30char et_rot_mag_mag_plus_C[] =
"$Header: /cvsroot/Lorene/C++/Source/Etoile/et_rot_mag_mag_plus.C,v 1.3 2014/10/13 08:52:58 j_novak Exp $" ;
98#include "et_rot_mag.h"
99#include "utilitaires.h"
101#include "proto_f77.h"
102#include "graphique.h"
118 Param& par_poisson_At,
119 Param& par_poisson_Avect){
120 double relax_mag = 1.0 ;
125 bool adapt(adapt_flag) ;
138 assert (mpr != 0x0) ;
139 for (
int j=0; j<nt; j++)
176 BLAH -= grad3 + npgrada ;
189 for (
int j=0; j<nt; j++)
190 for (
int l=0; l<
nzet; l++)
191 for (
int i=0; i<
mp.
get_mg()->get_nr(l); i++)
192 j_t.
set(l,0,j,i) = ( (*
mp.
r.
c)(l,0,j,i) > Rsurf(j) ?
193 0. : tmp(l,0,j,i) ) ;
202 if (maxA_phi.
set(0) == 0) {
204 cout <<
"Initializing j_phi" << endl;
208 for (
int i=0; i<nd - 4;i++){
209 aini = aini + fabs(an_j(i));
211 aini = aini + fabs (an_j(3)) + fabs (an_j(5));
214 for (
int i=0; i<nd;i++){
215 bini = bini + fabs(bn_j(i));
246 cout <<
"ERROR" << endl;
247 cout <<
"initial_j = " << initial_j << endl;
256 double maxA_phi_surf = 0.;
257 for (
int j = 0; j < nt ; j++ ) {
259 double maxA_phi_surf_tmp = fabs(
A_phi(
nzet,0,j,0));
260 maxA_phi_surf=
max(maxA_phi_surf, maxA_phi_surf_tmp);
264 Cmp A_phi_scaled2 = (
A_phi - maxA_phi_surf)/ maxA_phi.
set(0);
267 for (
int j=0; j<nt; j++) {
268 for (
int l=0; l<Z; l++) {
270 if (A_phi_scaled2(l,0,j,i) < 0.) {
271 A_phi_scaled2.
set(l,0,j,i) = 0 ;
279 Cmp j_phi_ff = g_j (A_phi_scaled2, bn_j)/maxA_phi.
set(0);
282 j_phi_ff.div_rsint();
283 j_phi_ff.div_rsint();
287 + (
ener() +
press())*f_j(A_phi_scaled, an_j)/maxA_phi.
set(0)/g_si
295 B_phi = N_j (A_phi_scaled2, bn_j);
319 d_grad4.div_rsint() ;
320 source_tAphi.
set(0)=0 ;
321 source_tAphi.
set(1)=0 ;
329 for (
int i=0; i<3; i++) {
330 WORK_VECT.
set(i) = 0 ;
334 WORK_SCAL.
set() = 0 ;
336 double lambda_mag = 0. ;
339 if (source_tAphi.
get_etat() != ETATZERO) {
341 for (
int i=0; i<3; i++) {
342 if(source_tAphi(i).dz_nonzero()) {
343 assert( source_tAphi(i).get_dzpuis() == 4 ) ;
346 (source_tAphi.
set(i)).set_dzpuis(4) ;
351 source_tAphi.
poisson_vect(lambda_mag, par_poisson_Avect, AVECT, WORK_VECT,
354 Cmp A_phi_n(AVECT(2));
363 source_A_1t.
poisson(par_poisson_At, A_1t) ;
383 for (
int p=0; p<
mp.
get_mg()->get_np(0); p++) {
386 for(
int k=0;k<L;k++){
387 for(
int l=0;l<2*L;l++){
389 if(l==0) leg.
set(k,l)=1. ;
390 if(l==1) leg.
set(k,l)=
cos((*theta)(
l_surf()(p,k),p,k,0)) ;
391 if(l>=2) leg.
set(k,l) = double(2*l-1)/double(l)
393 * leg(k,l-1)-double(l-1)/double(l)*leg(k,l-2) ;
397 for(
int k=0;k<L;k++){
404 for(
int l=0;l<L;l++) MAT.
set(l,k) = leg(k,2*l)/
pow(Rsurf(k),2*l+1);
409 int* IPIV=
new int[L] ;
417 F77_dgesv(&L, &un, MAT.
t, &L, IPIV, VEC.
t, &L, &INFO) ;
421 for(
int k=0;k<L;k++) {VEC2.
set(k)=1. ; }
423 F77_dgesv(&L, &un, MAT_SAVE.
t, &L, IPIV, VEC2.
t, &L, &INFO) ;
427 for(
int nz=0;nz < Z; nz++){
428 for(
int i=0;i<
mp.
get_mg()->get_nr(nz);i++){
429 for(
int k=0;k<L;k++){
430 psi.
set(nz,p,k,i) = 0. ;
431 psi2.
set(nz,p,k,i) = 0. ;
432 for(
int l=0;l<L;l++){
433 psi.
set(nz,p,k,i) += VEC(l)*leg(k,2*l) /
434 pow((*
mp.
r.
c)(nz,p,k,i),2*l+1);
435 psi2.
set(nz,p,k,i) += VEC2(l)*leg(k,2*l)/
436 pow((*
mp.
r.
c)(nz, p, k,i),2*l+1);
452 Cmp A_t_ext(A_1t + psi) ;
459 for (
int j=0; j<nt; j++)
460 for (
int l=0; l<Z; l++)
461 for (
int i=0; i<
mp.
get_mg()->get_nr(l); i++)
462 A_0t.
set(l,0,j,i) = ( (*
mp.
r.
c)(l,0,j,i) > Rsurf(j) ?
463 A_1t(l,0,j,i) + psi(l,0,j,i) : tmp(l,0,j,i) ) ;
469 double Q_0 = -4*M_PI*(*asymp[1])(Z-1,0,0,0) ;
477 double Q_2 = -4*M_PI*(*asymp[1])(Z-1,0,0,0) ;
485 double C = (
Q-Q_0)/Q_2 ;
495 Cmp A_t_ext(A_0t + C*psi2) ;
502 for (
int j=0; j<nt; j++)
503 for (
int l=0; l<Z; l++)
504 for (
int i=0; i<
mp.
get_mg()->get_nr(l); i++)
505 A_t_n.
set(l,0,j,i) = ( (*
mp.
r.
c)(l,0,j,i) > Rsurf(j) ?
506 A_0t(l,0,j,i) + C*psi2(l,0,j,i) :
507 A_0t(l,0,j,i) + C ) ;
517 A_t = relax_mag*A_t_n + (1.-relax_mag)*
A_t ;
518 A_phi = relax_mag*A_phi_n + (1. - relax_mag)*
A_phi ;
522 cout <<
"not implemented" << endl;
Component of a tensorial field *** DEPRECATED : use class Scalar instead ***.
void mult_rsint()
Multiplication by .
void allocate_all()
Sets the logical state to ETATQCQ (ordinary state) and performs the memory allocation of all the elem...
void div_r()
Division by r everywhere.
void dec_dzpuis()
Decreases by 1 the value of dzpuis and changes accordingly the values of the Cmp in the external comp...
Valeur va
The numerical value of the Cmp
void std_base_scal()
Sets the spectral bases of the Valeur va to the standard ones for a scalar.
void annule(int l)
Sets the Cmp to zero in a given domain.
const Cmp & laplacien(int zec_mult_r=4) const
Returns the Laplacian of *this.
int get_dzpuis() const
Returns dzpuis.
void mult_r()
Multiplication by r everywhere.
void inc2_dzpuis()
Increases by 2 the value of dzpuis and changes accordingly the values of the Cmp in the external comp...
Tbl & set(int l)
Read/write of the value in a given domain.
void set_dzpuis(int)
Set a value to dzpuis.
const Cmp & srdsdt() const
Returns of *this .
Valeur ** asymptot(int n, const int flag=0) const
Asymptotic expansion at r = infinity.
void mult_cost()
Multiplication by \f\cos\theta\f$.
Cmp poisson() const
Solves the scalar Poisson equation with *this as a source.
const Cmp & dsdr() const
Returns of *this .
void fait() const
Computes, at each point of the grid, the value of the coordinate or mapping derivative represented by...
Mtbl * c
The coordinate values at each grid point.
Cmp j_phi
-component of the current 4-vector
Cmp A_phi
-component of the electromagnetic potential 1-form divided by .
Cmp A_t
t-component of the elecctromagnetic potential 1-form, divided by .
bool is_conduct() const
Tells if the star is made of conducting or isolating material.
Cmp j_t
t-component of the current 4-vector
virtual void magnet_comput_plus(const int adapt_flag, const int initial_j, const Tbl an_j, Cmp(*f_j)(const Cmp &x, const Tbl), const Tbl bn_j, Cmp(*g_j)(const Cmp &x, const Tbl), Cmp(*N_j)(const Cmp &x, const Tbl), Param &par_poisson_At, Param &par_poisson_Avect)
Computes the electromagnetic quantities solving the Maxwell equations (6) and (7) of [Bocquet,...
double Q
In the case of a perfect conductor, the requated baryonic charge.
Cmp B_phi
-component of the magnetic field
double omega
Rotation angular velocity ([f_unit] )
Tenseur & logn
Metric potential = logn_auto.
virtual const Itbl & l_surf() const
Description of the stellar surface: returns a 2-D Itbl containing the values of the domain index l on...
Tenseur nphi
Metric coefficient .
Tenseur bbb
Metric factor B.
Tenseur b_car
Square of the metric factor B.
Tenseur tnphi
Component of the shift vector.
int nzet
Number of domains of *mp occupied by the star.
Tenseur nnn
Total lapse function.
Map & mp
Mapping associated with the star.
Tenseur ener
Total energy density in the fluid frame.
Tenseur press
Fluid pressure.
const Tbl & xi_surf() const
Description of the stellar surface: returns a 2-D Tbl containing the values of the radial coordinat...
Tenseur a_car
Total conformal factor .
Base class for pure radial mappings.
virtual double val_r_jk(int l, double xi, int j, int k) const =0
Returns the value of the radial coordinate r for a given and a given collocation point in in a give...
const Base_vect_cart & get_bvect_cart() const
Returns the Cartesian basis associated with the coordinates (x,y,z) of the mapping,...
Coord r
r coordinate centered on the grid
Coord tet
coordinate centered on the grid
const Base_vect_spher & get_bvect_spher() const
Returns the orthonormal vectorial basis associated with the coordinates of the mapping.
const Mg3d * get_mg() const
Gives the Mg3d on which the mapping is defined.
int get_nt(int l) const
Returns the number of points in the co-latitude direction ( ) in domain no. l.
int get_nzone() const
Returns the number of domains.
int get_nr(int l) const
Returns the number of points in the radial direction ( ) in domain no. l.
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
double & set(int i)
Read/write of a particular element (index i) (1D case)
double * t
The array of double.
int get_dim(int i) const
Gives the i-th dimension (ie dim.dim[i])
Tensor handling *** DEPRECATED : use class Tensor instead ***.
Cmp & set()
Read/write for a scalar (see also operator=(const Cmp&) ).
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
void set_std_base()
Set the standard spectal basis of decomposition for each component.
const Tenseur & gradient_spher() const
Returns the gradient of *this (Spherical coordinates) (scalar field only).
void change_triad(const Base_vect &new_triad)
Sets a new vectorial basis (triad) of decomposition and modifies the components accordingly.
void poisson_vect(double lambda, Param &par, Tenseur &shift, Tenseur &vect, Tenseur &scal) const
Solves the vectorial Poisson equation : .
int get_etat() const
Returns the logical state.
Values and coefficients of a (real-value) function.
const Valeur & mult_ct() const
Returns applied to *this.
double val_point_jk(int l, double x, int j, int k) const
Computes the value of the field represented by *this at an arbitrary point in , but collocation point...
const Valeur & ssint() const
Returns of *this.
Tbl max(const Cmp &)
Maximum values of a Cmp in each domain.
Cmp pow(const Cmp &, int)
Power .
Cmp cos(const Cmp &)
Cosine.
Cmp abs(const Cmp &)
Absolute value.
Cmp log(const Cmp &)
Neperian logarithm.
Tenseur flat_scalar_prod_desal(const Tenseur &t1, const Tenseur &t2)
Same as flat_scalar_prod but with desaliasing.
Standard units of space, time and mass.