28char scalar_sol_div_C[] =
"$Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_sol_div.C,v 1.5 2014/10/13 08:53:47 j_novak Exp $" ;
64void _sx_r_chebp(Tbl* ,
int& ) ;
65void _sx_r_chebi(Tbl* ,
int& ) ;
76 if (
etat == ETATZERO )
81 const Mg3d* mg =
mp->get_mg() ;
83 result.set_spectral_va().set_etat_cf_qcq() ;
96 for (
int lz = 0;
lz<nz;
lz++)
99 int nr, base_r,l_quant,
m_quant;
123 double alpha =
mpaff->get_alpha()[
lz] ;
128 vect1.annule_hard() ;
129 vect2.annule_hard() ;
139 for (
int i=0;
i<
nr0;
i++) {
140 vect1.annule_hard() ;
141 vect2.annule_hard() ;
150 for (
int k=0 ;
k<np+1 ;
k++)
151 for (
int j=0 ;
j<nt ;
j++) {
160 for (
int i=0 ;
i<
nr0 ;
i++)
167 for (
int i=0 ;
i<
nr0 ;
i++) {
176 for (
int i=
nr0;
i<nr;
i++)
189 int nz0 = (
ced ? nz - 1 : nz) ;
192 alpha =
mpaff->get_alpha()[
lz] ;
194 double ech = beta / alpha ;
203 for (
int k=0 ;
k<np+1 ;
k++)
204 for (
int j=0 ;
j<nt ;
j++) {
214 for (
int i=0 ;
i<nr ;
i++)
216 for (
int i=0;
i<nr;
i++)
so->set(
i) = beta*
tmp(
i) ;
218 for (
int i=0;
i<nr;
i++)
so->set(
i) += alpha*
tmp(
i) ;
223 for (
int i=0 ;
i<nr ;
i++) {
238 nr =
source.get_mg()->get_nr(nz-1) ;
239 alpha =
mpaff->get_alpha()[nz-1] ;
240 beta =
mpaff->get_beta()[nz-1] ;
264 for (
int k=0 ;
k<np+1 ;
k++)
265 for (
int j=0 ;
j<nt ;
j++) {
272 for (
int i=0 ;
i<
nr0 ;
i++)
278 for (
int i=0 ;
i<
nr0 ;
i++) {
283 for (
int i=
nr0;
i<nr;
i++)
305 for (
int k=0 ;
k<np+1 ;
k++)
306 for (
int j=0 ;
j<nt ;
j++) {
315 for (
int i=0;
i<nr;
i++) {
320 for (
int i=0;
i<nr;
i++)
Bases of the spectral expansions.
Class for the elementary differential operator (see the base class Diff ).
Class for the elementary differential operator Identity (see the base class Diff ).
Class for the elementary differential operator division by (see the base class Diff ).
virtual const Matrice & get_matrice() const
Returns the matrix associated with the operator.
Class for the elementary differential operator (see the base class Diff ).
Time evolution with partial storage (*** under development ***).
int get_np(int l) const
Returns the number of points in the azimuthal direction ( ) in domain no. l.
int get_nt(int l) const
Returns the number of points in the co-latitude direction ( ) in domain no. l.
int get_nzone() const
Returns the number of domains.
int get_nr(int l) const
Returns the number of points in the radial direction ( ) in domain no. l.
int get_type_r(int l) const
Returns the type of sampling in the radial direction in domain no.
Coefficients storage for the multi-domain spectral method.
Tensor field of valence 0 (or component of a tensorial field).
Scalar sol_divergence(int n) const
Resolution of a divergence-like equation.
bool check_dzpuis(int dzi) const
Returns false if the last domain is compactified and *this is not zero in this domain and dzpuis is n...
int etat
The logical state ETATNONDEF (undefined), ETATZERO (null), ETATUN (one), or ETATQCQ (ordinary).
const Base_val & get_spectral_base() const
Returns the spectral bases of the Valeur va
friend Scalar pow(const Scalar &, int)
Power .
Valeur va
The numerical value of the Scalar
Values and coefficients of a (real-value) function.
#define R_CHEBU
base de Chebychev ordinaire (fin), dev. en 1/r
#define R_CHEBI
base de Cheb. impaire (rare) seulement
#define R_CHEB
base de Chebychev ordinaire (fin)
#define R_CHEBP
base de Cheb. paire (rare) seulement
const Map *const mp
Mapping on which the numerical values at the grid points are defined.