM/x) or manual value allocation techniques.

DIS/x Library Routines

This section describes the higher-level routines used to transmit and receive PDU’s on a DIS network.

DISxInitializeApplication

Summary

#include <dis/dis.h>

DISxApplicationInfo * DISxInitializeApplication (

			int exercise_id,

	int site_id,

	int application_id);

site_id	The local DIS site id. Zero is taken to mean that the user would like to use the site that would be allocated by SIMxGetSiteName().

application_id	The DIS application id to be used in PDU’s transmitted by this application. Zero is taken to mean that the user wants to have the application id dynamically assigned.

Description

This function establishes the application’s connection to the DIS Network. It is capable of automatically assigning a DIS Site and/or Application ID based on the parameters passed to it.

Return Value

This function returns a pointer to an initialized application information structure.

See Also

SIMxGetSiteName()

DISxReadPDU

Summary

#include <dis/dis.h>

int DISxReadPDU (DISxApplicationInfo * app, dis_pdu * pdu);

app	The application information structure returned by DISxInitializeApplication

Description

This function returns the next PDU received from the DIS network. If no packet is available, it returns immediately.

Return Value

Currently, this function always returns zero.

DISxWritePDU

Summary

#include <dis/dis.h>

int DISxWritePDU (DISxApplicationInfo * app, dis_pdu * pdu);

app	The pointer to the application information structure returned by DISxInitializeApplication().

pdu	A pointer to the protocol data unit to be transmitted. Certain structure members are automatically inserted when DISxWritePDU() is called. Those values are updated within the referenced structure.

Description

This function broadcasts the specified PDU onto the DIS network. It automatically fills in the following fields in the PDU:

protocol_version

exercise_id

protocol_family

time_stamp

	length		(always filled automatically)

Return Value

Currently, this function always returns zero.

DISxGetSimulationAddress

Summary

#include <dis/dis.h>

void DISxGetSimulationAddress(DISxApplicationInfo * app, dis_simulation_address * addr);

app	The application information structure returned by DISxInitializeApplication

Description

This function returns DIS simulation address in-use by this application.

Return Value

Simulation address.

DISxSetExerciseID

Summary

#include <dis/dis.h>

void DISxSetExerciseID(DISxApplicationInfo * app, int id);

app	The application information structure returned by DISxInitializeApplication

id			The exercise id to be used when transmitting and receiving DIS PDU’s.

Description

This function returns DIS simulation address in-use by this application.

Return Value

Simulation address.

DISxIssueEventID

Allocate a unique DIS event ID for use by this application

Summary

#include <dis/dis.h>

dis_event_id * DISxIssueEventID (DISxApplicationInfo * app,

	dis_event_id * p);

app	The application information structure returned by DISxInitializeApplication

p			A pointer to an empty dis_event_id structure. It will be filled in by this function.

Description

This function returns a unique event id that can be used by this application.

Return Value

The function returns the value of “p” that was passed to it.

DISxIssueEntityID

Allocate a unique DIS entity ID for use by this application

Summary

#include <dis/dis.h>

dis_entity_id * DISxIssueEntityID (DISxApplicationInfo * app,

	dis_entity_id * p);

app	The application information structure returned by DISxInitializeApplication

p			A pointer to an empty dis_entity_id structure. It will be filled in by this function.

Description

This function returns a unique entity id that can be used by this application. The entity id returned by the first call will be 0x0000. The number returned on subsequent calls is always one greater than the previous call.

Return Value

The function returns the value of “p” that was passed to it.�
DIS Library Routines

This section describes the low-level routines used to transmit and receive PDU’s on a DIS network.

DISFreePDUComponents

Release storage occupied by the variable-length fields of a PDU

Summary

#include <dis/dis.h>

int DISFreePDUComponents (dis_pdu * pdu);

Description

Some PDU structures contain variable length fields (e.g. the emitter systems field of an electromagnetic emission PDU). Space required to hold those variable length components is dynamically allocated through malloc(3) during a call to DISReadPDU (or DISxReadPDU). Before discarding a PDU, call DISFreePDUComponents() to release this dynamically allocated storage.

Return Value

None.

See Also

DISxReadPDU, DISReadPDU, malloc(3), free(3)

DISOpenTransceiver

Establish a connection to the DIS network

Summary

#include <dis/dis.h>

DISTransceiver * DISOpenTransceiver (int udp_port_number);

Description

Invoking DISOpenTransceiver establishes a connection to the DIS network. It should be called only once by a user application. On UNIX systems, this function automatically locates all active broadcast-compatible network interfaces and configures the DIS library to automatically transmit PDU’s on each of those interfaces.

If udp_port_number is -1, it is assigned to the default DIS broadcast port (3000).

Return Value

Returns a pointer to a DISTransceiver on success, NULL otherwise.

See Also

DISCloseTransceiver

DISReadPDU

Read the next PDU received from the DIS network

Summary

#include <dis/dis.h>

int DISReadPDU (DISTransceiver * xcvr, dis_pdu * pdu);

Description

This function returns the next PDU received from the DIS network.

Some PDU structures contain variable length fields (for example, the emitter systems field of an electromagnetic emission PDU). Space required to hold those variable length components will be dynamically allocated through malloc(3). Before discarding the PDU, call DISFreePDUComponents() to release this dynamically allocated storage.

Return Value

Currently, this function always returns zero.

See Also

DISOpenTransceiver, DISWritePDU, DISFreePDUComponents, malloc(3)

DISWritePDU

Broadcast a PDU onto the DIS network

Summary

#include <dis/dis.h>

int DISWritePDU (DISTransceiver * xcvr, dis_pdu * pdu);

Description

This function broadcasts the specified PDU onto the DIS network;

Return Value

Currently, this function always returns zero.

See Also

DISOpenTransceiver, DISReadPDU

DISGetRealTime

Summary

#include <dis/dis.h>

int DISGetRealTime (dis_time * return);

Description

This function returns the current relative time based on the local system’s clock.

Return Value

Currently, this function always returns zero.

See Also

DISGetTimestamp, gettimeofday(2)

DISGetTimestamp

Get a timestamp reflecting the current local system time

Summary

#include <dis/dis.h>

dis_timestamp DISGetTimestamp (void);

Description

This function returns a DIS relative timestamp based on the local system’s clock.

Return Value

The function returns a relative DIS timestamp.

See Also

DISGetRealTime, DISGetAbsTimestamp, gettimeofday(2)

DISGetAbsTimestamp

Get a timestamp reflecting the current UTC time

Summary

#include <dis/dis.h>

dis_timestamp DISGetTimestamp (void);

Description

This function returns a DIS absolute timestamp based on the local system’s clock. Absolute timestamps are interpreted by other DIS applications to be based on UTC time. This normally assumes that the clocks of all systems participating in this DIS exercise have been somehow synchronized with Coordinated Universal Time (UTC).

Return Value

Currently, this function always returns zero.

See Also

DISGetRealTime, DISGetTimestamp, gettimeofday(2)

�
Sim/x Interface Functions

SIMxGetSiteName

Get the name of the local DIS site

Summary

#include <dis/dis.h>

char * SIMxGetSiteName (char * result, int max_size);

result	A pointer to a character array that will be used to store the result.

max_size	The size of the character array pointed to by “result”.

Description

This function returns the name of the DIS Site. This information will be obtained from one of several sources (listed in order of search and precedence):

If the environment variable DIS_SITE_NAME exists and is non-null, then it defines the site name.

If the file $HOME/.dis_site_name exists, the first line of that file defines the site name.

If the file /etc/dis_site_name exists, the first line of that file defines the site name.

The application site name is assumed to be “Cyberspace”.

Return Value

The function returns the value of “result” that was passed to it.

SIMxRegisterApplication

Register this program as a DIS application and allocate a unique simulation address

Summary

#include <dis/dis.h>

int SIMxRegisterApplication (char * simx_server_hostname, char * site_name, unsigned int application_id, dis_simulation_address * result);

simx_server_hostname	 A pointer to the hostname where the desired SIM/x server is running. If the value passed is NULL, then the environment variable SIMX_HOST is consulted; if it is non-NULL, then that hostname is used; if SIMX_HOST is NULL also, then the hostname used is “localhost”.

site_name	A pointer to a character array indicating the desired name of the local site. If the site name begins with the characters “0x”, it is taken to be a C-language format hexadecimal constant that should correspond to the assigned site identifier.

application_id	The application number to be used by this application. A value of zero tells the SIMx server to issue a unique application number dynamically.

result	A pointer to a dis_simulation_address structure returned by the SIM/x server. This address is assigned to this application for use in the appropriate fields in PDU’s transmitted by this application.

Description

The first call to the SIM/x server that results in the dynamic allocation of an application id will return a value of 0xFFFE. The value assigned by the SIM/x server is one less than the previous value assigned. No effort is made by the SIM/x server to reclaim application id’s that are no longer in use in a given exercise.

Return Value

SIMxNO_SERVER	SIMx was unable to contact the specified server.

SIMxSUCCESS		No Errors were encountered

�

� EMBED MSWordArt.2 \s ���

