LORENE
ope_pois_vect_r.C
1/*
2 * Methods of class Ope_pois_vect_r
3 *
4 * (see file ope_elementary.h for documentation)
5 *
6 */
7
8/*
9 * Copyright (c) 2004 Jerome Novak
10 *
11 * This file is part of LORENE.
12 *
13 * LORENE is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2
15 * as published by the Free Software Foundation.
16 *
17 * LORENE is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with LORENE; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 */
27
28char ope_pois_vect_r_C[] = "$Header: /cvsroot/Lorene/C++/Source/Ope_elementary/Ope_pois_vect_r/ope_pois_vect_r.C,v 1.2 2014/10/13 08:53:34 j_novak Exp $" ;
29
30/*
31 * $Id: ope_pois_vect_r.C,v 1.2 2014/10/13 08:53:34 j_novak Exp $
32 * $Log: ope_pois_vect_r.C,v $
33 * Revision 1.2 2014/10/13 08:53:34 j_novak
34 * Lorene classes and functions now belong to the namespace Lorene.
35 *
36 * Revision 1.1 2004/05/10 15:28:22 j_novak
37 * First version of functions for the solution of the r-component of the
38 * vector Poisson equation.
39 *
40 *
41 * $Header: /cvsroot/Lorene/C++/Source/Ope_elementary/Ope_pois_vect_r/ope_pois_vect_r.C,v 1.2 2014/10/13 08:53:34 j_novak Exp $
42 *
43 */
44
45#include"type_parite.h"
46#include "ope_elementary.h"
47
48namespace Lorene {
49Matrice ope_pvect_r_mat(int , int , double , int, int ) ;
50Tbl sh_pvect_r(int, int, double, int) ;
51Matrice cl_pvect_r (const Matrice&, int, double, int, int) ;
52Matrice nondeg_pvect_r (const Matrice&, int, double, int, int) ;
53Tbl val_solh (int, double, double, int) ;
54
55// Standard constructor :
56Ope_pois_vect_r::Ope_pois_vect_r (int nbr, int baser, double alf, double bet, int lq, int dz):
57 Ope_poisson(nbr, baser, alf, bet, lq, dz)
58{
59 assert (dzpuis == 4) ;
60}
61
62// Constructor by copy :
68
69// Destructor :
71
72// True functions :
74 if (ope_mat != 0x0)
75 delete ope_mat ;
76
77 ope_mat = new Matrice
78 (ope_pvect_r_mat(nr, l_quant, beta/alpha, dzpuis, base_r)) ;
79}
80
82 if (ope_mat == 0x0)
83 do_ope_mat() ;
84
85 if (ope_cl != 0x0)
86 delete ope_cl ;
87
88 ope_cl = new Matrice
89 (cl_pvect_r(*ope_mat, l_quant, beta/alpha, dzpuis, base_r)) ;
90}
91
93 if (ope_cl == 0x0)
94 do_ope_cl() ;
95
96 if (non_dege != 0x0)
97 delete non_dege ;
98
99 non_dege = new Matrice
100 (nondeg_pvect_r(*ope_cl, l_quant, beta/alpha, dzpuis, base_r)) ;
101}
102
104
105 int l1 = ( (l_quant == 0) ? 1 : l_quant - 1 ) ;
106 int l2 = l_quant + 1 ;
107
108 Tbl valeurs1 (val_solh (l1, alpha, beta, base_r)) ;
109 Tbl valeurs2 (val_solh (l2, alpha, beta, base_r)) ;
110
111 assert (valeurs1.get_ndim() == valeurs2.get_ndim()) ;
112
113 if (valeurs1.get_ndim() == 2) {
114 // cas 2 sh
115 s_one_plus = valeurs1(0,0) ;
116 s_one_minus = valeurs1(0,1) ;
117 ds_one_plus = valeurs1(0,2) ;
118 ds_one_minus = valeurs1(0,3) ;
119
120 s_two_plus = valeurs2(1,0) ;
121 s_two_minus = valeurs2(1,1) ;
122 ds_two_plus = valeurs2(1,2) ;
123 ds_two_minus = valeurs2(1,3) ;
124 }
125 else {
126 // cas 1 sh :
128 s_one_plus = valeurs(0) ;
129 s_one_minus = valeurs(1) ;
130 ds_one_plus = valeurs(2) ;
131 ds_one_minus = valeurs(3) ;
132 }
133
134 return sh_pvect_r(nr, l_quant, beta/alpha, base_r) ;
135}
136
137}
Time evolution with partial storage (*** under development ***).
Definition evolution.h:371
Matrix handling.
Definition matrice.h:152
Matrice * ope_mat
Pointer on the matrix representation of the operator.
double ds_two_minus
Value of the derivative of the second homogeneous solution at the inner boundary.
double s_two_plus
Value of the second homogeneous solution at the outer boundary.
double s_one_minus
Value of the first homogeneous solution at the inner boundary.
double beta
Parameter of the associated mapping.
double ds_one_plus
Value of the derivative of the first homogeneous solution at the outer boundary.
double ds_one_minus
Value of the derivative of the first homogeneous solution at the inner boundary.
double alpha
Parameter of the associated mapping.
double s_two_minus
Value of the second homogeneous solution at the inner boundary.
int base_r
Radial basis of decomposition.
double s_one_plus
Value of the first homogeneous solution at the outer boundary.
Matrice * ope_cl
Pointer on the banded-matrix of the operator.
double ds_two_plus
Value of the derivative of the second homogeneous solution at the outer boundary.
Matrice * non_dege
Pointer on the non-degenerated matrix of the operator.
int nr
Number of radial points.
Class for the operator of the r component of the vector Poisson equation.
virtual Tbl get_solh() const
Computes the homogeneous solutions(s).
virtual void do_ope_cl() const
Computes the banded-matrix of the operator.
Ope_pois_vect_r(int nbr, int baser, double alf, double bet, int lq, int dz)
Standard constructor.
virtual void do_non_dege() const
Computes the non-degenerated matrix of the operator.
virtual void do_ope_mat() const
Computes the matrix of the operator.
virtual ~Ope_pois_vect_r()
Destructor.
Class for the operator of the Poisson equation (i.e.
int dzpuis
the associated dzpuis, if in the compactified domain.
int l_quant
quantum number
Basic array class.
Definition tbl.h:161
#define R_CHEBU
base de Chebychev ordinaire (fin), dev. en 1/r
Lorene prototypes.
Definition app_hor.h:64