28char sol_Dirac_A_1z_C[] =
"$Header: /cvsroot/Lorene/C++/Source/Tensor/vector_divfree_A_1z.C,v 1.4 2014/10/13 08:53:45 j_novak Exp $" ;
77 if (
aaa.get_etat() == ETATZERO) {
83 int nz =
mgrid.get_nzone() ;
97 int nt =
mgrid.get_nt(0) ;
98 int np =
mgrid.get_np(0) ;
105 source.set_spectral_va().ylm() ;
112 tilde_vr.set_spectral_va().set_etat_cf_qcq() ;
113 tilde_vr.set_spectral_va().c_cf->annule_hard() ;
116 tilde_eta.set_spectral_va().set_etat_cf_qcq() ;
117 tilde_eta.set_spectral_va().c_cf->annule_hard() ;
133 for (
int k=0 ;
k<np+1 ;
k++) {
134 for (
int j=0 ;
j<nt ;
j++) {
137 if ( (nullite_plm(
j, nt,
k, np, base) == 1) && (
l_q > 0)) {
166 ope.set(2*nr-1,
col+nr)=1 ;
178 ope.set(2*nr-1,
col) = 0 ;
189 ope.set(nr-1, nr-1) = 1 ;
190 ope.set(2*nr-1, 2*nr-1) = 1 ;
204 sec.set(2*nr-1) = 0 ;
217 for (
int i=0;
i<nr;
i++) {
221 if ((
l_q==2)&&(
k==3)) {
222 cout <<
" ========================== " <<
endl ;
224 cout <<
" ========================== " <<
endl ;
226 cout <<
" ========================== " <<
endl ;
228 cout <<
" ========================== " <<
endl ;
230 cout <<
" ========================== " <<
endl ;
232 cout <<
" ========================== " <<
endl ;
250 for (
int k=0 ;
k<np+1 ;
k++)
251 for (
int j=0 ;
j<nt ;
j++) {
253 if ((nullite_plm(
j, nt,
k, np, base) == 1) && (
l_q > 0)) {
256 int nr =
mgrid.get_nr(0) ;
257 for (
int i=0 ;
i<nr ;
i++) {
265 if (
tilde_vr.set_spectral_va().c != 0x0)
266 delete tilde_vr.set_spectral_va().c ;
267 tilde_vr.set_spectral_va().c = 0x0 ;
268 tilde_vr.set_spectral_va().ylm_i() ;
270 if (
tilde_eta.set_spectral_va().c != 0x0)
Bases of the spectral expansions.
void mult_x()
The basis is transformed as with a multiplication by .
void give_quant_numbers(int, int, int, int &, int &, int &) const
Computes the various quantum numbers and 1d radial base.
Class for the elementary differential operator (see the base class Diff ).
Class for the elementary differential operator division by (see the base class Diff ).
Time evolution with partial storage (*** under development ***).
const double * get_alpha() const
Returns the pointer on the array alpha.
const Mg3d * get_mg() const
Gives the Mg3d on which the mapping is defined.
Coefficients storage for the multi-domain spectral method.
Tensor field of valence 0 (or component of a tensorial field).
void sol_Dirac_A_1z(const Scalar &aaa, Scalar &eta, Scalar &vr, const Param *par_bc=0x0) const
Solves a one-domain system of two-coupled first-order PDEs obtained from the divergence-free conditio...
#define R_CHEBP
base de Cheb. paire (rare) seulement
const Map *const mp
Mapping on which the numerical values at the grid points are defined.