LORENE
|
() More...
Functions | |
Tenseur | Lorene::operator* (const Tenseur &, const Tenseur &) |
Tensorial product. | |
Tenseur | Lorene::operator% (const Tenseur &, const Tenseur &) |
Tensorial product with desaliasing. | |
Tenseur | Lorene::contract (const Tenseur &, int id1, int id2) |
Self contraction of two indices of a Tenseur . | |
Tenseur | Lorene::contract (const Tenseur &, int id1, const Tenseur &, int id2) |
Contraction of two Tenseur . | |
Tenseur | Lorene::flat_scalar_prod (const Tenseur &t1, const Tenseur &t2) |
Scalar product of two Tenseur when the metric is ![]() t1 with the first one of t2 , irrespective of the type of these indices. | |
Tenseur | Lorene::flat_scalar_prod_desal (const Tenseur &t1, const Tenseur &t2) |
Same as flat_scalar_prod but with desaliasing. | |
Tenseur | Lorene::manipule (const Tenseur &, const Metrique &, int idx) |
Raise or lower the index idx depending on its type, using the given Metrique . | |
Tenseur | Lorene::manipule (const Tenseur &, const Metrique &) |
Raise or lower all the indices, depending on their type, using the given Metrique . | |
Tenseur | Lorene::skxk (const Tenseur &) |
Contraction of the last index of (*this) with ![]() ![]() | |
Tenseur | Lorene::lie_derive (const Tenseur &t, const Tenseur &x, const Metrique *=0x0) |
Lie Derivative of t with respect to x . | |
Tenseur | Lorene::sans_trace (const Tenseur &tens, const Metrique &metre) |
Computes the traceless part of a Tenseur of valence 2. | |
()
Contraction of two Tenseur
.
The two indices must be of different type, i.e. covariant and contravariant, or contravariant and covariant.
id1 | [input] number of the index of contraction for the first Tenseur ; id1 must be strictly lower than the valence of the tensor and obeys the following convention:
|
id2 | [input] number of index of contraction for the second one; id2 must be strictly lower than the valence of the tensor and obeys the following convention:
|
Definition at line 348 of file tenseur_operateur.C.
Self contraction of two indices of a Tenseur
.
The two indices must be of different type, i.e. covariant and contravariant, or contravariant and covariant.
id1 | [input] number of the first index for the contraction; id1 must be strictly lower than the valence of the tensor and obeys the following convention:
|
id2 | [input] number of the second index for the contraction; id2 must be strictly lower than the valence of the tensor and obeys the following convention:
|
Definition at line 279 of file tenseur_operateur.C.
Scalar product of two Tenseur
when the metric is t1
with the first one of t2
, irrespective of the type of these indices.
Definition at line 653 of file tenseur_operateur.C.
Same as flat_scalar_prod
but with desaliasing.
Definition at line 735 of file tenseur_operateur.C.
Lie Derivative of t
with respect to x
.
If no other argument is given, it uses partial derivatives with respect to cartesian coordinates to calculate the result (this is the default). Otherwise, it uses the covariant derivative associated to the metric given as last argument.
Definition at line 816 of file tenseur_operateur.C.
Raise or lower all the indices, depending on their type, using the given Metrique
.
Definition at line 562 of file tenseur_operateur.C.
Raise or lower the index idx
depending on its type, using the given Metrique
.
Definition at line 509 of file tenseur_operateur.C.
Tensorial product with desaliasing.
Definition at line 199 of file tenseur_operateur.C.
Tensorial product.
Definition at line 119 of file tenseur_operateur.C.
Computes the traceless part of a Tenseur
of valence 2.
tens | [input] the Tenseur of valence 2 |
metre | [input] the metric used to raise or lower the indices |
Tenseur
Definition at line 897 of file tenseur_operateur.C.
References Lorene::contract(), Lorene::Tenseur::get_etat(), Lorene::Tenseur::get_metric(), Lorene::Tenseur::get_mp(), Lorene::Tenseur::get_poids(), Lorene::Tenseur::get_triad(), Lorene::Tenseur::get_type_indice(), Lorene::Tenseur::get_valence(), Lorene::manipule(), Lorene::Tenseur::set(), and Lorene::Tenseur::set_etat_qcq().
Contraction of the last index of (*this) with
The calculation is performed to avoid singularities in the external zone. This is done only for a flat metric.
Definition at line 580 of file tenseur_operateur.C.