LORENE
Lorene::Et_rot_bifluid Class Reference

Class for two-fluid rotating relativistic stars. More...

#include <et_rot_bifluid.h>

Inheritance diagram for Lorene::Et_rot_bifluid:
Lorene::Etoile_rot Lorene::Etoile

Public Member Functions

 Et_rot_bifluid (Map &mp_i, int nzet_i, bool relat, const Eos_bifluid &eos_i)
 Standard constructor.
 
 Et_rot_bifluid (const Et_rot_bifluid &)
 Copy constructor.
 
 Et_rot_bifluid (Map &mp_i, const Eos_bifluid &eos_i, FILE *fich)
 Constructor from a file (see sauve(FILE*) ) Works only for relativistic stars.
 
virtual ~Et_rot_bifluid ()
 Destructor.
 
void operator= (const Et_rot_bifluid &)
 Assignment to another Et_rot_bifluid.
 
void set_enthalpies (const Cmp &, const Cmp &)
 Sets both enthalpy profiles.
 
void equilibrium_spher_bi (double ent_c, double ent_c2, double precis=1.e-14)
 Computes a spherical static configuration.
 
void equil_spher_regular (double ent_c, double ent_c2, double precis=1.e-14)
 Computes a spherical static configuration.
 
const Eos_bifluidget_eos () const
 Returns the equation of state.
 
const Tenseurget_ent2 () const
 Returns the enthalpy field for fluid 2.
 
const Tenseurget_nbar2 () const
 Returns the proper baryon density for fluid 2.
 
const Tenseurget_K_nn () const
 Returns the coefficient Knn.
 
const Tenseurget_K_np () const
 Returns the coefficient Knp.
 
const Tenseurget_K_pp () const
 Returns the coefficient Kpp.
 
const Tenseurget_delta_car () const
 Returns the "relative velocity" (squared) $\Delta^2$ of the two fluids.
 
const Tenseurget_gam_euler2 () const
 Returns the Lorentz factor between the fluid 2 and Eulerian observers.
 
double get_omega2 () const
 Returns the rotation angular velocity of fluid 2([f_unit] )
 
const Tenseurget_uuu2 () const
 Returns the norm of the fluid 2 3-velocity with respect to the eulerian frame.
 
virtual void sauve (FILE *) const
 Save in a file.
 
virtual ostreamoperator>> (ostream &) const
 Operator >> (virtual function called by the operator <<).
 
virtual void partial_display (ostream &) const
 Printing of some informations, excluding all global quantities.
 
virtual const Itbll_surf () const
 Description of the surface of fluid 1: returns a 2-D Itbl
containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.
 
const Itbll_surf2 () const
 Description of the surface of fluid 2: returns a 2-D Itbl
containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.
 
const Tblxi_surf2 () const
 Description of the surface of fluid 2: returns a 2-D Tbl
containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.
 
double ray_eq2 () const
 Coordinate radius for fluid 2 at $\phi=0$, $\theta=\pi/2$ [r_unit].
 
double ray_eq2_pis2 () const
 Coordinate radius for fluid 2 at $\phi=\pi/2$, $\theta=\pi/2$ [r_unit].
 
double ray_eq2_pi () const
 Coordinate radius for fluid 2 at $\phi=\pi$, $\theta=\pi/2$ [r_unit].
 
double ray_pole2 () const
 Coordinate radius for fluid 2 at $\theta=0$ [r_unit].
 
double mass_b1 () const
 Baryon mass of fluid 1.
 
double mass_b2 () const
 Baryon mass of fluid 2.
 
virtual double mass_b () const
 Total Baryon mass.
 
virtual double mass_g () const
 Gravitational mass.
 
virtual double angu_mom () const
 Angular momentum.
 
virtual double grv2 () const
 Error on the virial identity GRV2.
 
virtual double grv3 (ostream *ost=0x0) const
 Error on the virial identity GRV3.
 
virtual double r_circ2 () const
 Circumferential radius for fluid 2.
 
virtual double area2 () const
 Surface area for fluid 2.
 
virtual double mean_radius2 () const
 Mean radius for fluid 2.
 
virtual double aplat2 () const
 Flatening r_pole/r_eq for fluid 2.
 
virtual double mom_quad () const
 Quadrupole moment.
 
virtual double mom_quad_old () const
 Part of the quadrupole moment.
 
virtual double mom_quad_Bo () const
 Part of the quadrupole moment.
 
virtual double angu_mom_1 () const
 Angular momentum of fluid 1.
 
virtual double angu_mom_2 () const
 Angular momentum of fluid 2.
 
virtual double angu_mom_1_part1_1 () const
 To compute In (1st version)
 
virtual double angu_mom_2_part1_1 () const
 To compute Ip (1st version)
 
virtual double angu_mom_1_part2_1 () const
 To compute Xn (1st version)
 
virtual double angu_mom_2_part2_1 () const
 To compute Xp (1st version)
 
virtual double angu_mom_1_part1_2 () const
 To compute In (2nd version)
 
virtual double angu_mom_2_part1_2 () const
 To compute Ip (2nd version)
 
virtual double angu_mom_1_part2_2 () const
 To compute Xn (2nd version)
 
virtual double angu_mom_2_part2_2 () const
 To compute Xp (2nd version)
 
virtual void hydro_euler ()
 Computes the hydrodynamical quantities relative to the Eulerian observer from those in the fluid frame.
 
virtual void equation_of_state ()
 Computes the proper baryon and energy densities, as well as pressure and the coefficients Knn, Knp and Kpp, from the enthalpies and both velocities.
 
void equilibrium_bi (double ent_c, double ent_c2, double omega0, double omega20, const Tbl &ent_limit, const Tbl &ent2_limit, const Itbl &icontrol, const Tbl &control, Tbl &diff, int mer_mass, double mbar1_wanted, double mbar2_wanted, double aexp_mass)
 Computes an equilibrium configuration.
 
virtual double get_omega_c () const
 Returns the central value of the rotation angular velocity ([f_unit] )
 
const Tenseurget_bbb () const
 Returns the metric factor B.
 
const Tenseurget_b_car () const
 Returns the square of the metric factor B.
 
const Tenseurget_nphi () const
 Returns the metric coefficient $N^\varphi$.
 
const Tenseurget_tnphi () const
 Returns the component $\tilde N^\varphi = N^\varphi r\sin\theta$ of the shift vector.
 
const Tenseurget_uuu () const
 Returns the norm of u_euler.
 
const Tenseurget_logn () const
 Returns the metric potential $\nu = \ln N$ = logn_auto.
 
const Tenseurget_nuf () const
 Returns the part of the Metric potential $\nu = \ln N$ = logn generated by the matter terms.
 
const Tenseurget_nuq () const
 Returns the Part of the Metric potential $\nu = \ln N$ = logn generated by the quadratic terms.
 
const Tenseurget_dzeta () const
 Returns the Metric potential $\zeta = \ln(AN)$ = beta_auto.
 
const Tenseurget_tggg () const
 Returns the Metric potential $\tilde G = (NB-1) r\sin\theta$.
 
const Tenseurget_w_shift () const
 Returns the vector $W^i$ used in the decomposition of shift , following Shibata's prescription [Prog.
 
const Tenseurget_khi_shift () const
 Returns the scalar $\chi$ used in the decomposition of shift
following Shibata's prescription [Prog.
 
const Tenseur_symget_tkij () const
 Returns the tensor ${\tilde K_{ij}}$ related to the extrinsic curvature tensor by ${\tilde K_{ij}} = B^{-2} K_{ij}$.
 
const Tenseurget_ak_car () const
 Returns the scalar $A^2 K_{ij} K^{ij}$.
 
virtual void display_poly (ostream &) const
 Display in polytropic units.
 
virtual double tsw () const
 Ratio T/W.
 
virtual double r_circ () const
 Circumferential radius.
 
virtual double area () const
 Surface area.
 
virtual double mean_radius () const
 Mean radius.
 
virtual double aplat () const
 Flatening r_pole/r_eq.
 
virtual double z_eqf () const
 Forward redshift factor at equator.
 
virtual double z_eqb () const
 Backward redshift factor at equator.
 
virtual double z_pole () const
 Redshift factor at North pole.
 
virtual double r_isco (ostream *ost=0x0) const
 Circumferential radius of the innermost stable circular orbit (ISCO).
 
virtual double f_isco () const
 Orbital frequency at the innermost stable circular orbit (ISCO).

 
virtual double espec_isco () const
 Energy of a particle on the ISCO.
 
virtual double lspec_isco () const
 Angular momentum of a particle on the ISCO.
 
virtual double f_eccentric (double ecc, double periast, ostream *ost=0x0) const
 Computation of frequency of eccentric orbits.
 
virtual double f_eq () const
 Orbital frequency at the equator.
 
void update_metric ()
 Computes metric coefficients from known potentials.
 
void fait_shift ()
 Computes shift from w_shift and khi_shift according to Shibata's prescription [Prog.
 
void fait_nphi ()
 Computes tnphi and nphi from the Cartesian components of the shift, stored in shift .
 
void extrinsic_curvature ()
 Computes tkij and ak_car from shift , nnn and b_car .
 
virtual void equilibrium (double ent_c, double omega0, double fact_omega, int nzadapt, const Tbl &ent_limit, const Itbl &icontrol, const Tbl &control, double mbar_wanted, double aexp_mass, Tbl &diff, Param *=0x0)
 Computes an equilibrium configuration.
 
Mapset_mp ()
 Read/write of the mapping.
 
void set_enthalpy (const Cmp &)
 Assignment of the enthalpy field.
 
virtual void equilibrium_spher (double ent_c, double precis=1.e-14, const Tbl *ent_limit=0x0)
 Computes a spherical static configuration.
 
void equil_spher_regular (double ent_c, double precis=1.e-14)
 Computes a spherical static configuration.
 
virtual void equil_spher_falloff (double ent_c, double precis=1.e-14)
 Computes a spherical static configuration with the outer boundary condition at a finite radius.
 
const Mapget_mp () const
 Returns the mapping.
 
int get_nzet () const
 Returns the number of domains occupied by the star.
 
bool is_relativistic () const
 Returns true for a relativistic star, false for a Newtonian one.
 
const Tenseurget_ent () const
 Returns the enthalpy field.
 
const Tenseurget_nbar () const
 Returns the proper baryon density.
 
const Tenseurget_ener () const
 Returns the proper total energy density.
 
const Tenseurget_press () const
 Returns the fluid pressure.
 
const Tenseurget_ener_euler () const
 Returns the total energy density with respect to the Eulerian observer.
 
const Tenseurget_s_euler () const
 Returns the trace of the stress tensor in the Eulerian frame.
 
const Tenseurget_gam_euler () const
 Returns the Lorentz factor between the fluid and Eulerian observers.
 
const Tenseurget_u_euler () const
 Returns the fluid 3-velocity with respect to the Eulerian observer.
 
const Tenseurget_logn_auto () const
 Returns the logarithm of the part of the lapse N generated principaly by the star.
 
const Tenseurget_logn_auto_regu () const
 Returns the regular part of the logarithm of the part of the lapse N generated principaly by the star.
 
const Tenseurget_logn_auto_div () const
 Returns the divergent part of the logarithm of the part of the lapse N generated principaly by the star.
 
const Tenseurget_d_logn_auto_div () const
 Returns the gradient of logn_auto_div.
 
const Tenseurget_beta_auto () const
 Returns the logarithm of the part of the product AN generated principaly by the star.
 
const Tenseurget_nnn () const
 Returns the total lapse function N.
 
const Tenseurget_shift () const
 Returns the total shift vector $N^i$.
 
const Tenseurget_a_car () const
 Returns the total conformal factor $A^2$.
 
double ray_eq () const
 Coordinate radius at $\phi=0$, $\theta=\pi/2$ [r_unit].
 
double ray_eq (int kk) const
 Coordinate radius at $\phi=2k\pi/np$, $\theta=\pi/2$ [r_unit].
 
double ray_eq_pis2 () const
 Coordinate radius at $\phi=\pi/2$, $\theta=\pi/2$ [r_unit].
 
double ray_eq_pi () const
 Coordinate radius at $\phi=\pi$, $\theta=\pi/2$ [r_unit].
 
double ray_eq_3pis2 () const
 Coordinate radius at $\phi=3\pi/2$, $\theta=\pi/2$ [r_unit].
 
double ray_pole () const
 Coordinate radius at $\theta=0$ [r_unit].
 
const Tblxi_surf () const
 Description of the stellar surface: returns a 2-D Tbl
containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.
 

Static Public Member Functions

static double lambda_grv2 (const Cmp &sou_m, const Cmp &sou_q)
 Computes the coefficient $\lambda$ which ensures that the GRV2 virial identity is satisfied.
 

Protected Member Functions

virtual void del_deriv () const
 Deletes all the derived quantities.
 
virtual void set_der_0x0 () const
 Sets to 0x0 all the pointers on derived quantities.
 
virtual void del_hydro_euler ()
 Sets to ETATNONDEF (undefined state) the hydrodynamical quantities relative to the Eulerian observer.
 

Protected Attributes

const Eos_bifluideos
 Equation of state for two-fluids model.
 
double omega2
 Rotation angular velocity for fluid 2 ([f_unit] )
 
Tenseur ent2
 Log-enthalpy for the second fluid.
 
Tenseur nbar2
 Baryon density in the fluid frame, for fluid 2.
 
Tenseur K_nn
 Coefficient Knn.
 
Tenseur K_np
 Coefficient Knp.
 
Tenseur K_pp
 Coefficient Kpp.
 
Tenseur sphph_euler
 The component $S^\varphi_\varphi$ of the stress tensor ${S^i}_j$.
 
Tenseur j_euler
 Total angular momentum (flat-space!) 3-vector $J_\mathrm{euler}$, which is related to $J^i$ of the "3+1" decomposition, but expressed in a flat-space triad.
 
Tenseur j_euler1
 To compute Jn.
 
Tenseur j_euler2
 To compute Jp.
 
Tenseur j_euler11_1
 To compute In (1st version)
 
Tenseur j_euler12_1
 To compute Ip (1st version)
 
Tenseur j_euler21_1
 
Tenseur j_euler22_1
 
Tenseur j_euler11_2
 
Tenseur j_euler12_2
 
Tenseur j_euler21_2
 
Tenseur j_euler22_2
 
Tenseur enerps_euler
 the combination $E+S_i^i$: useful because in the Newtonian limit $\rightarrow \rho$.
 
Tenseur uuu2
 Norm of the (fluid no.2) 3-velocity with respect to the eulerian observer.
 
Tenseur gam_euler2
 Lorentz factor between the fluid 2 and Eulerian observers

 
Tenseur delta_car
 The "relative velocity" (squared) $\Delta^2$ of the two fluids.
 
doublep_ray_eq2
 Coordinate radius at $\phi=0$, $\theta=\pi/2$.
 
doublep_ray_eq2_pis2
 Coordinate radius at $\phi=\pi/2$, $\theta=\pi/2$.
 
doublep_ray_eq2_pi
 Coordinate radius at $\phi=\pi$, $\theta=\pi/2$.
 
doublep_ray_pole2
 Coordinate radius at $\theta=0$.
 
Itblp_l_surf2
 Description of the surface of fluid 2: 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.
 
Tblp_xi_surf2
 Description of the surface of fluid 2: 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.
 
doublep_r_circ2
 Circumferential radius of fluid no.2.
 
doublep_area2
 Surface area of fluid no.2.
 
doublep_aplat2
 Flatening r_pole/r_eq of fluid no.2.
 
doublep_mass_b1
 Baryon mass of fluid 1.
 
doublep_mass_b2
 Baryon mass of fluid 2.
 
doublep_angu_mom_1
 Angular momentum of fluid 1.
 
doublep_angu_mom_2
 Angular momentum of fluid 2.
 
doublep_angu_mom_1_part1_1
 To compute In (1st version)
 
doublep_angu_mom_2_part1_1
 To compute Ip (1st version)
 
doublep_angu_mom_1_part2_1
 To compute Xn (1st version)
 
doublep_angu_mom_2_part2_1
 To compute Xp (1st version)
 
doublep_angu_mom_1_part1_2
 To compute In (2nd version)
 
doublep_angu_mom_2_part1_2
 To compute Ip (2nd version)
 
doublep_angu_mom_1_part2_2
 To compute Xn (2nd version)
 
doublep_angu_mom_2_part2_2
 To compute Xp (2nd version)
 
double omega
 Rotation angular velocity ([f_unit] )
 
Tenseur bbb
 Metric factor B.
 
Tenseur b_car
 Square of the metric factor B.
 
Tenseur nphi
 Metric coefficient $N^\varphi$.
 
Tenseur tnphi
 Component $\tilde N^\varphi = N^\varphi r\sin\theta$ of the shift vector.
 
Tenseur uuu
 Norm of u_euler.
 
Tenseurlogn
 Metric potential $\nu = \ln N$ = logn_auto.
 
Tenseur nuf
 Part of the Metric potential $\nu = \ln N$ = logn generated by the matter terms.
 
Tenseur nuq
 Part of the Metric potential $\nu = \ln N$ = logn generated by the quadratic terms.
 
Tenseurdzeta
 Metric potential $\zeta = \ln(AN)$ = beta_auto.
 
Tenseur tggg
 Metric potential $\tilde G = (NB-1) r\sin\theta$.
 
Tenseur w_shift
 Vector $W^i$ used in the decomposition of shift , following Shibata's prescription [Prog.
 
Tenseur khi_shift
 Scalar $\chi$ used in the decomposition of shift , following Shibata's prescription [Prog.
 
Tenseur_sym tkij
 Tensor ${\tilde K_{ij}}$ related to the extrinsic curvature tensor by ${\tilde K_{ij}} = B^{-2} K_{ij}$.
 
Tenseur ak_car
 Scalar $A^2 K_{ij} K^{ij}$.
 
Cmp ssjm1_nuf
 Effective source at the previous step for the resolution of the Poisson equation for nuf by means of Map_et::poisson .
 
Cmp ssjm1_nuq
 Effective source at the previous step for the resolution of the Poisson equation for nuq by means of Map_et::poisson .
 
Cmp ssjm1_dzeta
 Effective source at the previous step for the resolution of the Poisson equation for dzeta .
 
Cmp ssjm1_tggg
 Effective source at the previous step for the resolution of the Poisson equation for tggg .
 
Cmp ssjm1_khi
 Effective source at the previous step for the resolution of the Poisson equation for the scalar $\chi$ by means of Map_et::poisson .
 
Tenseur ssjm1_wshift
 Effective source at the previous step for the resolution of the vector Poisson equation for $W^i$.
 
doublep_angu_mom
 Angular momentum.
 
doublep_tsw
 Ratio T/W.
 
doublep_grv2
 Error on the virial identity GRV2.
 
doublep_grv3
 Error on the virial identity GRV3.
 
doublep_r_circ
 Circumferential radius.
 
doublep_area
 Surface area.
 
doublep_aplat
 Flatening r_pole/r_eq.
 
doublep_z_eqf
 Forward redshift factor at equator.
 
doublep_z_eqb
 Backward redshift factor at equator.
 
doublep_z_pole
 Redshift factor at North pole.
 
doublep_mom_quad
 Quadrupole moment.
 
doublep_mom_quad_old
 Part of the quadrupole moment.
 
doublep_mom_quad_Bo
 Part of the quadrupole moment.
 
doublep_r_isco
 Circumferential radius of the ISCO.
 
doublep_f_isco
 Orbital frequency of the ISCO.
 
doublep_espec_isco
 Specific energy of a particle on the ISCO.
 
doublep_lspec_isco
 Specific angular momentum of a particle on the ISCO.
 
doublep_f_eq
 Orbital frequency at the equator.
 
Mapmp
 Mapping associated with the star.
 
int nzet
 Number of domains of *mp occupied by the star.
 
bool relativistic
 Indicator of relativity: true for a relativistic star, false for a Newtonian one.
 
double unsurc2
 $1/c^2$ : unsurc2=1 for a relativistic star, 0 for a Newtonian one.
 
int k_div
 Index of regularity of the gravitational potential logn_auto .
 
Tenseur ent
 Log-enthalpy (relativistic case) or specific enthalpy (Newtonian case)
 
Tenseur nbar
 Baryon density in the fluid frame.
 
Tenseur ener
 Total energy density in the fluid frame.
 
Tenseur press
 Fluid pressure.
 
Tenseur ener_euler
 Total energy density in the Eulerian frame.
 
Tenseur s_euler
 Trace of the stress tensor in the Eulerian frame.
 
Tenseur gam_euler
 Lorentz factor between the fluid and Eulerian observers.
 
Tenseur u_euler
 Fluid 3-velocity with respect to the Eulerian observer.
 
Tenseur logn_auto
 Total of the logarithm of the part of the lapse N
generated principaly by the star.
 
Tenseur logn_auto_regu
 Regular part of the logarithm of the part of the lapse N
generated principaly by the star.
 
Tenseur logn_auto_div
 Divergent part (if k_div!=0 ) of the logarithm of the part of the lapse N
generated principaly by the star.
 
Tenseur d_logn_auto_div
 Gradient of logn_auto_div (if k_div!=0 )
 
Tenseur beta_auto
 Logarithm of the part of the product AN generated principaly by by the star.
 
Tenseur nnn
 Total lapse function.
 
Tenseur shift
 Total shift vector.
 
Tenseur a_car
 Total conformal factor $A^2$.
 
doublep_ray_eq
 Coordinate radius at $\phi=0$, $\theta=\pi/2$.
 
doublep_ray_eq_pis2
 Coordinate radius at $\phi=\pi/2$, $\theta=\pi/2$.
 
doublep_ray_eq_pi
 Coordinate radius at $\phi=\pi$, $\theta=\pi/2$.
 
doublep_ray_eq_3pis2
 Coordinate radius at $\phi=3\pi/2$, $\theta=\pi/2$.
 
doublep_ray_pole
 Coordinate radius at $\theta=0$.
 
Itblp_l_surf
 Description of the stellar surface: 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.
 
Tblp_xi_surf
 Description of the stellar surface: 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.
 
doublep_mass_b
 Baryon mass.
 
doublep_mass_g
 Gravitational mass.
 

Detailed Description

Class for two-fluid rotating relativistic stars.

()

This is a child class of Etoile_rot , with the same metric and overloaded member functions.

There are two number-density fields nbar and nbar2
(and 2 log-enthalpies, see class Eos_bifluid ), as well as two velocity fields, with phi-components (with respect to the Eulerian observer) uuu and uuu2 .

Fluid 1 can be considered to correspond to the (superfluid) neutrons, whereas fluid 2 would consist of the protons (and electrons) The quantity u_euler of the class Etoile is not used in this class! Only the "3+1" components of ${T^\mu}_\nu$ should be used outside of hydro_euler() , namely s_euler, sphph_euler, j_euler and ener_euler.

Definition at line 147 of file et_rot_bifluid.h.

Constructor & Destructor Documentation

◆ Et_rot_bifluid() [1/3]

Lorene::Et_rot_bifluid::Et_rot_bifluid ( Map mp_i,
int  nzet_i,
bool  relat,
const Eos_bifluid eos_i 
)

◆ Et_rot_bifluid() [2/3]

Lorene::Et_rot_bifluid::Et_rot_bifluid ( const Et_rot_bifluid et)

Copy constructor.

Definition at line 187 of file et_rot_bifluid.C.

References omega2, and set_der_0x0().

◆ Et_rot_bifluid() [3/3]

Lorene::Et_rot_bifluid::Et_rot_bifluid ( Map mp_i,
const Eos_bifluid eos_i,
FILE fich 
)

Constructor from a file (see sauve(FILE*) ) Works only for relativistic stars.

This has to be improved....

Definition at line 221 of file et_rot_bifluid.C.

References delta_car, ent2, Lorene::fread_be(), Lorene::Etoile::mp, omega2, set_der_0x0(), and uuu2.

◆ ~Et_rot_bifluid()

Lorene::Et_rot_bifluid::~Et_rot_bifluid ( )
virtual

Destructor.

Definition at line 276 of file et_rot_bifluid.C.

References del_deriv().

Member Function Documentation

◆ angu_mom()

◆ angu_mom_1()

◆ angu_mom_1_part1_1()

◆ angu_mom_1_part1_2()

◆ angu_mom_1_part2_1()

◆ angu_mom_1_part2_2()

◆ angu_mom_2()

◆ angu_mom_2_part1_1()

◆ angu_mom_2_part1_2()

◆ angu_mom_2_part2_1()

◆ angu_mom_2_part2_2()

◆ aplat()

double Lorene::Etoile_rot::aplat ( ) const
virtualinherited

Flatening r_pole/r_eq.

Definition at line 496 of file et_rot_global.C.

References Lorene::Etoile_rot::p_aplat, Lorene::Etoile::ray_eq(), and Lorene::Etoile::ray_pole().

◆ aplat2()

double Lorene::Et_rot_bifluid::aplat2 ( ) const
virtual

Flatening r_pole/r_eq for fluid 2.

Definition at line 618 of file et_bfrot_global.C.

References p_aplat2, ray_eq2(), and ray_pole2().

◆ area()

◆ area2()

◆ del_deriv()

◆ del_hydro_euler()

void Lorene::Et_rot_bifluid::del_hydro_euler ( )
protectedvirtual

Sets to ETATNONDEF (undefined state) the hydrodynamical quantities relative to the Eulerian observer.

Reimplemented from Lorene::Etoile_rot.

Definition at line 346 of file et_rot_bifluid.C.

References del_deriv(), Lorene::Etoile_rot::del_hydro_euler(), delta_car, enerps_euler, gam_euler2, j_euler, j_euler1, j_euler11_1, j_euler12_1, j_euler2, K_nn, K_np, K_pp, Lorene::Tenseur::set_etat_nondef(), sphph_euler, and uuu2.

◆ display_poly()

◆ equation_of_state()

◆ equil_spher_falloff()

◆ equil_spher_regular() [1/2]

void Lorene::Et_rot_bifluid::equil_spher_regular ( double  ent_c,
double  ent_c2,
double  precis = 1.e-14 
)

Computes a spherical static configuration.

The sources for Poisson equations are regularized by extracting analytical diverging parts.

Parameters
ent_c[input] central value of the enthalpy 1
ent_c2[input] central value of the enthalpy 2
precis[input] threshold in the relative difference between the enthalpy fields of two consecutive steps to stop the iterative procedure (default value: 1.e-14)

◆ equil_spher_regular() [2/2]

void Lorene::Etoile::equil_spher_regular ( double  ent_c,
double  precis = 1.e-14 
)
inherited

Computes a spherical static configuration.

The sources for Poisson equations are regularized by extracting analytical diverging parts.

Parameters
ent_c[input] central value of the enthalpy
precis[input] threshold in the relative difference between the enthalpy fields of two consecutive steps to stop the iterative procedure (default value: 1.e-14)

Definition at line 115 of file et_equil_spher_regu.C.

References Lorene::Etoile::a_car, Lorene::Tenseur::annule(), Lorene::Etoile::beta_auto, Lorene::Etoile::d_logn_auto_div, Lorene::Eos::der_ener_ent_p(), Lorene::Eos::der_nbar_ent_p(), Lorene::diffrel(), Lorene::Map_af::dsdr(), Lorene::Etoile::ener, Lorene::Etoile::ener_euler, Lorene::Etoile::ent, Lorene::Etoile::eos, Lorene::Etoile::equation_of_state(), Lorene::exp(), Lorene::Etoile::gam_euler, Lorene::Map::get_bvect_spher(), Lorene::Map::get_mg(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Tenseur::gradient_spher(), Lorene::Map_af::homothetie(), Lorene::Etoile::k_div, Lorene::Etoile::logn_auto, Lorene::Etoile::logn_auto_div, Lorene::Etoile::logn_auto_regu, Lorene::Etoile::mass_b(), Lorene::Etoile::mass_g(), Lorene::Etoile::mp, Lorene::Etoile::nbar, Lorene::Etoile::nnn, Lorene::norme(), Lorene::Etoile::nzet, Lorene::Map_af::poisson(), Lorene::Map_af::poisson_regular(), Lorene::Etoile::press, Lorene::Etoile::relativistic, Lorene::Etoile::s_euler, Lorene::Tenseur::set(), Lorene::Tenseur::set_etat_qcq(), Lorene::Tenseur::set_std_base(), Lorene::Tenseur::set_triad(), Lorene::Etoile::shift, Lorene::sqrt(), Lorene::Cmp::std_base_scal(), Lorene::Etoile::u_euler, Lorene::Etoile::unsurc2, and Lorene::Map::val_r().

◆ equilibrium()

void Lorene::Etoile_rot::equilibrium ( double  ent_c,
double  omega0,
double  fact_omega,
int  nzadapt,
const Tbl ent_limit,
const Itbl icontrol,
const Tbl control,
double  mbar_wanted,
double  aexp_mass,
Tbl diff,
Param = 0x0 
)
virtualinherited

Computes an equilibrium configuration.

Parameters
ent_c[input] Central enthalpy
omega0[input] Requested angular velocity (if fact_omega=1. )
fact_omega[input] 1.01 = search for the Keplerian frequency,
  1. = otherwise.
nzadapt[input] Number of (inner) domains where the mapping adaptation to an iso-enthalpy surface should be performed
ent_limit[input] 1-D Tbl of dimension nzet which defines the enthalpy at the outer boundary of each domain
icontrol[input] Set of integer parameters (stored as a 1-D Itbl of size 8) to control the iteration:
  • icontrol(0) = mer_max : maximum number of steps
  • icontrol(1) = mer_rot : step at which the rotation is switched on
  • icontrol(2) = mer_change_omega : step at which the rotation velocity is changed to reach the final one
  • icontrol(3) = mer_fix_omega : step at which the final rotation velocity must have been reached
  • icontrol(4) = mer_mass : the absolute value of mer_mass is the step from which the baryon mass is forced to converge, by varying the central enthalpy (mer_mass>0 ) or the angular velocity (mer_mass<0 )
  • icontrol(5) = mermax_poisson : maximum number of steps in Map_et::poisson
  • icontrol(6) = mer_triax : step at which the 3-D perturbation is switched on
  • icontrol(7) = delta_mer_kep : number of steps after mer_fix_omega when omega starts to be increased by fact_omega to search for the Keplerian velocity
control[input] Set of parameters (stored as a 1-D Tbl of size 7) to control the iteration:
  • control(0) = precis : threshold on the enthalpy relative change for ending the computation
  • control(1) = omega_ini : initial angular velocity, switched on only if mer_rot<0 , otherwise 0 is used
  • control(2) = relax : relaxation factor in the main iteration
  • control(3) = relax_poisson : relaxation factor in Map_et::poisson
  • control(4) = thres_adapt : threshold on dH/dr for freezing the adaptation of the mapping
  • control(5) = ampli_triax : relative amplitude of the 3-D perturbation
  • control(6) = precis_adapt : precision for Map_et::adapt
mbar_wanted[input] Requested baryon mass (effective only if mer_mass > mer_max )
aexp_mass[input] Exponent for the increase factor of the central enthalpy to converge to the requested baryon mass
diff[output] 1-D Tbl of size 7 for the storage of some error indicators :
  • diff(0) : Relative change in the enthalpy field between two successive steps
  • diff(1) : Relative error in the resolution of the Poisson equation for nuf
  • diff(2) : Relative error in the resolution of the Poisson equation for nuq
  • diff(3) : Relative error in the resolution of the Poisson equation for dzeta
  • diff(4) : Relative error in the resolution of the Poisson equation for tggg
  • diff(5) : Relative error in the resolution of the equation for shift (x comp.)
  • diff(6) : Relative error in the resolution of the equation for shift (y comp.)

Reimplemented in Lorene::Et_rot_diff.

Definition at line 147 of file et_rot_equilibrium.C.

References Lorene::Etoile::a_car, Lorene::abs(), Lorene::Map::adapt(), Lorene::Param::add_cmp_mod(), Lorene::Param::add_double(), Lorene::Param::add_double_mod(), Lorene::Param::add_int(), Lorene::Param::add_int_mod(), Lorene::Param::add_tbl(), Lorene::Param::add_tenseur_mod(), Lorene::Etoile_rot::ak_car, Lorene::Cmp::annule(), Lorene::Etoile_rot::bbb, Lorene::Valeur::c_cf, Lorene::Tenseur::change_triad(), Lorene::Map::cmp_zero(), Lorene::Valeur::coef(), Lorene::cos(), Lorene::diffrel(), Lorene::Etoile_rot::dzeta, Lorene::Etoile::ener_euler, Lorene::Etoile::ent, Lorene::Etoile::equation_of_state(), Lorene::Etoile_rot::fait_nphi(), Lorene::flat_scalar_prod(), Lorene::Etoile::gam_euler, Lorene::Map::get_bvect_cart(), Lorene::Tenseur::get_etat(), Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Mg3d::get_type_t(), Lorene::Tenseur::gradient_spher(), Lorene::Etoile_rot::grv2(), Lorene::Map_et::homothetie(), Lorene::Etoile_rot::hydro_euler(), Lorene::Etoile_rot::khi_shift, Lorene::log(), Lorene::log10(), Lorene::Etoile_rot::logn, Lorene::Etoile_rot::mass_b(), Lorene::Etoile_rot::mass_g(), Lorene::Etoile::mp, Lorene::Cmp::mult_rsint(), Lorene::Etoile::nbar, Lorene::Etoile::nnn, Lorene::Etoile_rot::nphi, Lorene::Etoile_rot::nuf, Lorene::Etoile_rot::nuq, Lorene::Etoile::nzet, Lorene::Etoile_rot::omega, Lorene::Etoile_rot::partial_display(), Lorene::Map::phi, Lorene::Map::poisson2d(), Lorene::Tenseur::poisson_vect(), Lorene::pow(), Lorene::Etoile::press, Lorene::Etoile::ray_eq(), Lorene::Etoile::ray_pole(), Lorene::Map::reevaluate(), Lorene::Etoile::relativistic, Lorene::Etoile::s_euler, Lorene::Tenseur::set(), Lorene::Tbl::set(), Lorene::Tbl::set_etat_qcq(), Lorene::Tenseur::set_etat_qcq(), Lorene::Tenseur::set_std_base(), Lorene::Etoile::shift, Lorene::Map::sint, Lorene::sqrt(), Lorene::Etoile_rot::ssjm1_khi, Lorene::Etoile_rot::ssjm1_nuf, Lorene::Etoile_rot::ssjm1_nuq, Lorene::Etoile_rot::ssjm1_tggg, Lorene::Etoile_rot::ssjm1_wshift, Lorene::Cmp::std_base_scal(), Lorene::Etoile_rot::tggg, Lorene::Etoile_rot::tkij, Lorene::Etoile::u_euler, Lorene::Etoile_rot::update_metric(), Lorene::Etoile_rot::uuu, Lorene::Cmp::va, and Lorene::Etoile_rot::w_shift.

◆ equilibrium_bi()

void Lorene::Et_rot_bifluid::equilibrium_bi ( double  ent_c,
double  ent_c2,
double  omega0,
double  omega20,
const Tbl ent_limit,
const Tbl ent2_limit,
const Itbl icontrol,
const Tbl control,
Tbl diff,
int  mer_mass,
double  mbar1_wanted,
double  mbar2_wanted,
double  aexp_mass 
)

Computes an equilibrium configuration.

Parameters
ent_c[input] Central enthalpy for fluid 1
ent_c2[input] Central enthalpy for fluid 2
omega0[input] Requested angular velocity for fluid 1
omega20[input] Requested angular velocity for fluid 2
ent_limit[input] 1-D Tbl of dimension nzet which defines the enthalpy for fluid 1 at the outer boundary of each domain
ent2_limit[input] 1-D Tbl of dimension nzet which defines the enthalpy for fluid 2 at the outer boundary of each domain
icontrol[input] Set of integer parameters (stored as a 1-D Itbl of size 5) to control the iteration:
  • icontrol(0) = mer_max : maximum number of steps
  • icontrol(1) = mer_rot : step at which the rotation is switched on
  • icontrol(2) = mer_change_omega : step at which the rotation velocity is changed to reach the final one
  • icontrol(3) = mer_fix_omega : step at which the final rotation velocity must have been reached
  • icontrol(4) = mermax_poisson : maximum number of steps in Map_et::poisson
control[input] Set of parameters (stored as a 1-D Tbl of size 5) to control the iteration:
  • control(0) = precis : threshold on the enthalpy relative change for ending the computation
  • control(1) = omega_ini : initial angular velocity, switched on only if mer_rot < 0 , otherwise 0 is used
  • control(2) = omega2_ini : initial angular velocity, switched on only if mer_rot < 0 , otherwise 0 is used
  • control(3) = relax : relaxation factor in the main iteration
  • control(4) = relax_poisson : relaxation factor in Map_et::poisson
diff[output] 1-D Tbl of size 8 for the storage of some error indicators :
  • diff(0) : Relative change in the enthalpy field 1 between two successive steps
  • diff(1) : Relative change in the enthalpy field 2 between two successive steps
  • diff(2) : Relative error in the resolution of the Poisson equation for nuf
  • diff(3) : Relative error in the resolution of the Poisson equation for nuq
  • diff(4) : Relative error in the resolution of the Poisson equation for dzeta
  • diff(5) : Relative error in the resolution of the Poisson equation for tggg
  • diff(6) : Relative error in the resolution of the equation for shift (x comp.)
  • diff(7) : Relative error in the resolution of the equation for shift (y comp.)

Definition at line 134 of file et_bfrot_equilibre.C.

References Lorene::Etoile::a_car, Lorene::Map::adapt(), Lorene::Param::add_cmp_mod(), Lorene::Param::add_double(), Lorene::Param::add_double_mod(), Lorene::Param::add_int(), Lorene::Param::add_int_mod(), Lorene::Param::add_tbl(), Lorene::Param::add_tenseur_mod(), Lorene::Etoile_rot::ak_car, Lorene::Etoile_rot::bbb, Lorene::Valeur::c_cf, Lorene::Tenseur::change_triad(), Lorene::Map::cmp_zero(), Lorene::Valeur::coef(), Lorene::cos(), Lorene::diffrel(), Lorene::Etoile_rot::dzeta, enerps_euler, Lorene::Etoile::ent, ent2, eos, equation_of_state(), Lorene::Etoile_rot::fait_nphi(), Lorene::flat_scalar_prod(), Lorene::Etoile::gam_euler, gam_euler2, Lorene::Eos_bf_poly::get_beta(), Lorene::Map::get_bvect_cart(), Lorene::Tenseur::get_etat(), Lorene::Eos_bf_poly::get_kap1(), Lorene::Eos_bf_poly::get_kap2(), Lorene::Eos_bf_poly::get_kap3(), Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Mg3d::get_type_t(), Lorene::Tenseur::gradient_spher(), grv2(), Lorene::Map_et::homothetie(), Lorene::Map::homothetie(), hydro_euler(), Lorene::Eos_bifluid::identify(), j_euler, Lorene::Etoile_rot::khi_shift, Lorene::log(), Lorene::log10(), Lorene::Etoile_rot::logn, mass_b(), mass_b1(), mass_b2(), Lorene::Etoile::mp, Lorene::Etoile::nnn, Lorene::Etoile_rot::nuf, Lorene::Etoile_rot::nuq, Lorene::Etoile::nzet, Lorene::Etoile_rot::omega, omega2, Lorene::Map::phi, Lorene::Map::poisson2d(), Lorene::Tenseur::poisson_vect(), Lorene::pow(), Lorene::Etoile::ray_eq(), Lorene::Etoile::ray_pole(), Lorene::Map::reevaluate(), Lorene::Etoile::relativistic, Lorene::Etoile::s_euler, Lorene::Tenseur::set(), Lorene::Tbl::set(), Lorene::Tbl::set_etat_qcq(), Lorene::Tenseur::set_etat_qcq(), Lorene::Tenseur::set_std_base(), Lorene::Etoile::shift, Lorene::Map::sint, sphph_euler, Lorene::sqrt(), Lorene::Etoile_rot::ssjm1_khi, Lorene::Etoile_rot::ssjm1_nuf, Lorene::Etoile_rot::ssjm1_nuq, Lorene::Etoile_rot::ssjm1_tggg, Lorene::Etoile_rot::ssjm1_wshift, Lorene::Etoile_rot::tggg, Lorene::Etoile_rot::tkij, Lorene::Etoile_rot::update_metric(), Lorene::Etoile_rot::uuu, uuu2, Lorene::Cmp::va, and Lorene::Etoile_rot::w_shift.

◆ equilibrium_spher()

void Lorene::Etoile::equilibrium_spher ( double  ent_c,
double  precis = 1.e-14,
const Tbl ent_limit = 0x0 
)
virtualinherited

Computes a spherical static configuration.

Parameters
ent_c[input] central value of the enthalpy
precis[input] threshold in the relative difference between the enthalpy fields of two consecutive steps to stop the iterative procedure (default value: 1.e-14)
ent_limit[input] : array of enthalpy values to be set at the boundaries between the domains; if set to 0x0 (default), the initial values will be kept.

Definition at line 87 of file etoile_equil_spher.C.

References Lorene::Etoile::a_car, Lorene::Map_et::adapt(), Lorene::Param::add_double(), Lorene::Param::add_int(), Lorene::Param::add_int_mod(), Lorene::Param::add_tbl(), Lorene::Tenseur::annule(), Lorene::Etoile::beta_auto, Lorene::diffrel(), Lorene::Cmp::dsdr(), Lorene::Map_af::dsdr(), Lorene::Etoile::ener, Lorene::Etoile::ener_euler, Lorene::Etoile::ent, Lorene::Etoile::equation_of_state(), Lorene::exp(), Lorene::Etoile::gam_euler, Lorene::Map_af::get_alpha(), Lorene::Map_et::get_alpha(), Lorene::Map_af::get_beta(), Lorene::Map_et::get_beta(), Lorene::Etoile::get_ent(), Lorene::Map::get_mg(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Etoile::get_press(), Lorene::Map_af::homothetie(), Lorene::Etoile::logn_auto, Lorene::Etoile::mass_b(), Lorene::Etoile::mass_g(), Lorene::Etoile::mp, Lorene::Etoile::nbar, Lorene::Etoile::nnn, Lorene::norme(), Lorene::Etoile::nzet, Lorene::Map_af::poisson(), Lorene::Etoile::press, Lorene::Etoile::relativistic, Lorene::Etoile::s_euler, Lorene::Tenseur::set(), Lorene::Map_af::set_alpha(), Lorene::Map_af::set_beta(), Lorene::Tenseur::set_etat_qcq(), Lorene::Tenseur::set_std_base(), Lorene::Etoile::shift, Lorene::sqrt(), Lorene::Etoile::u_euler, Lorene::Etoile::unsurc2, and Lorene::Map::val_r().

◆ equilibrium_spher_bi()

void Lorene::Et_rot_bifluid::equilibrium_spher_bi ( double  ent_c,
double  ent_c2,
double  precis = 1.e-14 
)

Computes a spherical static configuration.

Parameters
ent_c[input] central value of the enthalpy 1
ent_c2[input] central value of the enthalpy 2
precis[input] threshold in the relative difference between the enthalpy fields of two consecutive steps to stop the iterative procedure (default value: 1.e-14)

◆ espec_isco()

double Lorene::Etoile_rot::espec_isco ( ) const
virtualinherited

Energy of a particle on the ISCO.

Definition at line 301 of file et_rot_isco.C.

References Lorene::Etoile_rot::p_espec_isco, and Lorene::Etoile_rot::r_isco().

◆ extrinsic_curvature()

◆ f_eccentric()

double Lorene::Etoile_rot::f_eccentric ( double  ecc,
double  periast,
ostream ost = 0x0 
) const
virtualinherited

Computation of frequency of eccentric orbits.

Parameters
ecceccentricity of the orbit
periasrtperiastron of the orbit
ostoutput stream to give details of the computation; if set to 0x0 [default value], no details will be given.
Returns
orbital frequency

Definition at line 78 of file et_rot_f_eccentric.C.

References Lorene::Param::add_cmp(), Lorene::Param::add_int(), Lorene::Cmp::annule(), Lorene::Etoile_rot::bbb, Lorene::Cmp::dsdr(), Lorene::Map::get_mg(), Lorene::Mg3d::get_nzone(), Lorene::Etoile::mp, Lorene::Etoile::nnn, Lorene::Etoile_rot::nphi, Lorene::Etoile::nzet, Lorene::Etoile_rot::p_f_isco, Lorene::Etoile_rot::p_r_isco, Lorene::Map::r, Lorene::Etoile::ray_eq(), Lorene::sqrt(), Lorene::Cmp::std_base_scal(), Lorene::Cmp::va, Lorene::Valeur::val_point(), and Lorene::Map::val_r().

◆ f_eq()

double Lorene::Etoile_rot::f_eq ( ) const
virtualinherited

Orbital frequency at the equator.

Definition at line 319 of file et_rot_isco.C.

References Lorene::Etoile_rot::p_f_eq, and Lorene::Etoile_rot::r_isco().

◆ f_isco()

double Lorene::Etoile_rot::f_isco ( ) const
virtualinherited

Orbital frequency at the innermost stable circular orbit (ISCO).

Definition at line 267 of file et_rot_isco.C.

References Lorene::Etoile_rot::p_f_isco, and Lorene::Etoile_rot::r_isco().

◆ fait_nphi()

void Lorene::Etoile_rot::fait_nphi ( )
inherited

Computes tnphi and nphi from the Cartesian components of the shift, stored in shift .

Definition at line 781 of file etoile_rot.C.

References Lorene::Map::comp_p_from_cartesian(), Lorene::Tenseur::get_etat(), Lorene::Etoile::mp, Lorene::Etoile_rot::nphi, Lorene::Tenseur::set(), Lorene::Tenseur::set_etat_qcq(), Lorene::Etoile::shift, and Lorene::Etoile_rot::tnphi.

◆ fait_shift()

void Lorene::Etoile_rot::fait_shift ( )
inherited

◆ get_a_car()

const Tenseur & Lorene::Etoile::get_a_car ( ) const
inlineinherited

Returns the total conformal factor $A^2$.

Definition at line 733 of file etoile.h.

References Lorene::Etoile::a_car.

◆ get_ak_car()

const Tenseur & Lorene::Etoile_rot::get_ak_car ( ) const
inlineinherited

Returns the scalar $A^2 K_{ij} K^{ij}$.

For axisymmetric stars, this quantity is related to the derivatives of $N^\varphi$ by

\[
 A^2 K_{ij} K^{ij} = {B^2 \over 2 N^2} \, r^2\sin^2\theta \,  
   \left[ \left( {\partial N^\varphi \over \partial r} \right) ^2
     + {1\over r^2} \left( {\partial N^\varphi \over 
        \partial \theta} \right) ^2 \right] \ . 
\]

In particular it is related to the quantities $k_1$ and $k_2$ introduced by Eqs.~(3.7) and (3.8) of Bonazzola et al. Astron. Astrophys. 278 , 421 (1993) by

\[
 A^2 K_{ij} K^{ij} = 2 A^2 (k_1^2 + k_2^2) \ . 
\]

Definition at line 1799 of file etoile.h.

References Lorene::Etoile_rot::ak_car.

◆ get_b_car()

const Tenseur & Lorene::Etoile_rot::get_b_car ( ) const
inlineinherited

Returns the square of the metric factor B.

Definition at line 1715 of file etoile.h.

References Lorene::Etoile_rot::b_car.

◆ get_bbb()

const Tenseur & Lorene::Etoile_rot::get_bbb ( ) const
inlineinherited

Returns the metric factor B.

Definition at line 1712 of file etoile.h.

References Lorene::Etoile_rot::bbb.

◆ get_beta_auto()

const Tenseur & Lorene::Etoile::get_beta_auto ( ) const
inlineinherited

Returns the logarithm of the part of the product AN generated principaly by the star.

Definition at line 724 of file etoile.h.

References Lorene::Etoile::beta_auto.

◆ get_d_logn_auto_div()

const Tenseur & Lorene::Etoile::get_d_logn_auto_div ( ) const
inlineinherited

Returns the gradient of logn_auto_div.

Definition at line 719 of file etoile.h.

References Lorene::Etoile::d_logn_auto_div.

◆ get_delta_car()

const Tenseur & Lorene::Et_rot_bifluid::get_delta_car ( ) const
inline

Returns the "relative velocity" (squared) $\Delta^2$ of the two fluids.

Definition at line 351 of file et_rot_bifluid.h.

References delta_car.

◆ get_dzeta()

const Tenseur & Lorene::Etoile_rot::get_dzeta ( ) const
inlineinherited

Returns the Metric potential $\zeta = \ln(AN)$ = beta_auto.

Definition at line 1742 of file etoile.h.

References Lorene::Etoile_rot::dzeta.

◆ get_ener()

const Tenseur & Lorene::Etoile::get_ener ( ) const
inlineinherited

Returns the proper total energy density.

Definition at line 679 of file etoile.h.

References Lorene::Etoile::ener.

◆ get_ener_euler()

const Tenseur & Lorene::Etoile::get_ener_euler ( ) const
inlineinherited

Returns the total energy density with respect to the Eulerian observer.

Definition at line 685 of file etoile.h.

References Lorene::Etoile::ener_euler.

◆ get_ent()

const Tenseur & Lorene::Etoile::get_ent ( ) const
inlineinherited

Returns the enthalpy field.

Definition at line 673 of file etoile.h.

References Lorene::Etoile::ent.

◆ get_ent2()

const Tenseur & Lorene::Et_rot_bifluid::get_ent2 ( ) const
inline

Returns the enthalpy field for fluid 2.

Definition at line 338 of file et_rot_bifluid.h.

References ent2.

◆ get_eos()

const Eos_bifluid & Lorene::Et_rot_bifluid::get_eos ( ) const
inline

Returns the equation of state.

Definition at line 335 of file et_rot_bifluid.h.

References eos.

◆ get_gam_euler()

const Tenseur & Lorene::Etoile::get_gam_euler ( ) const
inlineinherited

Returns the Lorentz factor between the fluid and Eulerian observers.

Definition at line 691 of file etoile.h.

References Lorene::Etoile::gam_euler.

◆ get_gam_euler2()

const Tenseur & Lorene::Et_rot_bifluid::get_gam_euler2 ( ) const
inline

Returns the Lorentz factor between the fluid 2 and Eulerian observers.

Definition at line 354 of file et_rot_bifluid.h.

References gam_euler2.

◆ get_K_nn()

const Tenseur & Lorene::Et_rot_bifluid::get_K_nn ( ) const
inline

Returns the coefficient Knn.

Definition at line 344 of file et_rot_bifluid.h.

References K_nn.

◆ get_K_np()

const Tenseur & Lorene::Et_rot_bifluid::get_K_np ( ) const
inline

Returns the coefficient Knp.

Definition at line 346 of file et_rot_bifluid.h.

References K_np.

◆ get_K_pp()

const Tenseur & Lorene::Et_rot_bifluid::get_K_pp ( ) const
inline

Returns the coefficient Kpp.

Definition at line 348 of file et_rot_bifluid.h.

References K_pp.

◆ get_khi_shift()

const Tenseur & Lorene::Etoile_rot::get_khi_shift ( ) const
inlineinherited

Returns the scalar $\chi$ used in the decomposition of shift
following Shibata's prescription [Prog.

Theor. Phys. 101 , 1199 (1999)] :

\[
 N^i = {7\over 8} W^i - {1\over 8} 
        \left(\nabla^i\chi+\nabla^iW^kx_k\right)
\]

NB: w_shift contains the components of $W^i$ with respect to the Cartesian triad associated with the mapping mp .

Definition at line 1773 of file etoile.h.

References Lorene::Etoile_rot::khi_shift.

◆ get_logn()

const Tenseur & Lorene::Etoile_rot::get_logn ( ) const
inlineinherited

Returns the metric potential $\nu = \ln N$ = logn_auto.

Definition at line 1729 of file etoile.h.

References Lorene::Etoile_rot::logn.

◆ get_logn_auto()

const Tenseur & Lorene::Etoile::get_logn_auto ( ) const
inlineinherited

Returns the logarithm of the part of the lapse N generated principaly by the star.

In the Newtonian case, this is the Newtonian gravitational potential (in units of $c^2$).

Definition at line 701 of file etoile.h.

References Lorene::Etoile::logn_auto.

◆ get_logn_auto_div()

const Tenseur & Lorene::Etoile::get_logn_auto_div ( ) const
inlineinherited

Returns the divergent part of the logarithm of the part of the lapse N generated principaly by the star.

In the Newtonian case, this is the diverging part of the Newtonian gravitational potential (in units of $c^2$).

Definition at line 715 of file etoile.h.

References Lorene::Etoile::logn_auto_div.

◆ get_logn_auto_regu()

const Tenseur & Lorene::Etoile::get_logn_auto_regu ( ) const
inlineinherited

Returns the regular part of the logarithm of the part of the lapse N generated principaly by the star.

In the Newtonian case, this is the Newtonian gravitational potential (in units of $c^2$).

Definition at line 708 of file etoile.h.

References Lorene::Etoile::logn_auto_regu.

◆ get_mp()

const Map & Lorene::Etoile::get_mp ( ) const
inlineinherited

Returns the mapping.

Definition at line 659 of file etoile.h.

References Lorene::Etoile::mp.

◆ get_nbar()

const Tenseur & Lorene::Etoile::get_nbar ( ) const
inlineinherited

Returns the proper baryon density.

Definition at line 676 of file etoile.h.

References Lorene::Etoile::nbar.

◆ get_nbar2()

const Tenseur & Lorene::Et_rot_bifluid::get_nbar2 ( ) const
inline

Returns the proper baryon density for fluid 2.

Definition at line 341 of file et_rot_bifluid.h.

References nbar2.

◆ get_nnn()

const Tenseur & Lorene::Etoile::get_nnn ( ) const
inlineinherited

Returns the total lapse function N.

Definition at line 727 of file etoile.h.

References Lorene::Etoile::nnn.

◆ get_nphi()

const Tenseur & Lorene::Etoile_rot::get_nphi ( ) const
inlineinherited

Returns the metric coefficient $N^\varphi$.

Definition at line 1718 of file etoile.h.

References Lorene::Etoile_rot::nphi.

◆ get_nuf()

const Tenseur & Lorene::Etoile_rot::get_nuf ( ) const
inlineinherited

Returns the part of the Metric potential $\nu = \ln N$ = logn generated by the matter terms.

Definition at line 1734 of file etoile.h.

References Lorene::Etoile_rot::nuf.

◆ get_nuq()

const Tenseur & Lorene::Etoile_rot::get_nuq ( ) const
inlineinherited

Returns the Part of the Metric potential $\nu = \ln N$ = logn generated by the quadratic terms.

Definition at line 1739 of file etoile.h.

References Lorene::Etoile_rot::nuq.

◆ get_nzet()

int Lorene::Etoile::get_nzet ( ) const
inlineinherited

Returns the number of domains occupied by the star.

Definition at line 662 of file etoile.h.

References Lorene::Etoile::nzet.

◆ get_omega2()

double Lorene::Et_rot_bifluid::get_omega2 ( ) const
inline

Returns the rotation angular velocity of fluid 2([f_unit] )

Definition at line 357 of file et_rot_bifluid.h.

References omega2.

◆ get_omega_c()

double Lorene::Etoile_rot::get_omega_c ( ) const
virtualinherited

Returns the central value of the rotation angular velocity ([f_unit] )

Reimplemented in Lorene::Et_rot_diff.

Definition at line 680 of file etoile_rot.C.

References Lorene::Etoile_rot::omega.

◆ get_press()

const Tenseur & Lorene::Etoile::get_press ( ) const
inlineinherited

Returns the fluid pressure.

Definition at line 682 of file etoile.h.

References Lorene::Etoile::press.

◆ get_s_euler()

const Tenseur & Lorene::Etoile::get_s_euler ( ) const
inlineinherited

Returns the trace of the stress tensor in the Eulerian frame.

Definition at line 688 of file etoile.h.

References Lorene::Etoile::s_euler.

◆ get_shift()

const Tenseur & Lorene::Etoile::get_shift ( ) const
inlineinherited

Returns the total shift vector $N^i$.

Definition at line 730 of file etoile.h.

References Lorene::Etoile::shift.

◆ get_tggg()

const Tenseur & Lorene::Etoile_rot::get_tggg ( ) const
inlineinherited

Returns the Metric potential $\tilde G = (NB-1) r\sin\theta$.

Definition at line 1745 of file etoile.h.

References Lorene::Etoile_rot::tggg.

◆ get_tkij()

const Tenseur_sym & Lorene::Etoile_rot::get_tkij ( ) const
inlineinherited

Returns the tensor ${\tilde K_{ij}}$ related to the extrinsic curvature tensor by ${\tilde K_{ij}} = B^{-2} K_{ij}$.

tkij contains the Cartesian components of ${\tilde K_{ij}}$.

Definition at line 1780 of file etoile.h.

References Lorene::Etoile_rot::tkij.

◆ get_tnphi()

const Tenseur & Lorene::Etoile_rot::get_tnphi ( ) const
inlineinherited

Returns the component $\tilde N^\varphi = N^\varphi r\sin\theta$ of the shift vector.

Definition at line 1723 of file etoile.h.

References Lorene::Etoile_rot::tnphi.

◆ get_u_euler()

const Tenseur & Lorene::Etoile::get_u_euler ( ) const
inlineinherited

Returns the fluid 3-velocity with respect to the Eulerian observer.

Definition at line 694 of file etoile.h.

References Lorene::Etoile::u_euler.

◆ get_uuu()

const Tenseur & Lorene::Etoile_rot::get_uuu ( ) const
inlineinherited

Returns the norm of u_euler.

Definition at line 1726 of file etoile.h.

References Lorene::Etoile_rot::uuu.

◆ get_uuu2()

const Tenseur & Lorene::Et_rot_bifluid::get_uuu2 ( ) const
inline

Returns the norm of the fluid 2 3-velocity with respect to the eulerian frame.

Definition at line 360 of file et_rot_bifluid.h.

References uuu2.

◆ get_w_shift()

const Tenseur & Lorene::Etoile_rot::get_w_shift ( ) const
inlineinherited

Returns the vector $W^i$ used in the decomposition of shift , following Shibata's prescription [Prog.

Theor. Phys. 101 , 1199 (1999)] :

\[
 N^i = {7\over 8} W^i - {1\over 8} 
        \left(\nabla^i\chi+\nabla^iW^kx_k\right)
\]

NB: w_shift contains the components of $W^i$ with respect to the Cartesian triad associated with the mapping mp .

Definition at line 1759 of file etoile.h.

References Lorene::Etoile_rot::w_shift.

◆ grv2()

double Lorene::Et_rot_bifluid::grv2 ( ) const
virtual

Error on the virial identity GRV2.

Given by the integral Eq. (4.6) in [Bonazzola, Gougoulhon, Salgado, Marck, A&A 278 , 421 (1993)].

Reimplemented from Lorene::Etoile_rot.

Definition at line 471 of file et_bfrot_global.C.

References Lorene::Etoile::a_car, Lorene::Etoile_rot::ak_car, Lorene::flat_scalar_prod(), Lorene::Tenseur::gradient_spher(), Lorene::Etoile_rot::lambda_grv2(), Lorene::Etoile_rot::logn, Lorene::Etoile::mp, Lorene::Etoile_rot::p_grv2, and sphph_euler.

◆ grv3()

double Lorene::Et_rot_bifluid::grv3 ( ostream ost = 0x0) const
virtual

Error on the virial identity GRV3.

The error is computed as the integral defined by Eq. (43) of [Gourgoulhon and Bonazzola, Class. Quantum Grav. 11 , 443 (1994)] divided by the integral of the matter terms.

Parameters
ostoutput stream to give details of the computation; if set to 0x0 [default value], no details will be given.

Reimplemented from Lorene::Etoile_rot.

Definition at line 496 of file et_bfrot_global.C.

References Lorene::Etoile::a_car, Lorene::Etoile_rot::ak_car, Lorene::Etoile_rot::bbb, Lorene::Cmp::dsdr(), Lorene::Etoile_rot::dzeta, Lorene::flat_scalar_prod(), Lorene::Cmp::get_dzpuis(), Lorene::Cmp::get_etat(), Lorene::Tenseur::gradient_spher(), Lorene::log(), Lorene::Etoile_rot::logn, Lorene::Etoile::mp, Lorene::Valeur::mult_ct(), Lorene::Etoile_rot::p_grv3, Lorene::Etoile::relativistic, Lorene::Etoile::s_euler, Lorene::Cmp::set_dzpuis(), Lorene::Tenseur::set_std_base(), Lorene::Cmp::srdsdt(), Lorene::Valeur::ssint(), Lorene::Cmp::std_base_scal(), Lorene::Valeur::sx(), Lorene::Cmp::va, and Lorene::Map_radial::xsr.

◆ hydro_euler()

void Lorene::Et_rot_bifluid::hydro_euler ( )
virtual

Computes the hydrodynamical quantities relative to the Eulerian observer from those in the fluid frame.

The calculation is performed starting from the quantities ent , ent2 , ener , press , K_nn , K_np , K_pp and a_car, which are supposed to be up to date. From these,
the following fields are updated: delta_car , gam_euler , gam_euler2 , ener_euler , s_euler , sphph_euler and j_euler .

Reimplemented from Lorene::Etoile_rot.

Definition at line 826 of file et_rot_bifluid.C.

References Lorene::Tenseur::annule(), Lorene::Etoile_rot::bbb, Lorene::Tenseur::change_triad(), del_deriv(), delta_car, Lorene::Etoile::ener_euler, enerps_euler, Lorene::Etoile::ent, eos, Lorene::Etoile::gam_euler, gam_euler2, Lorene::Map::get_bvect_cart(), Lorene::Map::get_bvect_spher(), Lorene::Tenseur::get_etat(), Lorene::Eos_bifluid::get_Knn(), Lorene::Eos_bifluid::get_Knp(), Lorene::Eos_bifluid::get_Kpp(), Lorene::Eos_bifluid::get_m1(), Lorene::Eos_bifluid::get_m2(), Lorene::Map::get_mg(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Eos_bifluid::identify(), j_euler, j_euler1, j_euler11_1, j_euler12_1, j_euler2, K_nn, K_np, K_pp, Lorene::Etoile::mp, Lorene::Etoile::nbar, nbar2, Lorene::Etoile::nnn, Lorene::Etoile_rot::nphi, Lorene::Etoile::nzet, Lorene::Etoile_rot::omega, omega2, Lorene::pow(), Lorene::Etoile::press, Lorene::Etoile::relativistic, Lorene::Etoile::s_euler, Lorene::Tenseur::set(), Lorene::Tenseur::set_etat_nondef(), Lorene::Tenseur::set_etat_qcq(), Lorene::Tenseur::set_std_base(), Lorene::Tenseur::set_triad(), sphph_euler, Lorene::sqrt(), Lorene::Etoile::u_euler, Lorene::Etoile::unsurc2, Lorene::Etoile_rot::uuu, and uuu2.

◆ is_relativistic()

bool Lorene::Etoile::is_relativistic ( ) const
inlineinherited

Returns true for a relativistic star, false for a Newtonian one.

Definition at line 667 of file etoile.h.

References Lorene::Etoile::relativistic.

◆ l_surf()

const Itbl & Lorene::Et_rot_bifluid::l_surf ( ) const
virtual

Description of the surface of fluid 1: returns a 2-D Itbl
containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.

This surface is defined as the location where the density 1 (member nbar ) vanishes.

Reimplemented from Lorene::Etoile_rot.

Definition at line 811 of file et_bfrot_global.C.

References Lorene::Cmp::annule(), Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nt(), Lorene::Etoile::mp, Lorene::Etoile::nbar, Lorene::Etoile::nzet, Lorene::Etoile::p_l_surf, Lorene::Etoile::p_xi_surf, and Lorene::Cmp::va.

◆ l_surf2()

const Itbl & Lorene::Et_rot_bifluid::l_surf2 ( ) const

Description of the surface of fluid 2: returns a 2-D Itbl
containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.

This surface is defined as the location where the density 2 (member nbar2 ) vanishes.

Definition at line 844 of file et_bfrot_global.C.

References Lorene::Cmp::annule(), Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nt(), Lorene::Etoile::mp, nbar2, Lorene::Etoile::nzet, p_l_surf2, p_xi_surf2, and Lorene::Cmp::va.

◆ lambda_grv2()

double Lorene::Etoile_rot::lambda_grv2 ( const Cmp sou_m,
const Cmp sou_q 
)
staticinherited

Computes the coefficient $\lambda$ which ensures that the GRV2 virial identity is satisfied.

$\lambda$ is the coefficient by which one must multiply the quadratic source term $\sigma_q$ of the 2-D Poisson equation

\[
    \Delta_2 u = \sigma_m + \sigma_q
\]

in order that the total source does not contain any monopolar term, i.e. in order that

\[
    \int_0^{2\pi} \int_0^{+\infty} \sigma(r, \theta)
            \, r \, dr \, d\theta = 0       \ ,
\]

where $\sigma = \sigma_m + \sigma_q$. $\lambda$ is computed according to the formula

\[
    \lambda = - { \int_0^{2\pi} \int_0^{+\infty} \sigma_m(r, \theta)
            \, r \, dr \, d\theta       \over
        \int_0^{2\pi} \int_0^{+\infty} \sigma_q(r, \theta)
            \, r \, dr \, d\theta } \ .
\]

Then, by construction, the new source $\sigma' = \sigma_m + \lambda \sigma_q$ has a vanishing monopolar term.

Parameters
sou_m[input] matter source term $\sigma_m$
sou_q[input] quadratic source term $\sigma_q$
Returns
value of $\lambda$

Definition at line 79 of file et_rot_lambda_grv2.C.

References Lorene::Valeur::c, Lorene::Cmp::check_dzpuis(), Lorene::Valeur::coef_i(), Lorene::Map_radial::dxdr, Lorene::Map_af::get_alpha(), Lorene::Map_af::get_beta(), Lorene::Cmp::get_etat(), Lorene::Tbl::get_etat(), Lorene::Valeur::get_etat(), Lorene::Mg3d::get_grille3d(), Lorene::Map::get_mg(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Mg3d::get_type_r(), Lorene::Map_af::set_alpha(), Lorene::Map_af::set_beta(), Lorene::Mtbl::t, Lorene::Tbl::t, Lorene::Cmp::va, Lorene::Map::val_r(), Lorene::Grille3d::x, and Lorene::Map_radial::xsr.

◆ lspec_isco()

double Lorene::Etoile_rot::lspec_isco ( ) const
virtualinherited

Angular momentum of a particle on the ISCO.

Definition at line 284 of file et_rot_isco.C.

References Lorene::Etoile_rot::p_lspec_isco, and Lorene::Etoile_rot::r_isco().

◆ mass_b()

double Lorene::Et_rot_bifluid::mass_b ( ) const
virtual

Total Baryon mass.

Reimplemented from Lorene::Etoile_rot.

Definition at line 148 of file et_bfrot_global.C.

References mass_b1(), mass_b2(), and Lorene::Etoile::p_mass_b.

◆ mass_b1()

◆ mass_b2()

◆ mass_g()

◆ mean_radius()

double Lorene::Etoile_rot::mean_radius ( ) const
virtualinherited

Mean radius.

Definition at line 472 of file et_rot_global.C.

References Lorene::Etoile_rot::area(), and Lorene::sqrt().

◆ mean_radius2()

double Lorene::Et_rot_bifluid::mean_radius2 ( ) const
virtual

Mean radius for fluid 2.

Definition at line 690 of file et_bfrot_global.C.

References area2(), and Lorene::sqrt().

◆ mom_quad()

double Lorene::Et_rot_bifluid::mom_quad ( ) const
virtual

Quadrupole moment.

The quadrupole moment Q is defined according to Eq. (11) of [Pappas and Apostolatos, Physical Review Letters 108, 231104 (2012)]. This is a corrected version of the quadrupole moment defined by [Salgado, Bonazzola, Gourgoulhon and Haensel, Astron. Astrophys. 291 , 155 (1994)]. Following this definition, $Q = {\bar Q } - 4/3 (1/4 + b) M^3 $, where $ {\bar Q } $ is defined as the negative of the (wrong) quadrupole moment defined in Eq. (7) of [Salgado, Bonazzola, Gourgoulhon and Haensel, Astron. Astrophys. 291 , 155 (1994)], b is defined by Eq. (3.37) of [Friedman and Stergioulas, Rotating Relativistic Stars, Cambridge Monograph on mathematical physics] and M is the gravitational mass of the star.

Reimplemented from Lorene::Etoile_rot.

Definition at line 703 of file et_bfrot_global.C.

References mass_g(), mom_quad_Bo(), mom_quad_old(), Lorene::Etoile_rot::p_mom_quad, and Lorene::pow().

◆ mom_quad_Bo()

double Lorene::Et_rot_bifluid::mom_quad_Bo ( ) const
virtual

Part of the quadrupole moment.

B_o is defined as $bM^2$, where b is given by Eq. (3.37) of [Friedman and Stergioulas, Rotating Relativistic Stars, Cambridge Monograph on mathematical physics] and M is the the gravitational mass of the star.

Reimplemented from Lorene::Etoile_rot.

Definition at line 719 of file et_bfrot_global.C.

References Lorene::Etoile::a_car, Lorene::Etoile_rot::bbb, Lorene::Cmp::integrale(), Lorene::Etoile::mp, Lorene::Cmp::mult_rsint(), Lorene::Etoile::nnn, Lorene::Etoile_rot::p_mom_quad_Bo, Lorene::Etoile::press, and Lorene::Cmp::std_base_scal().

◆ mom_quad_old()

double Lorene::Et_rot_bifluid::mom_quad_old ( ) const
virtual

Part of the quadrupole moment.

This term $ {\bar Q } $ is defined by Laarakkers and Poisson, Astrophys. J. 512 , 282 (1999). Note that $ {\bar Q }$ is the negative of the (wrong) quadrupole moment defined in Eq. (7) of [Salgado, Bonazzola, Gourgoulhon and Haensel, Astron. Astrophys. 291 , 155 (1994)].

Reimplemented from Lorene::Etoile_rot.

Definition at line 742 of file et_bfrot_global.C.

References Lorene::Etoile::a_car, Lorene::Etoile_rot::ak_car, Lorene::Etoile_rot::bbb, Lorene::Cmp::check_dzpuis(), enerps_euler, Lorene::flat_scalar_prod(), Lorene::Cmp::get_etat(), Lorene::Tenseur::gradient_spher(), Lorene::Cmp::inc2_dzpuis(), Lorene::log(), Lorene::Etoile_rot::logn, Lorene::Etoile::mp, Lorene::Valeur::mult_ct(), Lorene::Cmp::mult_r(), Lorene::Etoile::nbar, nbar2, Lorene::Etoile_rot::p_mom_quad_old, Lorene::Etoile::relativistic, Lorene::Tenseur::set(), Lorene::Tenseur::set_std_base(), and Lorene::Cmp::va.

◆ operator=()

void Lorene::Et_rot_bifluid::operator= ( const Et_rot_bifluid et)

◆ operator>>()

◆ partial_display()

◆ r_circ()

◆ r_circ2()

double Lorene::Et_rot_bifluid::r_circ2 ( ) const
virtual

◆ r_isco()

◆ ray_eq() [1/2]

◆ ray_eq() [2/2]

◆ ray_eq2()

double Lorene::Et_rot_bifluid::ray_eq2 ( ) const

◆ ray_eq2_pi()

double Lorene::Et_rot_bifluid::ray_eq2_pi ( ) const

◆ ray_eq2_pis2()

double Lorene::Et_rot_bifluid::ray_eq2_pis2 ( ) const

◆ ray_eq_3pis2()

◆ ray_eq_pi()

◆ ray_eq_pis2()

◆ ray_pole()

double Lorene::Etoile::ray_pole ( ) const
inherited

◆ ray_pole2()

double Lorene::Et_rot_bifluid::ray_pole2 ( ) const

Coordinate radius for fluid 2 at $\theta=0$ [r_unit].

Definition at line 1036 of file et_bfrot_global.C.

References Lorene::Map::get_mg(), l_surf2(), Lorene::Etoile::mp, p_ray_pole2, Lorene::Map::val_r(), and xi_surf2().

◆ sauve()

void Lorene::Et_rot_bifluid::sauve ( FILE fich) const
virtual

Save in a file.

Reimplemented from Lorene::Etoile_rot.

Definition at line 436 of file et_rot_bifluid.C.

References ent2, Lorene::fwrite_be(), omega2, Lorene::Etoile_rot::sauve(), and Lorene::Tenseur::sauve().

◆ set_der_0x0()

◆ set_enthalpies()

void Lorene::Et_rot_bifluid::set_enthalpies ( const Cmp ent_i,
const Cmp ent2_i 
)

Sets both enthalpy profiles.

Definition at line 374 of file et_rot_bifluid.C.

References del_deriv(), Lorene::Etoile::ent, ent2, and equation_of_state().

◆ set_enthalpy()

void Lorene::Etoile::set_enthalpy ( const Cmp ent_i)
inherited

Assignment of the enthalpy field.

Definition at line 465 of file etoile.C.

References Lorene::Etoile::del_deriv(), Lorene::Etoile::ent, and Lorene::Etoile::equation_of_state().

◆ set_mp()

Map & Lorene::Etoile::set_mp ( )
inlineinherited

Read/write of the mapping.

Definition at line 601 of file etoile.h.

References Lorene::Etoile::mp.

◆ tsw()

◆ update_metric()

void Lorene::Etoile_rot::update_metric ( )
inherited

Computes metric coefficients from known potentials.

The calculation is performed starting from the quantities logn , dzeta , tggg and shift , which are supposed to be up to date.
From these, the following fields are updated: nnn , a_car , bbb and b_car .

Definition at line 69 of file et_rot_upmetr.C.

References Lorene::Etoile::a_car, Lorene::Etoile_rot::b_car, Lorene::Etoile_rot::bbb, Lorene::Etoile_rot::del_deriv(), Lorene::Etoile_rot::dzeta, Lorene::exp(), Lorene::Etoile_rot::extrinsic_curvature(), Lorene::Etoile_rot::logn, Lorene::Etoile::nnn, Lorene::Tenseur::set(), Lorene::Tenseur::set_etat_qcq(), Lorene::Tenseur::set_std_base(), Lorene::Etoile_rot::tggg, and Lorene::Etoile::unsurc2.

◆ xi_surf()

const Tbl & Lorene::Etoile::xi_surf ( ) const
inherited

Description of the stellar surface: returns a 2-D Tbl
containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.

The stellar surface is defined as the location where the enthalpy (member ent ) vanishes.

Definition at line 101 of file etoile_global.C.

References Lorene::Etoile::l_surf(), Lorene::Etoile::p_l_surf, and Lorene::Etoile::p_xi_surf.

◆ xi_surf2()

const Tbl & Lorene::Et_rot_bifluid::xi_surf2 ( ) const

Description of the surface of fluid 2: returns a 2-D Tbl
containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.

This surface is defined as the location where the density 2 (member nbar2 ) vanishes.

Definition at line 878 of file et_bfrot_global.C.

References l_surf2(), p_l_surf2, and p_xi_surf2.

◆ z_eqb()

◆ z_eqf()

◆ z_pole()

double Lorene::Etoile_rot::z_pole ( ) const
virtualinherited

Redshift factor at North pole.

Definition at line 580 of file et_rot_global.C.

References Lorene::Etoile::nnn, Lorene::Etoile_rot::p_z_pole, and Lorene::Etoile::ray_pole().

Member Data Documentation

◆ a_car

Tenseur Lorene::Etoile::a_car
protectedinherited

Total conformal factor $A^2$.

Definition at line 515 of file etoile.h.

◆ ak_car

Tenseur Lorene::Etoile_rot::ak_car
protectedinherited

Scalar $A^2 K_{ij} K^{ij}$.

For axisymmetric stars, this quantity is related to the derivatives of $N^\varphi$ by

\[
 A^2 K_{ij} K^{ij} = {B^2 \over 2 N^2} \, r^2\sin^2\theta \,  
   \left[ \left( {\partial N^\varphi \over \partial r} \right) ^2
     + {1\over r^2} \left( {\partial N^\varphi \over 
        \partial \theta} \right) ^2 \right] \ . 
\]

In particular it is related to the quantities $k_1$ and $k_2$ introduced by Eqs.~(3.7) and (3.8) of Bonazzola et al. Astron. Astrophys. 278 , 421 (1993) by

\[
 A^2 K_{ij} K^{ij} = 2 A^2 (k_1^2 + k_2^2) \ . 
\]

Definition at line 1586 of file etoile.h.

◆ b_car

Tenseur Lorene::Etoile_rot::b_car
protectedinherited

Square of the metric factor B.

Definition at line 1507 of file etoile.h.

◆ bbb

Tenseur Lorene::Etoile_rot::bbb
protectedinherited

Metric factor B.

Definition at line 1504 of file etoile.h.

◆ beta_auto

Tenseur Lorene::Etoile::beta_auto
protectedinherited

Logarithm of the part of the product AN generated principaly by by the star.

Definition at line 506 of file etoile.h.

◆ d_logn_auto_div

Tenseur Lorene::Etoile::d_logn_auto_div
protectedinherited

Gradient of logn_auto_div (if k_div!=0 )

Definition at line 501 of file etoile.h.

◆ delta_car

Tenseur Lorene::Et_rot_bifluid::delta_car
protected

The "relative velocity" (squared) $\Delta^2$ of the two fluids.

See Prix et al.(2003) and see also Eos_bifluid .

Definition at line 213 of file et_rot_bifluid.h.

◆ dzeta

Tenseur& Lorene::Etoile_rot::dzeta
protectedinherited

Metric potential $\zeta = \ln(AN)$ = beta_auto.

Definition at line 1534 of file etoile.h.

◆ ener

Tenseur Lorene::Etoile::ener
protectedinherited

Total energy density in the fluid frame.

Definition at line 460 of file etoile.h.

◆ ener_euler

Tenseur Lorene::Etoile::ener_euler
protectedinherited

Total energy density in the Eulerian frame.

Definition at line 465 of file etoile.h.

◆ enerps_euler

Tenseur Lorene::Et_rot_bifluid::enerps_euler
protected

the combination $E+S_i^i$: useful because in the Newtonian limit $\rightarrow \rho$.

Definition at line 201 of file et_rot_bifluid.h.

◆ ent

Tenseur Lorene::Etoile::ent
protectedinherited

Log-enthalpy (relativistic case) or specific enthalpy (Newtonian case)

Definition at line 457 of file etoile.h.

◆ ent2

Tenseur Lorene::Et_rot_bifluid::ent2
protected

Log-enthalpy for the second fluid.

Definition at line 160 of file et_rot_bifluid.h.

◆ eos

const Eos_bifluid& Lorene::Et_rot_bifluid::eos
protected

Equation of state for two-fluids model.

Definition at line 152 of file et_rot_bifluid.h.

◆ gam_euler

Tenseur Lorene::Etoile::gam_euler
protectedinherited

Lorentz factor between the fluid and Eulerian observers.

Definition at line 471 of file etoile.h.

◆ gam_euler2

Tenseur Lorene::Et_rot_bifluid::gam_euler2
protected

Lorentz factor between the fluid 2 and Eulerian observers

Definition at line 207 of file et_rot_bifluid.h.

◆ j_euler

Tenseur Lorene::Et_rot_bifluid::j_euler
protected

Total angular momentum (flat-space!) 3-vector $J_\mathrm{euler}$, which is related to $J^i$ of the "3+1" decomposition, but expressed in a flat-space triad.

In axisymmetric circular cases, only $J_\mathrm{euler}(\varphi)=r \sin\theta\, J^\varphi$ is nonzero.

Definition at line 182 of file et_rot_bifluid.h.

◆ j_euler1

Tenseur Lorene::Et_rot_bifluid::j_euler1
protected

To compute Jn.

Definition at line 184 of file et_rot_bifluid.h.

◆ j_euler11_1

Tenseur Lorene::Et_rot_bifluid::j_euler11_1
protected

To compute In (1st version)

Definition at line 187 of file et_rot_bifluid.h.

◆ j_euler11_2

Tenseur Lorene::Et_rot_bifluid::j_euler11_2
protected

Definition at line 193 of file et_rot_bifluid.h.

◆ j_euler12_1

Tenseur Lorene::Et_rot_bifluid::j_euler12_1
protected

To compute Ip (1st version)

Definition at line 188 of file et_rot_bifluid.h.

◆ j_euler12_2

Tenseur Lorene::Et_rot_bifluid::j_euler12_2
protected

Definition at line 194 of file et_rot_bifluid.h.

◆ j_euler2

Tenseur Lorene::Et_rot_bifluid::j_euler2
protected

To compute Jp.

Definition at line 185 of file et_rot_bifluid.h.

◆ j_euler21_1

Tenseur Lorene::Et_rot_bifluid::j_euler21_1
protected

Definition at line 190 of file et_rot_bifluid.h.

◆ j_euler21_2

Tenseur Lorene::Et_rot_bifluid::j_euler21_2
protected

Definition at line 196 of file et_rot_bifluid.h.

◆ j_euler22_1

Tenseur Lorene::Et_rot_bifluid::j_euler22_1
protected

Definition at line 191 of file et_rot_bifluid.h.

◆ j_euler22_2

Tenseur Lorene::Et_rot_bifluid::j_euler22_2
protected

Definition at line 197 of file et_rot_bifluid.h.

◆ k_div

int Lorene::Etoile::k_div
protectedinherited

Index of regularity of the gravitational potential logn_auto .

If k_div=0 , logn_auto contains the total potential generated principaly by the star, otherwise it should be supplemented by logn_auto_div .

Definition at line 449 of file etoile.h.

◆ K_nn

Tenseur Lorene::Et_rot_bifluid::K_nn
protected

Coefficient Knn.

Definition at line 164 of file et_rot_bifluid.h.

◆ K_np

Tenseur Lorene::Et_rot_bifluid::K_np
protected

Coefficient Knp.

Definition at line 165 of file et_rot_bifluid.h.

◆ K_pp

Tenseur Lorene::Et_rot_bifluid::K_pp
protected

Coefficient Kpp.

Definition at line 166 of file et_rot_bifluid.h.

◆ khi_shift

Tenseur Lorene::Etoile_rot::khi_shift
protectedinherited

Scalar $\chi$ used in the decomposition of shift , following Shibata's prescription [Prog.

Theor. Phys. 101 , 1199 (1999)] :

\[
 N^i = {7\over 8} W^i - {1\over 8} 
        \left(\nabla^i\chi+\nabla^iW^kx_k\right)
\]

Definition at line 1560 of file etoile.h.

◆ logn

Tenseur& Lorene::Etoile_rot::logn
protectedinherited

Metric potential $\nu = \ln N$ = logn_auto.

Definition at line 1521 of file etoile.h.

◆ logn_auto

Tenseur Lorene::Etoile::logn_auto
protectedinherited

Total of the logarithm of the part of the lapse N
generated principaly by the star.

In the Newtonian case, this is the Newtonian gravitational potential (in units of $c^2$).

Definition at line 484 of file etoile.h.

◆ logn_auto_div

Tenseur Lorene::Etoile::logn_auto_div
protectedinherited

Divergent part (if k_div!=0 ) of the logarithm of the part of the lapse N
generated principaly by the star.

Definition at line 497 of file etoile.h.

◆ logn_auto_regu

Tenseur Lorene::Etoile::logn_auto_regu
protectedinherited

Regular part of the logarithm of the part of the lapse N
generated principaly by the star.

In the Newtonian case, this is the Newtonian gravitational potential (in units of $c^2$).

Definition at line 491 of file etoile.h.

◆ mp

Map& Lorene::Etoile::mp
protectedinherited

Mapping associated with the star.

Definition at line 429 of file etoile.h.

◆ nbar

Tenseur Lorene::Etoile::nbar
protectedinherited

Baryon density in the fluid frame.

Definition at line 459 of file etoile.h.

◆ nbar2

Tenseur Lorene::Et_rot_bifluid::nbar2
protected

Baryon density in the fluid frame, for fluid 2.

Definition at line 162 of file et_rot_bifluid.h.

◆ nnn

Tenseur Lorene::Etoile::nnn
protectedinherited

Total lapse function.

Definition at line 509 of file etoile.h.

◆ nphi

Tenseur Lorene::Etoile_rot::nphi
protectedinherited

Metric coefficient $N^\varphi$.

Definition at line 1510 of file etoile.h.

◆ nuf

Tenseur Lorene::Etoile_rot::nuf
protectedinherited

Part of the Metric potential $\nu = \ln N$ = logn generated by the matter terms.

Definition at line 1526 of file etoile.h.

◆ nuq

Tenseur Lorene::Etoile_rot::nuq
protectedinherited

Part of the Metric potential $\nu = \ln N$ = logn generated by the quadratic terms.

Definition at line 1531 of file etoile.h.

◆ nzet

int Lorene::Etoile::nzet
protectedinherited

Number of domains of *mp occupied by the star.

Definition at line 432 of file etoile.h.

◆ omega

double Lorene::Etoile_rot::omega
protectedinherited

Rotation angular velocity ([f_unit] )

Definition at line 1501 of file etoile.h.

◆ omega2

double Lorene::Et_rot_bifluid::omega2
protected

Rotation angular velocity for fluid 2 ([f_unit] )

Definition at line 154 of file et_rot_bifluid.h.

◆ p_angu_mom

double* Lorene::Etoile_rot::p_angu_mom
mutableprotectedinherited

Angular momentum.

Definition at line 1631 of file etoile.h.

◆ p_angu_mom_1

double* Lorene::Et_rot_bifluid::p_angu_mom_1
mutableprotected

Angular momentum of fluid 1.

Definition at line 249 of file et_rot_bifluid.h.

◆ p_angu_mom_1_part1_1

double* Lorene::Et_rot_bifluid::p_angu_mom_1_part1_1
mutableprotected

To compute In (1st version)

Definition at line 252 of file et_rot_bifluid.h.

◆ p_angu_mom_1_part1_2

double* Lorene::Et_rot_bifluid::p_angu_mom_1_part1_2
mutableprotected

To compute In (2nd version)

Definition at line 258 of file et_rot_bifluid.h.

◆ p_angu_mom_1_part2_1

double* Lorene::Et_rot_bifluid::p_angu_mom_1_part2_1
mutableprotected

To compute Xn (1st version)

Definition at line 255 of file et_rot_bifluid.h.

◆ p_angu_mom_1_part2_2

double* Lorene::Et_rot_bifluid::p_angu_mom_1_part2_2
mutableprotected

To compute Xn (2nd version)

Definition at line 261 of file et_rot_bifluid.h.

◆ p_angu_mom_2

double* Lorene::Et_rot_bifluid::p_angu_mom_2
mutableprotected

Angular momentum of fluid 2.

Definition at line 250 of file et_rot_bifluid.h.

◆ p_angu_mom_2_part1_1

double* Lorene::Et_rot_bifluid::p_angu_mom_2_part1_1
mutableprotected

To compute Ip (1st version)

Definition at line 253 of file et_rot_bifluid.h.

◆ p_angu_mom_2_part1_2

double* Lorene::Et_rot_bifluid::p_angu_mom_2_part1_2
mutableprotected

To compute Ip (2nd version)

Definition at line 259 of file et_rot_bifluid.h.

◆ p_angu_mom_2_part2_1

double* Lorene::Et_rot_bifluid::p_angu_mom_2_part2_1
mutableprotected

To compute Xp (1st version)

Definition at line 256 of file et_rot_bifluid.h.

◆ p_angu_mom_2_part2_2

double* Lorene::Et_rot_bifluid::p_angu_mom_2_part2_2
mutableprotected

To compute Xp (2nd version)

Definition at line 262 of file et_rot_bifluid.h.

◆ p_aplat

double* Lorene::Etoile_rot::p_aplat
mutableprotectedinherited

Flatening r_pole/r_eq.

Definition at line 1637 of file etoile.h.

◆ p_aplat2

double* Lorene::Et_rot_bifluid::p_aplat2
mutableprotected

Flatening r_pole/r_eq of fluid no.2.

Definition at line 244 of file et_rot_bifluid.h.

◆ p_area

double* Lorene::Etoile_rot::p_area
mutableprotectedinherited

Surface area.

Definition at line 1636 of file etoile.h.

◆ p_area2

double* Lorene::Et_rot_bifluid::p_area2
mutableprotected

Surface area of fluid no.2.

Definition at line 243 of file et_rot_bifluid.h.

◆ p_espec_isco

double* Lorene::Etoile_rot::p_espec_isco
mutableprotectedinherited

Specific energy of a particle on the ISCO.

Definition at line 1647 of file etoile.h.

◆ p_f_eq

double* Lorene::Etoile_rot::p_f_eq
mutableprotectedinherited

Orbital frequency at the equator.

Definition at line 1650 of file etoile.h.

◆ p_f_isco

double* Lorene::Etoile_rot::p_f_isco
mutableprotectedinherited

Orbital frequency of the ISCO.

Definition at line 1645 of file etoile.h.

◆ p_grv2

double* Lorene::Etoile_rot::p_grv2
mutableprotectedinherited

Error on the virial identity GRV2.

Definition at line 1633 of file etoile.h.

◆ p_grv3

double* Lorene::Etoile_rot::p_grv3
mutableprotectedinherited

Error on the virial identity GRV3.

Definition at line 1634 of file etoile.h.

◆ p_l_surf

Itbl* Lorene::Etoile::p_l_surf
mutableprotectedinherited

Description of the stellar surface: 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.

Definition at line 539 of file etoile.h.

◆ p_l_surf2

Itbl* Lorene::Et_rot_bifluid::p_l_surf2
mutableprotected

Description of the surface of fluid 2: 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.

Definition at line 234 of file et_rot_bifluid.h.

◆ p_lspec_isco

double* Lorene::Etoile_rot::p_lspec_isco
mutableprotectedinherited

Specific angular momentum of a particle on the ISCO.

Definition at line 1649 of file etoile.h.

◆ p_mass_b

double* Lorene::Etoile::p_mass_b
mutableprotectedinherited

Baryon mass.

Definition at line 547 of file etoile.h.

◆ p_mass_b1

double* Lorene::Et_rot_bifluid::p_mass_b1
mutableprotected

Baryon mass of fluid 1.

Definition at line 246 of file et_rot_bifluid.h.

◆ p_mass_b2

double* Lorene::Et_rot_bifluid::p_mass_b2
mutableprotected

Baryon mass of fluid 2.

Definition at line 247 of file et_rot_bifluid.h.

◆ p_mass_g

double* Lorene::Etoile::p_mass_g
mutableprotectedinherited

Gravitational mass.

Definition at line 548 of file etoile.h.

◆ p_mom_quad

double* Lorene::Etoile_rot::p_mom_quad
mutableprotectedinherited

Quadrupole moment.

Definition at line 1641 of file etoile.h.

◆ p_mom_quad_Bo

double* Lorene::Etoile_rot::p_mom_quad_Bo
mutableprotectedinherited

Part of the quadrupole moment.

Definition at line 1643 of file etoile.h.

◆ p_mom_quad_old

double* Lorene::Etoile_rot::p_mom_quad_old
mutableprotectedinherited

Part of the quadrupole moment.

Definition at line 1642 of file etoile.h.

◆ p_r_circ

double* Lorene::Etoile_rot::p_r_circ
mutableprotectedinherited

Circumferential radius.

Definition at line 1635 of file etoile.h.

◆ p_r_circ2

double* Lorene::Et_rot_bifluid::p_r_circ2
mutableprotected

Circumferential radius of fluid no.2.

Definition at line 242 of file et_rot_bifluid.h.

◆ p_r_isco

double* Lorene::Etoile_rot::p_r_isco
mutableprotectedinherited

Circumferential radius of the ISCO.

Definition at line 1644 of file etoile.h.

◆ p_ray_eq

double* Lorene::Etoile::p_ray_eq
mutableprotectedinherited

Coordinate radius at $\phi=0$, $\theta=\pi/2$.

Definition at line 521 of file etoile.h.

◆ p_ray_eq2

double* Lorene::Et_rot_bifluid::p_ray_eq2
mutableprotected

Coordinate radius at $\phi=0$, $\theta=\pi/2$.

Definition at line 219 of file et_rot_bifluid.h.

◆ p_ray_eq2_pi

double* Lorene::Et_rot_bifluid::p_ray_eq2_pi
mutableprotected

Coordinate radius at $\phi=\pi$, $\theta=\pi/2$.

Definition at line 225 of file et_rot_bifluid.h.

◆ p_ray_eq2_pis2

double* Lorene::Et_rot_bifluid::p_ray_eq2_pis2
mutableprotected

Coordinate radius at $\phi=\pi/2$, $\theta=\pi/2$.

Definition at line 222 of file et_rot_bifluid.h.

◆ p_ray_eq_3pis2

double* Lorene::Etoile::p_ray_eq_3pis2
mutableprotectedinherited

Coordinate radius at $\phi=3\pi/2$, $\theta=\pi/2$.

Definition at line 530 of file etoile.h.

◆ p_ray_eq_pi

double* Lorene::Etoile::p_ray_eq_pi
mutableprotectedinherited

Coordinate radius at $\phi=\pi$, $\theta=\pi/2$.

Definition at line 527 of file etoile.h.

◆ p_ray_eq_pis2

double* Lorene::Etoile::p_ray_eq_pis2
mutableprotectedinherited

Coordinate radius at $\phi=\pi/2$, $\theta=\pi/2$.

Definition at line 524 of file etoile.h.

◆ p_ray_pole

double* Lorene::Etoile::p_ray_pole
mutableprotectedinherited

Coordinate radius at $\theta=0$.

Definition at line 533 of file etoile.h.

◆ p_ray_pole2

double* Lorene::Et_rot_bifluid::p_ray_pole2
mutableprotected

Coordinate radius at $\theta=0$.

Definition at line 228 of file et_rot_bifluid.h.

◆ p_tsw

double* Lorene::Etoile_rot::p_tsw
mutableprotectedinherited

Ratio T/W.

Definition at line 1632 of file etoile.h.

◆ p_xi_surf

Tbl* Lorene::Etoile::p_xi_surf
mutableprotectedinherited

Description of the stellar surface: 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.

Definition at line 545 of file etoile.h.

◆ p_xi_surf2

Tbl* Lorene::Et_rot_bifluid::p_xi_surf2
mutableprotected

Description of the surface of fluid 2: 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.

Definition at line 240 of file et_rot_bifluid.h.

◆ p_z_eqb

double* Lorene::Etoile_rot::p_z_eqb
mutableprotectedinherited

Backward redshift factor at equator.

Definition at line 1639 of file etoile.h.

◆ p_z_eqf

double* Lorene::Etoile_rot::p_z_eqf
mutableprotectedinherited

Forward redshift factor at equator.

Definition at line 1638 of file etoile.h.

◆ p_z_pole

double* Lorene::Etoile_rot::p_z_pole
mutableprotectedinherited

Redshift factor at North pole.

Definition at line 1640 of file etoile.h.

◆ press

Tenseur Lorene::Etoile::press
protectedinherited

Fluid pressure.

Definition at line 461 of file etoile.h.

◆ relativistic

bool Lorene::Etoile::relativistic
protectedinherited

Indicator of relativity: true for a relativistic star, false for a Newtonian one.

Definition at line 437 of file etoile.h.

◆ s_euler

Tenseur Lorene::Etoile::s_euler
protectedinherited

Trace of the stress tensor in the Eulerian frame.

Definition at line 468 of file etoile.h.

◆ shift

Tenseur Lorene::Etoile::shift
protectedinherited

Total shift vector.

Definition at line 512 of file etoile.h.

◆ sphph_euler

Tenseur Lorene::Et_rot_bifluid::sphph_euler
protected

The component $S^\varphi_\varphi$ of the stress tensor ${S^i}_j$.

Definition at line 175 of file et_rot_bifluid.h.

◆ ssjm1_dzeta

Cmp Lorene::Etoile_rot::ssjm1_dzeta
protectedinherited

Effective source at the previous step for the resolution of the Poisson equation for dzeta .

Definition at line 1603 of file etoile.h.

◆ ssjm1_khi

Cmp Lorene::Etoile_rot::ssjm1_khi
protectedinherited

Effective source at the previous step for the resolution of the Poisson equation for the scalar $\chi$ by means of Map_et::poisson .

$\chi$ is an intermediate quantity for the resolution of the elliptic equation for the shift vector $N^i$

Definition at line 1616 of file etoile.h.

◆ ssjm1_nuf

Cmp Lorene::Etoile_rot::ssjm1_nuf
protectedinherited

Effective source at the previous step for the resolution of the Poisson equation for nuf by means of Map_et::poisson .

Definition at line 1592 of file etoile.h.

◆ ssjm1_nuq

Cmp Lorene::Etoile_rot::ssjm1_nuq
protectedinherited

Effective source at the previous step for the resolution of the Poisson equation for nuq by means of Map_et::poisson .

Definition at line 1598 of file etoile.h.

◆ ssjm1_tggg

Cmp Lorene::Etoile_rot::ssjm1_tggg
protectedinherited

Effective source at the previous step for the resolution of the Poisson equation for tggg .

Definition at line 1608 of file etoile.h.

◆ ssjm1_wshift

Tenseur Lorene::Etoile_rot::ssjm1_wshift
protectedinherited

Effective source at the previous step for the resolution of the vector Poisson equation for $W^i$.

$W^i$ is an intermediate quantity for the resolution of the elliptic equation for the shift vector $N^i$ (Components with respect to the Cartesian triad associated with the mapping mp )

Definition at line 1625 of file etoile.h.

◆ tggg

Tenseur Lorene::Etoile_rot::tggg
protectedinherited

Metric potential $\tilde G = (NB-1) r\sin\theta$.

Definition at line 1537 of file etoile.h.

◆ tkij

Tenseur_sym Lorene::Etoile_rot::tkij
protectedinherited

Tensor ${\tilde K_{ij}}$ related to the extrinsic curvature tensor by ${\tilde K_{ij}} = B^{-2} K_{ij}$.

tkij contains the Cartesian components of ${\tilde K_{ij}}$.

Definition at line 1567 of file etoile.h.

◆ tnphi

Tenseur Lorene::Etoile_rot::tnphi
protectedinherited

Component $\tilde N^\varphi = N^\varphi r\sin\theta$ of the shift vector.

Definition at line 1515 of file etoile.h.

◆ u_euler

Tenseur Lorene::Etoile::u_euler
protectedinherited

Fluid 3-velocity with respect to the Eulerian observer.

Definition at line 474 of file etoile.h.

◆ unsurc2

double Lorene::Etoile::unsurc2
protectedinherited

$1/c^2$ : unsurc2=1 for a relativistic star, 0 for a Newtonian one.

Definition at line 442 of file etoile.h.

◆ uuu

Tenseur Lorene::Etoile_rot::uuu
protectedinherited

Norm of u_euler.

Definition at line 1518 of file etoile.h.

◆ uuu2

Tenseur Lorene::Et_rot_bifluid::uuu2
protected

Norm of the (fluid no.2) 3-velocity with respect to the eulerian observer.

Definition at line 204 of file et_rot_bifluid.h.

◆ w_shift

Tenseur Lorene::Etoile_rot::w_shift
protectedinherited

Vector $W^i$ used in the decomposition of shift , following Shibata's prescription [Prog.

Theor. Phys. 101 , 1199 (1999)] :

\[
 N^i = {7\over 8} W^i - {1\over 8} 
        \left(\nabla^i\chi+\nabla^iW^kx_k\right)
\]

NB: w_shift contains the components of $W^i$ with respect to the Cartesian triad associated with the mapping mp .

Definition at line 1550 of file etoile.h.


The documentation for this class was generated from the following files: