23char citcossincp_C[] =
"$Header: /cvsroot/Lorene/C++/Source/Non_class_members/Coef/FFTW3/citcossincp.C,v 1.4 2014/10/13 08:53:20 j_novak Exp $" ;
133fftw_plan back_fft(
int, Tbl*&) ;
134double* cheb_ini(
const int) ;
135double* chebimp_ini(
const int ) ;
138void citcossincp(
const int* deg,
const int* dimc,
double* cf,
const int* dimf,
157 cout <<
"citcossincp: nt > n2f : nt = " << nt <<
" , n2f = "
163 cout <<
"citcossincp: nt > n2c : nt = " << nt <<
" , n2c = "
168 if ( (n1f > 1) && (n1c > n1f) ) {
169 cout <<
"citcossincp: n1c > n1f : n1c = " << n1c <<
" , n1f = "
175 cout <<
"citcossincp: n3c > n3f : n3c = " << n3c <<
" , n3f = "
187 fftw_plan p = back_fft(nm1, pg) ;
189 double* t1 =
new double[nt] ;
192 double* sinp = cheb_ini(nt);
195 double* sinth = chebimp_ini(nt);
199 int n2n3f = n2f * n3f ;
200 int n2n3c = n2c * n3c ;
208 int borne_phi = n1f-1 ;
209 if (n1f == 1) borne_phi = 1 ;
217 while (j < borne_phi) {
224 for (k=0; k<n3c; k++) {
226 int i0 = n2n3c * j + k ;
227 double* cf0 = cf + i0 ;
230 double* ff0 = ff + i0 ;
244 double c1 = cf0[n3c] ;
248 for ( i = 3; i < nt; i += 2 ) {
249 ff0[ n3f*i ] = cf0[ n3c*i ] - c1 ;
250 som += ff0[ n3f*i ] ;
254 double fmoins0 = nm1s2 * c1 + som ;
259 for ( i = 3; i < nt; i += 2 ) {
260 g.set(nm1-i/2) = 0.25 * ( ff0[ n3f*i ] - ff0[ n3f*(i-2) ] ) ;
272 for (i=1; i<nm1s2; i++ ) g.set(i) = 0.5 * cf0[ n3c*2*i ] ;
273 g.set(nm1s2) = cf0[ n3c*nm1 ] ;
284 for ( i = 1; i < nm1s2 ; i++ ) {
288 double fp = 0.5 * ( g(i) + g(isym) ) ;
289 double fm = 0.5 * ( g(i) - g(isym) ) / sinp[i] ;
290 ff0[ n3f*i ] = fp + fm ;
291 ff0[ n3f*isym ] = fp - fm ;
295 ff0[0] = g(0) + fmoins0 ;
296 ff0[ n3f*nm1 ] = g(0) - fmoins0 ;
297 ff0[ n3f*nm1s2 ] = g(nm1s2) ;
307 if ( (j != 1) && (j != borne_phi ) ) {
311 for (k=0; k<n3c; k++) {
313 int i0 = n2n3c * j + k ;
314 double* cf0 = cf + i0 ;
317 double* ff0 = ff + i0 ;
331 double c1 = cf0[n3c] ;
335 for ( i = 3; i < nt; i += 2 ) {
336 ff0[ n3f*i ] = cf0[ n3c*i ] - c1 ;
337 som += ff0[ n3f*i ] ;
341 double fmoins0 = nm1s2 * c1 + som ;
346 for ( i = 3; i < nt; i += 2 ) {
347 g.set(nm1-i/2) = 0.25 * ( ff0[ n3f*i ] - ff0[ n3f*(i-2) ] ) ;
359 for (i=1; i<nm1s2; i++ ) g.set(i) = 0.5 * cf0[ n3c*2*i ] ;
360 g.set(nm1s2) = cf0[ n3c*nm1 ] ;
371 for ( i = 1; i < nm1s2 ; i++ ) {
375 double fp = 0.5 * ( g(i) + g(isym) ) ;
376 double fm = 0.5 * ( g(i) - g(isym) ) / sinp[i] ;
377 ff0[ n3f*i ] = fp + fm ;
378 ff0[ n3f*isym ] = fp - fm ;
382 ff0[0] = g(0) + fmoins0 ;
383 ff0[ n3f*nm1 ] = g(0) - fmoins0 ;
384 ff0[ n3f*nm1s2 ] = g(nm1s2) ;
408 while (j < borne_phi) {
415 for (k=0; k<n3c; k++) {
417 int i0 = n2n3c * j + k ;
418 double* cf0 = cf + i0 ;
421 double* ff0 = ff + i0 ;
426 t1[0] = .5 * cf0[0] ;
427 for (i=1; i<nm1; i++) {
428 t1[i] = .5 * ( cf0[ n3c*i ] - cf0[ n3c*(i-1) ] ) ;
430 t1[nm1] = -.5 * cf0[ n3c*(nt-2) ] ;
448 for ( i = 3; i < nt; i += 2 ) {
449 ff0[ n3f*i ] = t1[i] - c1 ;
450 som += ff0[ n3f*i ] ;
454 double fmoins0 = nm1s2 * c1 + som ;
459 for ( i = 3; i < nt; i += 2 ) {
460 g.set(nm1-i/2) = 0.25 * ( ff0[ n3f*i ] - ff0[ n3f*(i-2) ] ) ;
471 for (i=1; i<nm1s2; i ++ ) g.set(i) = 0.5 * t1[2*i] ;
472 g.set(nm1s2) = t1[nm1] ;
483 for ( i = 1; i < nm1s2 ; i++ ) {
487 double fp = 0.5 * ( g(i) + g(isym) ) ;
488 double fm = 0.5 * ( g(i) - g(isym) ) / sinp[i] ;
489 ff0[ n3f*i ] = ( fp + fm ) / sinth[i] ;
490 ff0[ n3f*isym ] = ( fp - fm ) / sinth[isym] ;
495 ff0[ n3f*nm1 ] = g(0) - fmoins0 ;
496 ff0[ n3f*nm1s2 ] = g(nm1s2) / sinth[nm1s2];
506 if ( j != borne_phi ) {
510 for (k=0; k<n3c; k++) {
512 int i0 = n2n3c * j + k ;
513 double* cf0 = cf + i0 ;
516 double* ff0 = ff + i0 ;
521 t1[0] = .5 * cf0[0] ;
522 for (i=1; i<nm1; i++) {
523 t1[i] = .5 * ( cf0[ n3c*i ] - cf0[ n3c*(i-1) ] ) ;
525 t1[nm1] = -.5 * cf0[ n3c*(nt-2) ] ;
543 for ( i = 3; i < nt; i += 2 ) {
544 ff0[ n3f*i ] = t1[i] - c1 ;
545 som += ff0[ n3f*i ] ;
549 double fmoins0 = nm1s2 * c1 + som ;
554 for ( i = 3; i < nt; i += 2 ) {
555 g.set(nm1-i/2) = 0.25 * ( ff0[ n3f*i ] - ff0[ n3f*(i-2) ] ) ;
566 for (i=1; i<nm1s2; i ++ ) g.set(i) = 0.5 * t1[2*i] ;
567 g.set(nm1s2) = t1[nm1] ;
578 for ( i = 1; i < nm1s2 ; i++ ) {
582 double fp = 0.5 * ( g(i) + g(isym) ) ;
583 double fm = 0.5 * ( g(i) - g(isym) ) / sinp[i] ;
584 ff0[ n3f*i ] = ( fp + fm ) / sinth[i] ;
585 ff0[ n3f*isym ] = ( fp - fm ) / sinth[isym] ;
590 ff0[ n3f*nm1 ] = g(0) - fmoins0 ;
591 ff0[ n3f*nm1s2 ] = g(nm1s2) / sinth[nm1s2];