LORENE
star_rot_lambda_grv2.C
1/*
2 * Method Star_rot::lambda_grv2.
3 *
4 * (see file star_rot.h for documentation)
5 *
6 */
7
8/*
9 * Copyright (c) 2010 Eric Gourgoulhon
10 *
11 * This file is part of LORENE.
12 *
13 * LORENE is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * LORENE is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with LORENE; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 *
27 */
28
29
30char star_rot_lambda_grv2_C[] = "$Header: /cvsroot/Lorene/C++/Source/Star/star_rot_lambda_grv2.C,v 1.4 2014/10/13 08:53:39 j_novak Exp $" ;
31
32/*
33 * $Id: star_rot_lambda_grv2.C,v 1.4 2014/10/13 08:53:39 j_novak Exp $
34 * $Log: star_rot_lambda_grv2.C,v $
35 * Revision 1.4 2014/10/13 08:53:39 j_novak
36 * Lorene classes and functions now belong to the namespace Lorene.
37 *
38 * Revision 1.3 2014/10/06 15:13:17 j_novak
39 * Modified #include directives to use c++ syntax.
40 *
41 * Revision 1.2 2013/06/05 15:10:43 j_novak
42 * Suppression of FINJAC sampling in r. This Jacobi(0,2) base is now
43 * available by setting colloc_r to BASE_JAC02 in the Mg3d constructor.
44 *
45 * Revision 1.1 2010/01/25 18:15:52 e_gourgoulhon
46 * First version.
47 *
48 *
49 *
50 * $Header: /cvsroot/Lorene/C++/Source/Star/star_rot_lambda_grv2.C,v 1.4 2014/10/13 08:53:39 j_novak Exp $
51 *
52 */
53
54// Headers C
55#include <cmath>
56
57// Headers Lorene
58#include "star_rot.h"
59#include "proto_f77.h"
60
61namespace Lorene {
63
64 const Map_radial* mprad = dynamic_cast<const Map_radial*>( &sou_m.get_mp() ) ;
65
66 if (mprad == 0x0) {
67 cout << "Star_rot::lambda_grv2: the mapping of sou_m does not"
68 << endl << " belong to the class Map_radial !" << endl ;
69 abort() ;
70 }
71
72 assert( &sou_q.get_mp() == mprad ) ;
73
74 sou_q.check_dzpuis(4) ;
75
76 const Mg3d* mg = mprad->get_mg() ;
77 int nz = mg->get_nzone() ;
78
79 // Construction of a Map_af which coincides with *mp on the equator
80 // ----------------------------------------------------------------
81
82 double theta0 = M_PI / 2 ; // Equator
83 double phi0 = 0 ;
84
86
87 for (int l=0 ; l<nz ; l++) {
88 double rmax = mprad->val_r(l, double(1), theta0, phi0) ;
89 switch ( mg->get_type_r(l) ) {
90 case RARE: {
91 double rmin = mprad->val_r(l, double(0), theta0, phi0) ;
92 mpaff.set_alpha(rmax - rmin, l) ;
93 mpaff.set_beta(rmin, l) ;
94 break ;
95 }
96
97 case FIN: {
98 double rmin = mprad->val_r(l, double(-1), theta0, phi0) ;
99 mpaff.set_alpha( double(.5) * (rmax - rmin), l ) ;
100 mpaff.set_beta( double(.5) * (rmax + rmin), l) ;
101 break ;
102 }
103
104
105 case UNSURR: {
106 double rmin = mprad->val_r(l, double(-1), theta0, phi0) ;
107 double umax = double(1) / rmin ;
108 double umin = double(1) / rmax ;
109 mpaff.set_alpha( double(.5) * (umin - umax), l) ;
110 mpaff.set_beta( double(.5) * (umin + umax), l) ;
111 break ;
112 }
113
114 default: {
115 cout << "Star_rot::lambda_grv2: unknown type_r ! " << endl ;
116 abort () ;
117 break ;
118 }
119
120 }
121 }
122
123
124 // Reduced Jacobian of
125 // the transformation (r,theta,phi) <-> (dzeta,theta',phi')
126 // ------------------------------------------------------------
127
128 Mtbl jac = 1 / ( (mprad->xsr) * (mprad->dxdr) ) ;
129 // R/x dR/dx in the nucleus
130 // R dR/dx in the shells
131 // - U/(x-1) dU/dx in the ZEC
132 for (int l=0; l<nz; l++) {
133 switch ( mg->get_type_r(l) ) {
134 case RARE: {
135 double a1 = mpaff.get_alpha()[l] ;
136 *(jac.t[l]) = *(jac.t[l]) / (a1*a1) ;
137 break ;
138 }
139
140 case FIN: {
141 double a1 = mpaff.get_alpha()[l] ;
142 double b1 = mpaff.get_beta()[l] ;
143 assert( jac.t[l]->get_etat() == ETATQCQ ) ;
144 double* tjac = jac.t[l]->t ;
145 double* const xi = mg->get_grille3d(l)->x ;
146 for (int k=0; k<mg->get_np(l); k++) {
147 for (int j=0; j<mg->get_nt(l); j++) {
148 for (int i=0; i<mg->get_nr(l); i++) {
149 *tjac = *tjac /
150 (a1 * (a1 * xi[i] + b1) ) ;
151 tjac++ ;
152 }
153 }
154 }
155
156 break ;
157 }
158
159
160 case UNSURR: {
161 double a1 = mpaff.get_alpha()[l] ;
162 *(jac.t[l]) = - *(jac.t[l]) / (a1*a1) ;
163 break ;
164 }
165
166 default: {
167 cout << "Star_rot::lambda_grv2: unknown type_r ! " << endl ;
168 abort () ;
169 break ;
170 }
171
172 }
173
174 }
175
176
177 // Multiplication of the sources by the reduced Jacobian:
178 // -----------------------------------------------------
179
180 Mtbl s_m(mg) ;
181 if ( sou_m.get_etat() == ETATZERO ) {
182 s_m = 0 ;
183 }
184 else{
185 assert(sou_m.get_spectral_va().get_etat() == ETATQCQ) ;
186 sou_m.get_spectral_va().coef_i() ;
187 s_m = *(sou_m.get_spectral_va().c) ;
188 }
189
190 Mtbl s_q(mg) ;
191 if ( sou_q.get_etat() == ETATZERO ) {
192 s_q = 0 ;
193 }
194 else{
195 assert(sou_q.get_spectral_va().get_etat() == ETATQCQ) ;
196 sou_q.get_spectral_va().coef_i() ;
197 s_q = *(sou_q.get_spectral_va().c) ;
198 }
199
200 s_m *= jac ;
201 s_q *= jac ;
202
203
204 // Preparations for the call to the Fortran subroutine
205 // ---------------------------------------------------
206
207 int np1 = 1 ; // Axisymmetry enforced
208 int nt = mg->get_nt(0) ;
209 int nt2 = 2*nt - 1 ; // Number of points for the theta sampling
210 // in [0,Pi], instead of [0,Pi/2]
211
212 // Array NDL
213 // ---------
214 int* ndl = new int[nz+4] ;
215 ndl[0] = nz ;
216 for (int l=0; l<nz; l++) {
217 ndl[1+l] = mg->get_nr(l) ;
218 }
219 ndl[1+nz] = nt2 ;
220 ndl[2+nz] = np1 ;
221 ndl[3+nz] = nz ;
222
223 // Parameters NDR, NDT, NDP
224 // ------------------------
225 int nrmax = 0 ;
226 for (int l=0; l<nz ; l++) {
227 nrmax = ( ndl[1+l] > nrmax ) ? ndl[1+l] : nrmax ;
228 }
229 int ndr = nrmax + 5 ;
230 int ndt = nt2 + 2 ;
231 int ndp = np1 + 2 ;
232
233 // Array ERRE
234 // ----------
235
236 double* erre = new double [nz*ndr] ;
237
238 for (int l=0; l<nz; l++) {
239 double a1 = mpaff.get_alpha()[l] ;
240 double b1 = mpaff.get_beta()[l] ;
241 for (int i=0; i<ndl[1+l]; i++) {
242 double xi = mg->get_grille3d(l)->x[i] ;
243 erre[ ndr*l + i ] = a1 * xi + b1 ;
244 }
245 }
246
247 // Arrays containing the data
248 // --------------------------
249
250 int ndrt = ndr*ndt ;
251 int ndrtp = ndr*ndt*ndp ;
252 int taille = ndrtp*nz ;
253
254 double* tsou_m = new double[ taille ] ;
255 double* tsou_q = new double[ taille ] ;
256
257 // Initialisation to zero :
258 for (int i=0; i<taille; i++) {
259 tsou_m[i] = 0 ;
260 tsou_q[i] = 0 ;
261 }
262
263 // Copy of s_m into tsou_m
264 // -----------------------
265
266 for (int l=0; l<nz; l++) {
267 for (int k=0; k<np1; k++) {
268 for (int j=0; j<nt; j++) {
269 for (int i=0; i<mg->get_nr(l); i++) {
270 double xx = s_m(l, k, j, i) ;
271 tsou_m[ndrtp*l + ndrt*k + ndr*j + i] = xx ;
272 // point symetrique par rapport au plan theta = pi/2 :
273 tsou_m[ndrtp*l + ndrt*k + ndr*(nt2-1-j) + i] = xx ;
274 }
275 }
276 }
277 }
278
279 // Copy of s_q into tsou_q
280 // -----------------------
281
282 for (int l=0; l<nz; l++) {
283 for (int k=0; k<np1; k++) {
284 for (int j=0; j<nt; j++) {
285 for (int i=0; i<mg->get_nr(l); i++) {
286 double xx = s_q(l, k, j, i) ;
287 tsou_q[ndrtp*l + ndrt*k + ndr*j + i] = xx ;
288 // point symetrique par rapport au plan theta = pi/2 :
289 tsou_q[ndrtp*l + ndrt*k + ndr*(nt2-1-j) + i] = xx ;
290 }
291 }
292 }
293 }
294
295
296 // Computation of the integrals
297 // ----------------------------
298
299 double int_m, int_q ;
302
303 // Cleaning
304 // --------
305
306 delete [] ndl ;
307 delete [] erre ;
308 delete [] tsou_m ;
309 delete [] tsou_q ;
310
311 // Computation of lambda
312 // ---------------------
313
314 double lambda ;
315 if ( int_q != double(0) ) {
316 lambda = - int_m / int_q ;
317 }
318 else{
319 lambda = 0 ;
320 }
321
322 return lambda ;
323
324}
325}
Time evolution with partial storage (*** under development ***).
Definition evolution.h:371
Affine radial mapping.
Definition map.h:2027
Base class for pure radial mappings.
Definition map.h:1536
Multi-domain grid.
Definition grilles.h:273
const Grille3d * get_grille3d(int l) const
Returns a pointer on the 3D mono-grid for domain no. l.
Definition grilles.h:500
int get_np(int l) const
Returns the number of points in the azimuthal direction ( ) in domain no. l.
Definition grilles.h:462
int get_nt(int l) const
Returns the number of points in the co-latitude direction ( ) in domain no. l.
Definition grilles.h:457
int get_nzone() const
Returns the number of domains.
Definition grilles.h:448
int get_nr(int l) const
Returns the number of points in the radial direction ( ) in domain no. l.
Definition grilles.h:452
int get_type_r(int l) const
Returns the type of sampling in the radial direction in domain no.
Definition grilles.h:474
Multi-domain array.
Definition mtbl.h:118
Tensor field of valence 0 (or component of a tensorial field).
Definition scalar.h:387
static double lambda_grv2(const Scalar &sou_m, const Scalar &sou_q)
Computes the coefficient which ensures that the GRV2 virial identity is satisfied.
Lorene prototypes.
Definition app_hor.h:64