LORENE
Lorene::Eos_poly Class Reference

Polytropic equation of state (relativistic case). More...

#include <eos.h>

Inheritance diagram for Lorene::Eos_poly:
Lorene::Eos Lorene::Eos_poly_newt

Public Member Functions

 Eos_poly (double gamma, double kappa)
 Standard constructor (sets both m_0 and mu_0 to 1).
 
 Eos_poly (double gamma, double kappa, double mass)
 Standard constructor with individual particle mass (sets mu_0 to 1).
 
 Eos_poly (double gamma, double kappa, double mass, double mu_zero)
 Standard constructor with individual particle mass and zero-pressure chemical potential.
 
 Eos_poly (const Eos_poly &)
 Copy constructor.
 
virtual ~Eos_poly ()
 Destructor.
 
void operator= (const Eos_poly &)
 Assignment to another Eos_poly.
 
virtual bool operator== (const Eos &) const
 Comparison operator (egality)
 
virtual bool operator!= (const Eos &) const
 Comparison operator (difference)
 
virtual int identify () const
 Returns a number to identify the sub-classe of Eos the object belongs to.
 
double get_gam () const
 Returns the adiabatic index $\gamma$ (cf. Eq. (3))
 
double get_kap () const
 Returns the pressure coefficient $\kappa$ (cf.
 
double get_m_0 () const
 Return the individual particule mass $m_0$ (cf.
 
double get_mu_0 () const
 Return the relativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$].
 
virtual void sauve (FILE *) const
 Save in a file.
 
virtual double nbar_ent_p (double ent, const Param *par=0x0) const
 Computes the baryon density from the log-enthalpy.
 
virtual double ener_ent_p (double ent, const Param *par=0x0) const
 Computes the total energy density from the log-enthalpy.
 
virtual double press_ent_p (double ent, const Param *par=0x0) const
 Computes the pressure from the log-enthalpy.
 
virtual double der_nbar_ent_p (double ent, const Param *par=0x0) const
 Computes the logarithmic derivative $d\ln n/d\ln H$ from the log-enthalpy.
 
virtual double der_ener_ent_p (double ent, const Param *par=0x0) const
 Computes the logarithmic derivative $d\ln e/d\ln H$ from the log-enthalpy.
 
virtual double der_press_ent_p (double ent, const Param *par=0x0) const
 Computes the logarithmic derivative $d\ln p/d\ln H$ from the log-enthalpy.
 
const charget_name () const
 Returns the EOS name.
 
void set_name (const char *name_i)
 Sets the EOS name.
 
Cmp nbar_ent (const Cmp &ent, int nzet, int l_min=0, const Param *par=0x0) const
 Computes the baryon density field from the log-enthalpy field and extra parameters.
 
Scalar nbar_ent (const Scalar &ent, int nzet, int l_min=0, const Param *par=0x0) const
 Computes the baryon density field from the log-enthalpy field and extra parameters.
 
Cmp ener_ent (const Cmp &ent, int nzet, int l_min=0, const Param *par=0x0) const
 Computes the total energy density from the log-enthalpy and extra parameters.
 
Scalar ener_ent (const Scalar &ent, int nzet, int l_min=0, const Param *par=0x0) const
 Computes the total energy density from the log-enthalpy and extra parameters.
 
Cmp press_ent (const Cmp &ent, int nzet, int l_min=0, const Param *par=0x0) const
 Computes the pressure from the log-enthalpy and extra parameters.
 
Scalar press_ent (const Scalar &ent, int nzet, int l_min=0, const Param *par=0x0) const
 Computes the pressure from the log-enthalpy and extra parameters.
 
Cmp der_nbar_ent (const Cmp &ent, int nzet, int l_min=0, const Param *par=0x0) const
 Computes the logarithmic derivative $d\ln n/d\ln H$ from the log-enthalpy and extra parameters.
 
Scalar der_nbar_ent (const Scalar &ent, int nzet, int l_min=0, const Param *par=0x0) const
 Computes the logarithmic derivative $d\ln n/d\ln H$ from the log-enthalpy and extra parameters.
 
Cmp der_ener_ent (const Cmp &ent, int nzet, int l_min=0, const Param *par=0x0) const
 Computes the logarithmic derivative $d\ln e/d\ln H$ from the log-enthalpy and extra parameters.
 
Scalar der_ener_ent (const Scalar &ent, int nzet, int l_min=0, const Param *par=0x0) const
 Computes the logarithmic derivative $d\ln e/d\ln H$ from the log-enthalpy and extra parameters.
 
Cmp der_press_ent (const Cmp &ent, int nzet, int l_min=0, const Param *par=0x0) const
 Computes the logarithmic derivative $d\ln p/d\ln H$ from the log-enthalpy and extra parameters.
 
Scalar der_press_ent (const Scalar &ent, int nzet, int l_min=0, const Param *par=0x0) const
 Computes the logarithmic derivative $d\ln p/d\ln H$ from the log-enthalpy and extra parameters.
 

Static Public Member Functions

static Eoseos_from_file (FILE *)
 Construction of an EOS from a binary file.
 
static Eoseos_from_file (ifstream &)
 Construction of an EOS from a formatted file.
 

Protected Member Functions

 Eos_poly (FILE *)
 Constructor from a binary file (created by the function sauve(FILE*) ).
 
 Eos_poly (ifstream &)
 Constructor from a formatted file.
 
void set_auxiliary ()
 Computes the auxiliary quantities gam1 , unsgam1 , gam1sgamkap from the values of gam and kap.
 
virtual ostreamoperator>> (ostream &) const
 Operator >>
 
void calcule (const Cmp &thermo, int nzet, int l_min, double(Eos::*fait)(double, const Param *) const, const Param *par, Cmp &resu) const
 General computational method for Cmp 's.
 
void calcule (const Scalar &thermo, int nzet, int l_min, double(Eos::*fait)(double, const Param *) const, const Param *par, Scalar &resu) const
 General computational method for Scalar 's.
 

Protected Attributes

double gam
 Adiabatic index $\gamma$ (cf. Eq. (3))
 
double kap
 Pressure coefficient $\kappa$ (cf.
 
double m_0
 Individual particule mass $m_0$ (cf.
 
double mu_0
 Relativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$].
 
double gam1
 $\gamma-1$
 
double unsgam1
 $1/(\gamma-1)$
 
double gam1sgamkap
 $(\gamma-1) / (\gamma \kappa) m_0$
 
double rel_mu_0
 $\mu_0/m_0$
 
double ent_0
 Enthalpy at zero pressure ( $\ln (\mu_0/m_0)$)
 
char name [100]
 EOS name.
 

Friends

EosEos::eos_from_file (FILE *)
 The construction functions from a file.
 
EosEos::eos_from_file (ifstream &)
 

Detailed Description

Polytropic equation of state (relativistic case).

This equation of state (EOS) corresponds to identical relativistic particles of rest mass is $m_0$, whose total energy density e is related to their numerical density n by

\[ 
   e(n) = {\kappa \over \gamma-1} n^\gamma + \mu_0 \, n \ , \qquad \qquad (1)
 \]

where $\mu_0$ is the chemical potential at zero pressure. The relativistic (i.e. including rest mass energy) chemical potential is then

\[  
   \mu(n) := {de\over dn} = {\kappa \gamma \over \gamma-1} n^{\gamma-1}
        + \mu_0 \ .\qquad \qquad (2)
 \]


The pressure is given by the (zero-temperature) First Law of Thermodynamics: $p = \mu n - e$, so that

\[ 
   p(n) = \kappa n^\gamma  \ . \qquad \qquad (3)
 \]

The log-enthalpy is defined as the logarithm of the ratio of the enthalpy par particle by the partical rest mass energy :

\[ 
   H(n) := c^2 \ln \left( {e+p \over m_0 c^2\, n} \right)   \ . \qquad \qquad (4)
 \]

According to the (zero-temperature) First Law of Thermodynamics, the log-enthalpy is related to the chemical potential by

\[
   H = c^2 \ln \left( {\mu \over m_0 c^2} \right) \ .  \qquad \qquad (5)
 \]

From this expression and relation (2), the expression of the particle density in term of the log-enthalpy is

\[
   n(H) = \left[ {\gamma-1\over \gamma} {m_0 c^2 \over \kappa}
              \left( \exp(H) - {\mu_0\over m_0 c^2} \right)
        \right] ^{1/(\gamma-1)}  \ .    \qquad \qquad (6)
 \]

The energy density and pressure as functions of H can then be obtained by inserting this relation into Eqs. (1) and (3).

()

Definition at line 757 of file eos.h.

Constructor & Destructor Documentation

◆ Eos_poly() [1/6]

Lorene::Eos_poly::Eos_poly ( double  gamma,
double  kappa 
)

Standard constructor (sets both m_0 and mu_0 to 1).

The individual particle mass $m_0$ is set to the mean baryon mass $m_B = 1.66\ 10^{-27} \ {\rm kg}$.

Parameters
gammaadiabatic index $\gamma$ (cf. Eq. (3))
kappapressure coefficient $\kappa$
(cf. Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$

Definition at line 126 of file eos_poly.C.

References set_auxiliary().

◆ Eos_poly() [2/6]

Lorene::Eos_poly::Eos_poly ( double  gamma,
double  kappa,
double  mass 
)

Standard constructor with individual particle mass (sets mu_0 to 1).

Parameters
gammaadiabatic index $\gamma$ (cf. Eq. (3))
kappapressure coefficient $\kappa$ (cf. Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$
massindividual particule mass $m_0$ (cf. Eq. (1) [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$]

Definition at line 136 of file eos_poly.C.

References set_auxiliary().

◆ Eos_poly() [3/6]

Lorene::Eos_poly::Eos_poly ( double  gamma,
double  kappa,
double  mass,
double  mu_zero 
)

Standard constructor with individual particle mass and zero-pressure chemical potential.

Parameters
gammaadiabatic index $\gamma$ (cf. Eq. (3))
kappapressure coefficient $\kappa$ (cf. Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$
massindividual particule mass $m_0$ (cf. Eq. (1)) [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$]
mu_zeroRelativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$]. (standard value: 1)

Definition at line 146 of file eos_poly.C.

References set_auxiliary().

◆ Eos_poly() [4/6]

Lorene::Eos_poly::Eos_poly ( const Eos_poly eosi)

Copy constructor.

Definition at line 156 of file eos_poly.C.

References set_auxiliary().

◆ Eos_poly() [5/6]

Lorene::Eos_poly::Eos_poly ( FILE fich)
protected

Constructor from a binary file (created by the function sauve(FILE*) ).

This constructor is protected because any EOS construction from a binary file must be done via the function Eos::eos_from_file(FILE*) .

Definition at line 167 of file eos_poly.C.

References Lorene::fread_be(), gam, kap, m_0, mu_0, and set_auxiliary().

◆ Eos_poly() [6/6]

Lorene::Eos_poly::Eos_poly ( ifstream fich)
protected

Constructor from a formatted file.

This constructor is protected because any EOS construction from a formatted file must be done via the function Eos::eos_from_file(ifstream&) .

Definition at line 190 of file eos_poly.C.

References gam, kap, m_0, mu_0, and set_auxiliary().

◆ ~Eos_poly()

Lorene::Eos_poly::~Eos_poly ( )
virtual

Destructor.

Definition at line 215 of file eos_poly.C.

Member Function Documentation

◆ calcule() [1/2]

void Lorene::Eos::calcule ( const Cmp thermo,
int  nzet,
int  l_min,
double(Eos::*)(double, const Param *) const  fait,
const Param par,
Cmp resu 
) const
protectedinherited

General computational method for Cmp 's.

Parameters
thermo[input] thermodynamical quantity (for instance the enthalpy field)from which the thermodynamical quantity resu is to be computed.
nzet[input] number of domains where resu is to be computed.
l_min[input] index of the innermost domain is which resu is to be computed [default value: 0]; resu is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
fait[input] pointer on the member function of class Eos which performs the pointwise calculation.
parpossible extra parameters of the EOS
resu[output] result of the computation.

Definition at line 203 of file eos.C.

◆ calcule() [2/2]

void Lorene::Eos::calcule ( const Scalar thermo,
int  nzet,
int  l_min,
double(Eos::*)(double, const Param *) const  fait,
const Param par,
Scalar resu 
) const
protectedinherited

General computational method for Scalar 's.

Parameters
thermo[input] thermodynamical quantity (for instance the enthalpy field)from which the thermodynamical quantity resu is to be computed.
nzet[input] number of domains where resu is to be computed.
l_min[input] index of the innermost domain is which resu is to be computed [default value: 0]; resu is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
fait[input] pointer on the member function of class Eos which performs the pointwise calculation.
parpossible extra parameters of the EOS
resu[output] result of the computation.

Definition at line 268 of file eos.C.

◆ der_ener_ent() [1/2]

Cmp Lorene::Eos::der_ener_ent ( const Cmp ent,
int  nzet,
int  l_min = 0,
const Param par = 0x0 
) const
inherited

Computes the logarithmic derivative $d\ln e/d\ln H$ from the log-enthalpy and extra parameters.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzetnumber of domains where the derivative dln(e)/dln(H) is to be computed.
l_minindex of the innermost domain is which the coefficient dln(n)/dln(H) is to be computed [default value: 0]; the derivative dln(e)/dln(H) is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
parpossible extra parameters of the EOS
Returns
dln(e)/dln(H)

Definition at line 430 of file eos.C.

References Lorene::Cmp::get_mp().

◆ der_ener_ent() [2/2]

Scalar Lorene::Eos::der_ener_ent ( const Scalar ent,
int  nzet,
int  l_min = 0,
const Param par = 0x0 
) const
inherited

Computes the logarithmic derivative $d\ln e/d\ln H$ from the log-enthalpy and extra parameters.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzetnumber of domains where the derivative dln(e)/dln(H) is to be computed.
l_minindex of the innermost domain is which the coefficient dln(n)/dln(H) is to be computed [default value: 0]; the derivative dln(e)/dln(H) is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
parpossible extra parameters of the EOS
Returns
dln(e)/dln(H)

Definition at line 440 of file eos.C.

References Lorene::Tensor::get_mp().

◆ der_ener_ent_p()

double Lorene::Eos_poly::der_ener_ent_p ( double  ent,
const Param par = 0x0 
) const
virtual

Computes the logarithmic derivative $d\ln e/d\ln H$ from the log-enthalpy.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by Eq. (4)
parpossible extra parameters of the EOS
Returns
dln(e)/dln(H)

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 438 of file eos_poly.C.

References ent_0, Lorene::exp(), gam, gam1, gam1sgamkap, kap, mu_0, Lorene::pow(), rel_mu_0, and unsgam1.

◆ der_nbar_ent() [1/2]

Cmp Lorene::Eos::der_nbar_ent ( const Cmp ent,
int  nzet,
int  l_min = 0,
const Param par = 0x0 
) const
inherited

Computes the logarithmic derivative $d\ln n/d\ln H$ from the log-enthalpy and extra parameters.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzetnumber of domains where the derivative dln(n)/dln(H) is to be computed.
l_minindex of the innermost domain is which the coefficient dln(n)/dln(H) is to be computed [default value: 0]; the derivative dln(n)/dln(H) is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
parpossible extra parameters of the EOS
Returns
dln(n)/dln(H)

Definition at line 407 of file eos.C.

References Lorene::Cmp::get_mp().

◆ der_nbar_ent() [2/2]

Scalar Lorene::Eos::der_nbar_ent ( const Scalar ent,
int  nzet,
int  l_min = 0,
const Param par = 0x0 
) const
inherited

Computes the logarithmic derivative $d\ln n/d\ln H$ from the log-enthalpy and extra parameters.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzetnumber of domains where the derivative dln(n)/dln(H) is to be computed.
l_minindex of the innermost domain is which the coefficient dln(n)/dln(H) is to be computed [default value: 0]; the derivative dln(n)/dln(H) is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
parpossible extra parameters of the EOS
Returns
dln(n)/dln(H)

Definition at line 417 of file eos.C.

References Lorene::Tensor::get_mp().

◆ der_nbar_ent_p()

double Lorene::Eos_poly::der_nbar_ent_p ( double  ent,
const Param par = 0x0 
) const
virtual

Computes the logarithmic derivative $d\ln n/d\ln H$ from the log-enthalpy.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by Eq. (4)
parpossible extra parameters of the EOS
Returns
dln(n)/dln(H)

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 418 of file eos_poly.C.

References ent_0, Lorene::exp(), gam1, and rel_mu_0.

◆ der_press_ent() [1/2]

Cmp Lorene::Eos::der_press_ent ( const Cmp ent,
int  nzet,
int  l_min = 0,
const Param par = 0x0 
) const
inherited

Computes the logarithmic derivative $d\ln p/d\ln H$ from the log-enthalpy and extra parameters.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzetnumber of domains where the derivative dln(p)/dln(H) is to be computed.
parpossible extra parameters of the EOS
l_minindex of the innermost domain is which the coefficient dln(n)/dln(H) is to be computed [default value: 0]; the derivative dln(p)/dln(H) is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
Returns
dln(p)/dln(H)

Definition at line 452 of file eos.C.

References Lorene::Cmp::get_mp().

◆ der_press_ent() [2/2]

Scalar Lorene::Eos::der_press_ent ( const Scalar ent,
int  nzet,
int  l_min = 0,
const Param par = 0x0 
) const
inherited

Computes the logarithmic derivative $d\ln p/d\ln H$ from the log-enthalpy and extra parameters.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzetnumber of domains where the derivative dln(p)/dln(H) is to be computed.
parpossible extra parameters of the EOS
l_minindex of the innermost domain is which the coefficient dln(n)/dln(H) is to be computed [default value: 0]; the derivative dln(p)/dln(H) is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
Returns
dln(p)/dln(H)

Definition at line 462 of file eos.C.

References Lorene::Tensor::get_mp().

◆ der_press_ent_p()

double Lorene::Eos_poly::der_press_ent_p ( double  ent,
const Param par = 0x0 
) const
virtual

Computes the logarithmic derivative $d\ln p/d\ln H$ from the log-enthalpy.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by Eq. (4)
parpossible extra parameters of the EOS
Returns
dln(p)/dln(H)

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 469 of file eos_poly.C.

References ent_0, Lorene::exp(), gam, gam1, and rel_mu_0.

◆ ener_ent() [1/2]

Cmp Lorene::Eos::ener_ent ( const Cmp ent,
int  nzet,
int  l_min = 0,
const Param par = 0x0 
) const
inherited

Computes the total energy density from the log-enthalpy and extra parameters.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzetnumber of domains where the energy density is to be computed.
l_minindex of the innermost domain is which the energy density is to be computed [default value: 0]; the energy density is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
parpossible extra parameters of the EOS
Returns
energy density [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 363 of file eos.C.

References Lorene::Cmp::get_mp().

◆ ener_ent() [2/2]

Scalar Lorene::Eos::ener_ent ( const Scalar ent,
int  nzet,
int  l_min = 0,
const Param par = 0x0 
) const
inherited

Computes the total energy density from the log-enthalpy and extra parameters.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzetnumber of domains where the energy density is to be computed.
l_minindex of the innermost domain is which the energy density is to be computed [default value: 0]; the energy density is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
parpossible extra parameters of the EOS
Returns
energy density [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 373 of file eos.C.

References Lorene::Tensor::get_mp().

◆ ener_ent_p()

double Lorene::Eos_poly::ener_ent_p ( double  ent,
const Param par = 0x0 
) const
virtual

Computes the total energy density from the log-enthalpy.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by Eq. (4)
parpossible extra parameters of the EOS
Returns
energy density e [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 382 of file eos_poly.C.

References ent_0, Lorene::exp(), gam, gam1sgamkap, kap, mu_0, Lorene::pow(), rel_mu_0, and unsgam1.

◆ eos_from_file() [1/2]

Eos * Lorene::Eos::eos_from_file ( FILE fich)
staticinherited

Construction of an EOS from a binary file.

The file must have been created by the function sauve(FILE*) .

Definition at line 177 of file eos_from_file.C.

References Lorene::fread_be().

◆ eos_from_file() [2/2]

Eos * Lorene::Eos::eos_from_file ( ifstream fich)
staticinherited

Construction of an EOS from a formatted file.

The fist line of the file must start by the EOS number, according to the following conventions:

  • 1 = relativistic polytropic EOS (class Eos_poly ).
  • 2 = Newtonian polytropic EOS (class Eos_poly_newt ).
  • 3 = Relativistic incompressible EOS (class Eos_incomp ).
  • 4 = Newtonian incompressible EOS (class Eos_incomp_newt ).
  • 5 = Strange matter (MIT Bag model)
  • 6 = Strange matter (MIT Bag model) with crust
  • 10 = SLy4 (Douchin & Haensel 2001)
  • 11 = FPS (Friedman-Pandharipande + Skyrme)
  • 12 = BPAL12 (Bombaci et al. 1995)
  • 13 = AkmalPR (Akmal, Pandharipande & Ravenhall 1998)
  • 14 = BBB2 (Baldo, Bombaci & Burgio 1997)
  • 15 = BalbN1H1 (Balberg 2000)
  • 16 = GlendNH3 (Glendenning 1985, case 3)
  • 17 = Compstar (Tabulated EOS for 2010 CompStar school)
  • 18 = magnetized (tabulated) equation of state
  • 19 = relativistic ideal Fermi gas at zero temperature (class Eos_Fermi)
  • 100 = Multi-domain EOS (class MEos )
  • 110 = Multi-polytropic EOS (class Eos_multi_poly )
  • 120 = Fitted SLy4 (Shibata 2004)
  • 121 = Fitted FPS (Shibata 2004)
  • 122 = Fitted AkmalPR (Taniguchi 2005)

The second line in the file should contain a name given by the user to the EOS. The following lines should contain the EOS parameters (one parameter per line), in the same order than in the class declaration.

Definition at line 314 of file eos_from_file.C.

◆ get_gam()

double Lorene::Eos_poly::get_gam ( ) const

Returns the adiabatic index $\gamma$ (cf. Eq. (3))

Definition at line 256 of file eos_poly.C.

References gam.

◆ get_kap()

double Lorene::Eos_poly::get_kap ( ) const

Returns the pressure coefficient $\kappa$ (cf.

Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$.

Definition at line 260 of file eos_poly.C.

References kap.

◆ get_m_0()

double Lorene::Eos_poly::get_m_0 ( ) const

Return the individual particule mass $m_0$ (cf.

Eq. (1)) [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 264 of file eos_poly.C.

References m_0.

◆ get_mu_0()

double Lorene::Eos_poly::get_mu_0 ( ) const

Return the relativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 268 of file eos_poly.C.

References mu_0.

◆ get_name()

const char * Lorene::Eos::get_name ( ) const
inherited

Returns the EOS name.

Definition at line 169 of file eos.C.

References Lorene::Eos::name.

◆ identify()

int Lorene::Eos_poly::identify ( ) const
virtual

Returns a number to identify the sub-classe of Eos the object belongs to.

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 129 of file eos_from_file.C.

◆ nbar_ent() [1/2]

Cmp Lorene::Eos::nbar_ent ( const Cmp ent,
int  nzet,
int  l_min = 0,
const Param par = 0x0 
) const
inherited

Computes the baryon density field from the log-enthalpy field and extra parameters.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzetnumber of domains where the baryon density is to be computed.
l_minindex of the innermost domain is which the baryon density is to be computed [default value: 0]; the baryon density is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
parpossible extra parameters of the EOS
Returns
baryon density [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]

Definition at line 338 of file eos.C.

References Lorene::Cmp::get_mp().

◆ nbar_ent() [2/2]

Scalar Lorene::Eos::nbar_ent ( const Scalar ent,
int  nzet,
int  l_min = 0,
const Param par = 0x0 
) const
inherited

Computes the baryon density field from the log-enthalpy field and extra parameters.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzetnumber of domains where the baryon density is to be computed.
l_minindex of the innermost domain is which the baryon density is to be computed [default value: 0]; the baryon density is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
parpossible extra parameters of the EOS
Returns
baryon density [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]

Definition at line 348 of file eos.C.

References Lorene::Tensor::get_mp().

◆ nbar_ent_p()

double Lorene::Eos_poly::nbar_ent_p ( double  ent,
const Param par = 0x0 
) const
virtual

Computes the baryon density from the log-enthalpy.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by Eq. (4)
parpossible extra parameters of the EOS
Returns
baryon density n [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 368 of file eos_poly.C.

References ent_0, Lorene::exp(), gam1sgamkap, Lorene::pow(), rel_mu_0, and unsgam1.

◆ operator!=()

bool Lorene::Eos_poly::operator!= ( const Eos eos_i) const
virtual

Comparison operator (difference)

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 324 of file eos_poly.C.

References operator==().

◆ operator=()

void Lorene::Eos_poly::operator= ( const Eos_poly eosi)

Assignment to another Eos_poly.

Definition at line 224 of file eos_poly.C.

References gam, kap, m_0, mu_0, Lorene::Eos::name, set_auxiliary(), and Lorene::Eos::set_name().

◆ operator==()

bool Lorene::Eos_poly::operator== ( const Eos eos_i) const
virtual

Comparison operator (egality)

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 278 of file eos_poly.C.

References gam, identify(), Lorene::Eos::identify(), kap, m_0, and mu_0.

◆ operator>>()

ostream & Lorene::Eos_poly::operator>> ( ostream ost) const
protectedvirtual

Operator >>

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 347 of file eos_poly.C.

References gam, kap, m_0, and mu_0.

◆ press_ent() [1/2]

Cmp Lorene::Eos::press_ent ( const Cmp ent,
int  nzet,
int  l_min = 0,
const Param par = 0x0 
) const
inherited

Computes the pressure from the log-enthalpy and extra parameters.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzetnumber of domains where the pressure is to be computed.
l_minindex of the innermost domain is which the pressure is to be computed [default value: 0]; the pressure is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
parpossible extra parameters of the EOS
Returns
pressure [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 385 of file eos.C.

References Lorene::Cmp::get_mp().

◆ press_ent() [2/2]

Scalar Lorene::Eos::press_ent ( const Scalar ent,
int  nzet,
int  l_min = 0,
const Param par = 0x0 
) const
inherited

Computes the pressure from the log-enthalpy and extra parameters.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzetnumber of domains where the pressure is to be computed.
l_minindex of the innermost domain is which the pressure is to be computed [default value: 0]; the pressure is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
parpossible extra parameters of the EOS
Returns
pressure [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 395 of file eos.C.

References Lorene::Tensor::get_mp().

◆ press_ent_p()

double Lorene::Eos_poly::press_ent_p ( double  ent,
const Param par = 0x0 
) const
virtual

Computes the pressure from the log-enthalpy.

Parameters
ent[input, unit: $c^2$] log-enthalpy H defined by Eq. (4)
parpossible extra parameters of the EOS
Returns
pressure p [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 400 of file eos_poly.C.

References ent_0, Lorene::exp(), gam, gam1sgamkap, kap, Lorene::pow(), rel_mu_0, and unsgam1.

◆ sauve()

void Lorene::Eos_poly::sauve ( FILE fich) const
virtual

Save in a file.

Reimplemented from Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 335 of file eos_poly.C.

References Lorene::fwrite_be(), gam, kap, m_0, mu_0, and Lorene::Eos::sauve().

◆ set_auxiliary()

void Lorene::Eos_poly::set_auxiliary ( )
protected

Computes the auxiliary quantities gam1 , unsgam1 , gam1sgamkap from the values of gam and kap.

Definition at line 242 of file eos_poly.C.

References ent_0, gam, gam1, gam1sgamkap, kap, Lorene::log(), m_0, mu_0, rel_mu_0, and unsgam1.

◆ set_name()

void Lorene::Eos::set_name ( const char name_i)
inherited

Sets the EOS name.

Definition at line 163 of file eos.C.

References Lorene::Eos::name.

Friends And Related Symbol Documentation

◆ Eos::eos_from_file

Eos * Eos::eos_from_file ( FILE )
friend

The construction functions from a file.

Member Data Documentation

◆ ent_0

double Lorene::Eos_poly::ent_0
protected

Enthalpy at zero pressure ( $\ln (\mu_0/m_0)$)

Definition at line 790 of file eos.h.

◆ gam

double Lorene::Eos_poly::gam
protected

Adiabatic index $\gamma$ (cf. Eq. (3))

Definition at line 764 of file eos.h.

◆ gam1

double Lorene::Eos_poly::gam1
protected

$\gamma-1$

Definition at line 786 of file eos.h.

◆ gam1sgamkap

double Lorene::Eos_poly::gam1sgamkap
protected

$(\gamma-1) / (\gamma \kappa) m_0$

Definition at line 788 of file eos.h.

◆ kap

double Lorene::Eos_poly::kap
protected

Pressure coefficient $\kappa$ (cf.

Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$.

Definition at line 771 of file eos.h.

◆ m_0

double Lorene::Eos_poly::m_0
protected

Individual particule mass $m_0$ (cf.

Eq. (1)) [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 776 of file eos.h.

◆ mu_0

double Lorene::Eos_poly::mu_0
protected

Relativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

(standard value: 1)

Definition at line 782 of file eos.h.

◆ name

char Lorene::Eos::name[100]
protectedinherited

EOS name.

Definition at line 196 of file eos.h.

◆ rel_mu_0

double Lorene::Eos_poly::rel_mu_0
protected

$\mu_0/m_0$

Definition at line 789 of file eos.h.

◆ unsgam1

double Lorene::Eos_poly::unsgam1
protected

$1/(\gamma-1)$

Definition at line 787 of file eos.h.


The documentation for this class was generated from the following files: