24char map_af_elliptic_C[] =
"$Header: /cvsroot/Lorene/C++/Source/Map/map_af_elliptic.C,v 1.13 2014/10/13 08:53:02 j_novak Exp $" ;
92#include "param_elliptic.h"
103 assert(source.
get_etat() != ETATNONDEF) ;
114 if (sourva.
get_etat() == ETATZERO) {
120 assert(sourva.
get_etat() == ETATQCQ) ;
124 rho = *(sourva.
c_cf) ;
137 Mtbl_cf resu = elliptic_solver (ope_var, *(rho.
c_cf)) ;
161 double fact_dir,
double fact_neu )
const {
163 assert(source.
get_etat() != ETATNONDEF) ;
174 if (sourva.
get_etat() == ETATZERO) {
180 assert(sourva.
get_etat() == ETATQCQ) ;
184 rho = *(sourva.
c_cf) ;
197 Mtbl_cf resu = elliptic_solver_boundary (ope_var, *(rho.
c_cf), bound,
198 fact_dir, fact_neu) ;
224 double fact_dir,
double fact_neu )
const {
226 assert(source.
get_etat() != ETATNONDEF) ;
237 if (sourva.
get_etat() == ETATZERO) {
243 assert(sourva.
get_etat() == ETATQCQ) ;
247 rho = *(sourva.
c_cf) ;
276 int nr = gri2d.
get_nr(0) ;
277 int nt = gri2d.
get_nt(0) ;
278 int np = gri2d.
get_np(0) ;
280 for(
int k=0; k<np+2; k++)
281 for (
int j=0; j<=nt-1; j++)
282 for(
int xi=0; xi<= nr-1; xi++)
288 Mtbl_cf resu = elliptic_solver_boundary (ope_var, *(rho.
c_cf), bound2,
289 fact_dir, fact_neu) ;
313 Scalar& pot,
double val)
const {
315 assert(source.
get_etat() != ETATNONDEF) ;
326 if (sourva.
get_etat() == ETATZERO) {
332 assert(sourva.
get_etat() == ETATQCQ) ;
336 rho = *(sourva.
c_cf) ;
349 Mtbl_cf resu = elliptic_solver_no_zec (ope_var, *(rho.
c_cf), val) ;
370 Scalar& pot,
double val)
const {
372 assert(source.
get_etat() != ETATNONDEF) ;
383 if (sourva.
get_etat() == ETATZERO) {
389 assert(sourva.
get_etat() == ETATQCQ) ;
393 rho = *(sourva.
c_cf) ;
406 Mtbl_cf resu = elliptic_solver_only_zec (ope_var, *(rho.
c_cf), val) ;
427 const Scalar& source,
Scalar& pot,
double* amplis,
double* phases)
const {
429 assert(source.
get_etat() != ETATNONDEF) ;
440 if (sourva.
get_etat() == ETATZERO) {
446 assert(sourva.
get_etat() == ETATQCQ) ;
450 rho = *(sourva.
c_cf) ;
463 Mtbl_cf resu = elliptic_solver_sin_zec (ope_var, *(rho.
c_cf), amplis, phases) ;
488 assert(source.
get_etat() != ETATNONDEF) ;
499 if (sourva.
get_etat() == ETATZERO) {
505 assert(sourva.
get_etat() == ETATQCQ) ;
509 rho = *(sourva.
c_cf) ;
523 Mtbl_cf resu = elliptic_solver_fixe_der_zero (valeur, ope_var, *(rho.
c_cf)) ;
void sol_elliptic_boundary(Param_elliptic ¶ms, const Scalar &so, Scalar &uu, const Mtbl_cf &bound, double fact_dir, double fact_neu) const
General elliptic solver including inner boundary conditions.
void sol_elliptic(Param_elliptic ¶ms, const Scalar &so, Scalar &uu) const
General elliptic solver.
void sol_elliptic_sin_zec(Param_elliptic ¶ms, const Scalar &so, Scalar &uu, double *coefs, double *) const
General elliptic solver.
void sol_elliptic_fixe_der_zero(double val, Param_elliptic ¶ms, const Scalar &so, Scalar &uu) const
General elliptic solver fixing the derivative at the origin and relaxing the continuity of the first ...
double * alpha
Array (size: mg->nzone ) of the values of in each domain.
void sol_elliptic_only_zec(Param_elliptic ¶ms, const Scalar &so, Scalar &uu, double val) const
General elliptic solver.
void sol_elliptic_no_zec(Param_elliptic ¶ms, const Scalar &so, Scalar &uu, double val) const
General elliptic solver.
Base class for coordinate mappings.
const Mg3d * get_mg() const
Gives the Mg3d on which the mapping is defined.
const Mg3d * mg
Pointer on the multi-grid Mgd3 on which this is defined
const Mg3d * get_angu_1dom() const
Returns the pointer on the associated mono-domain angular grid.
int get_np(int l) const
Returns the number of points in the azimuthal direction ( ) in domain no. l.
int get_nt(int l) const
Returns the number of points in the co-latitude direction ( ) in domain no. l.
int get_nr(int l) const
Returns the number of points in the radial direction ( ) in domain no. l.
Coefficients storage for the multi-domain spectral method.
Tbl & set(int l)
Read/write of the Tbl containing the coefficients in a given domain.
void annule_hard()
Sets the Mtbl_cf to zero in a hard way.
This class contains the parameters needed to call the general elliptic solver.
Scalar var_G
Multiplicative variable change that must be sphericaly symetric !
Scalar var_F
Additive variable change function.
Tensor field of valence 0 (or component of a tensorial field).
virtual void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
bool check_dzpuis(int dzi) const
Returns false if the last domain is compactified and *this is not zero in this domain and dzpuis is n...
virtual void set_etat_zero()
Sets the logical state to ETATZERO (zero).
Valeur & set_spectral_va()
Returns va (read/write version)
const Valeur & get_spectral_va() const
Returns va (read only version)
int get_etat() const
Returns the logical state ETATNONDEF (undefined), ETATZERO (null) or ETATQCQ (ordinary).
const Base_val & get_spectral_base() const
Returns the spectral bases of the Valeur va
void set_dzpuis(int)
Modifies the dzpuis flag.
Values and coefficients of a (real-value) function.
int get_etat() const
Returns the logical state.
void ylm()
Computes the coefficients of *this.
Mtbl_cf * c_cf
Coefficients of the spectral expansion of the function.
void coef() const
Computes the coeffcients of *this.
const Mg3d * get_mg() const
Returns the Mg3d on which the this is defined.
void ylm_i()
Inverse of ylm()
const Map & get_mp() const
Returns the mapping.