LORENE
solp_helmholtz_minus.C
1/*
2 * Copyright (c) 1999-2001 Philippe Grandclement
3 *
4 * This file is part of LORENE.
5 *
6 * LORENE is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * LORENE is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with LORENE; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 */
21
22
23char solp_helmholtz_minus_C[] = "$Header: /cvsroot/Lorene/C++/Source/Non_class_members/PDE/solp_helmholtz_minus.C,v 1.9 2014/10/13 08:53:31 j_novak Exp $" ;
24
25/*
26 * $Id: solp_helmholtz_minus.C,v 1.9 2014/10/13 08:53:31 j_novak Exp $
27 * $Log: solp_helmholtz_minus.C,v $
28 * Revision 1.9 2014/10/13 08:53:31 j_novak
29 * Lorene classes and functions now belong to the namespace Lorene.
30 *
31 * Revision 1.8 2014/10/06 15:16:10 j_novak
32 * Modified #include directives to use c++ syntax.
33 *
34 * Revision 1.7 2008/07/10 11:20:33 p_grandclement
35 * mistake fixed in solh_helmholtz_minus
36 *
37 * Revision 1.6 2008/07/09 06:51:58 p_grandclement
38 * some corrections to helmholtz minus in the nucleus
39 *
40 * Revision 1.5 2008/07/08 11:45:28 p_grandclement
41 * Add helmholtz_minus in the nucleus
42 *
43 * Revision 1.4 2008/02/18 13:53:45 j_novak
44 * Removal of special indentation instructions.
45 *
46 * Revision 1.3 2004/08/24 09:14:44 p_grandclement
47 * Addition of some new operators, like Poisson in 2d... It now requieres the
48 * GSL library to work.
49 *
50 * Also, the way a variable change is stored by a Param_elliptic is changed and
51 * no longer uses Change_var but rather 2 Scalars. The codes using that feature
52 * will requiere some modification. (It should concern only the ones about monopoles)
53 *
54 * Revision 1.2 2004/01/15 09:15:37 p_grandclement
55 * Modification and addition of the Helmholtz operators
56 *
57 * Revision 1.1 2003/12/11 14:48:49 p_grandclement
58 * Addition of ALL (and that is a lot !) the files needed for the general elliptic solver ... UNDER DEVELOPEMENT...
59 *
60 *
61 * $Header: /cvsroot/Lorene/C++/Source/Non_class_members/PDE/solp_helmholtz_minus.C,v 1.9 2014/10/13 08:53:31 j_novak Exp $
62 *
63 */
64
65//fichiers includes
66#include <cstdio>
67#include <cstdlib>
68#include <cmath>
69
70#include "matrice.h"
71#include "type_parite.h"
72#include "proto.h"
73
74 //------------------------------------
75 // Routine pour les cas non prevus --
76 //------------------------------------
77namespace Lorene {
78Tbl _solp_helmholtz_minus_pas_prevu (const Matrice &, const Matrice &,
79 const Tbl &, double, double, int) {
80 cout << " Solution homogene pas prevue ..... : "<< endl ;
81 abort() ;
82 exit(-1) ;
83 Tbl res(1) ;
84 return res;
85}
86
87
88
89 //-------------------
90 //-- R_CHEBU ------
91 //-------------------
92
93
94Tbl _solp_helmholtz_minus_r_chebu (const Matrice &lap, const Matrice &nondege,
95 const Tbl &source, double, double, int) {
96
97 int n = lap.get_dim(0)+2 ;
98 int dege = n-nondege.get_dim(0) ;
99 assert (dege==3) ;
100
101 Tbl source_cl (cl_helmholtz_minus(source, R_CHEBU)) ;
102
103 Tbl so(n-dege) ;
104 so.set_etat_qcq() ;
105 for (int i=0 ; i<n-dege ; i++)
106 so.set(i) = source_cl(i);
107
108 Tbl sol (nondege.inverse(so)) ;
109
110 Tbl res(n) ;
111 res.annule_hard() ;
112 for (int i=1 ; i<n-2 ; i++) {
113 res.set(i) += sol(i-1)*(2*i+3) ;
114 res.set(i+1) += -sol(i-1)*(4*i+4) ;
115 res.set(i+2) += sol(i-1)*(2*i+1) ;
116 }
117
118 return res ;
119}
120
121
122 //-------------------
123 //-- R_CHEB -----
124 //-------------------
125Tbl _solp_helmholtz_minus_r_cheb (const Matrice &lap, const Matrice &nondege,
126 const Tbl &source, double alpha, double beta, int) {
127
128 int n = lap.get_dim(0) ;
129 int dege = n-nondege.get_dim(0) ;
130 assert (dege ==2) ;
131
132 Tbl source_aux(source*alpha*alpha) ;
133 Tbl xso(source_aux) ;
134 Tbl xxso(source_aux) ;
135 multx_1d(n, &xso.t, R_CHEB) ;
136 multx_1d(n, &xxso.t, R_CHEB) ;
137 multx_1d(n, &xxso.t, R_CHEB) ;
138 source_aux = beta*beta/alpha/alpha*source_aux+2*beta/alpha*xso+xxso ;
139
140 source_aux = cl_helmholtz_minus (source_aux, R_CHEB) ;
141
142 Tbl so(n-dege) ;
143 so.set_etat_qcq() ;
144 for (int i=0 ; i<n-dege ; i++)
145 so.set(i) = source_aux(i) ;
146
147 Tbl auxi(nondege.inverse(so)) ;
148
149 Tbl res(n) ;
150 res.set_etat_qcq() ;
151 for (int i=dege ; i<n ; i++)
152 res.set(i) = auxi(i-dege) ;
153
154 for (int i=0 ; i<dege ; i++)
155 res.set(i) = 0 ;
156 return res ;
157}
158
159
160 //-------------------
161 //-- R_CHEBP -----
162 //-------------------
163Tbl _solp_helmholtz_minus_r_chebp (const Matrice &, const Matrice &nondege,
164 const Tbl &source, double alpha, double, int lq) {
165
166
167 int dege = (lq==0) ? 1 : 2 ;
168 int n = nondege.get_dim(0) + dege ;
169 Tbl source_cl (cl_helmholtz_minus(source*alpha*alpha, R_CHEBP)) ;
170
171 Tbl so(n-dege) ;
172 so.set_etat_qcq() ;
173 for (int i=0 ; i<n-dege ; i++)
174 so.set(i) = source_cl(i);
175
176 Tbl sol (nondege.inverse(so)) ;
177
178 Tbl res(n) ;
179 res.annule_hard() ;
180 if (dege==2) {
181 for (int i=1 ; i<n-1 ; i++) {
182 res.set(i) += sol(i-1) ;
183 res.set(i+1) += sol(i-1) ;
184 }
185}
186 else {
187 for (int i=1 ; i<n ; i++)
188 res.set(i) = sol(i-1) ;
189 }
190return res ;
191}
192
193 //-------------------
194 //-- R_CHEBI -----
195 //-------------------
196Tbl _solp_helmholtz_minus_r_chebi (const Matrice &, const Matrice &nondege,
197 const Tbl &source, double alpha, double, int lq) {
198
199 int dege = (lq==1) ? 1 : 2 ;
200 int n = nondege.get_dim(0) + dege ;
201 Tbl source_cl (cl_helmholtz_minus(source*alpha*alpha, R_CHEBI)) ;
202
203 Tbl so(n-dege) ;
204 so.set_etat_qcq() ;
205 for (int i=0 ; i<n-dege ; i++)
206 so.set(i) = source_cl(i);
207
208 Tbl sol (nondege.inverse(so)) ;
209
210 Tbl res(n) ;
211 res.annule_hard() ;
212 if (dege==2) {
213 for (int i=1 ; i<n-1 ; i++) {
214 res.set(i) += (2*i+3)*sol(i-1) ;
215 res.set(i+1) += (2*i+1)*sol(i-1) ;
216 }
217}
218 else {
219 for (int i=1 ; i<n ; i++)
220 res.set(i) = sol(i-1) ;
221 }
222
223return res ;
224
225}
226
227 //-------------------
228 //-- Fonction ----
229 //-------------------
230
231
232Tbl solp_helmholtz_minus (const Matrice &lap, const Matrice &nondege,
233 const Tbl &source, double alpha, double beta, int lq,
234 int base_r) {
235
236 // Routines de derivation
237 static Tbl (*solp_helmholtz_minus[MAX_BASE]) (const Matrice&, const Matrice&,
238 const Tbl&, double, double, int) ;
239 static int nap = 0 ;
240
241 // Premier appel
242 if (nap==0) {
243 nap = 1 ;
244 for (int i=0 ; i<MAX_BASE ; i++) {
245 solp_helmholtz_minus[i] = _solp_helmholtz_minus_pas_prevu ;
246 }
247 // Les routines existantes
248 solp_helmholtz_minus[R_CHEB >> TRA_R] = _solp_helmholtz_minus_r_cheb ;
249 solp_helmholtz_minus[R_CHEBU >> TRA_R] = _solp_helmholtz_minus_r_chebu ;
250 solp_helmholtz_minus[R_CHEBP >> TRA_R] = _solp_helmholtz_minus_r_chebp ;
251 solp_helmholtz_minus[R_CHEBI >> TRA_R] = _solp_helmholtz_minus_r_chebi ;
252 }
253
254 Tbl res(solp_helmholtz_minus[base_r] (lap, nondege, source, alpha, beta, lq)) ;
255 return res ;
256}
257}
int get_dim(int i) const
Gives the i-th dimension (ie dim.dim[i])
Definition tbl.h:403
#define MAX_BASE
Nombre max. de bases differentes.
#define R_CHEBU
base de Chebychev ordinaire (fin), dev. en 1/r
#define R_CHEBI
base de Cheb. impaire (rare) seulement
#define TRA_R
Translation en R, used for a bitwise shift (in hex)
#define R_CHEB
base de Chebychev ordinaire (fin)
#define R_CHEBP
base de Cheb. paire (rare) seulement
Lorene prototypes.
Definition app_hor.h:64