LORENE
FFTW3/circheb.C
1/*
2 * Copyright (c) 1999-2002 Eric Gourgoulhon
3 *
4 * This file is part of LORENE.
5 *
6 * LORENE is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * LORENE is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with LORENE; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 */
21
22
23char circheb_C[] = "$Header: /cvsroot/Lorene/C++/Source/Non_class_members/Coef/FFTW3/circheb.C,v 1.3 2014/10/13 08:53:19 j_novak Exp $" ;
24
25
26/*
27 * Transformation de Tchebyshev inverse (cas fin) sur le troisieme indice
28 * (indice correspondant a r) d'un tableau 3-D
29 * par le biais de la bibliotheque fftw
30 *
31 * Entree:
32 * -------
33 * int* deg : tableau du nombre effectif de degres de liberte dans chacune
34 * des 3 dimensions: le nombre de points de collocation
35 * en r est nr = deg[2] et doit etre de la forme
36 * nr = 2*p + 1
37 * int* dimc : tableau du nombre d'elements de cf dans chacune des trois
38 * dimensions.
39 * On doit avoir dimc[2] >= deg[2] = nr.
40 * NB: pour dimc[0] = 1 (un seul point en phi), la transformation
41 * est bien effectuee.
42 * pour dimc[0] > 1 (plus d'un point en phi), la
43 * transformation n'est effectuee que pour les indices (en phi)
44 * j != 1 et j != dimc[0]-1 (cf. commentaires sur borne_phi).
45 *
46 * double* cf : tableau des coefficients c_i de la fonction definis
47 * comme suit (a theta et phi fixes)
48 *
49 * f(x) = som_{i=0}^{nr-1} c_i T_i(x) ,
50 *
51 * ou T_i(x) designe le polynome de Tchebyshev de degre i.
52 * Les coefficients c_i (0 <= i <= nr-1) doivent etre stokes
53 * dans le tableau cf comme suit
54 * c_i = cf[ dimc[1]*dimc[2] * j + dimc[2] * k + i ]
55 * ou j et k sont les indices correspondant a phi et theta
56 * respectivement.
57 * L'espace memoire correspondant au pointeur cf doit etre
58 * dimc[0]*dimc[1]*dimc[2] et doit avoir ete alloue avant
59 * l'appel a la routine.
60 *
61 * int* dimf : tableau du nombre d'elements de ff dans chacune des trois
62 * dimensions.
63 * On doit avoir dimf[2] >= deg[2] = nr.
64 *
65 * Sortie:
66 * -------
67 * double* ff : tableau des valeurs de la fonction aux nr points de
68 * de collocation
69 *
70 * x_i = - cos( pi i/(nr-1) ) 0 <= i <= nr-1
71 *
72 * Les valeurs de la fonction sont stokees dans le
73 * tableau ff comme suit
74 * f( x_i ) = ff[ dimf[1]*dimf[2] * j + dimf[2] * k + i ]
75 * ou j et k sont les indices correspondant a phi et theta
76 * respectivement.
77 * L'espace memoire correspondant a ce pointeur doit etre
78 * dimf[0]*dimf[1]*dimf[2] et doit etre alloue avant l'appel a
79 * la routine.
80 *
81 * NB: Si le pointeur cf est egal a ff, la routine ne travaille que sur un
82 * seul tableau, qui constitue une entree/sortie.
83 *
84 */
85
86/*
87 * $Id: circheb.C,v 1.3 2014/10/13 08:53:19 j_novak Exp $
88 * $Log: circheb.C,v $
89 * Revision 1.3 2014/10/13 08:53:19 j_novak
90 * Lorene classes and functions now belong to the namespace Lorene.
91 *
92 * Revision 1.2 2014/10/06 15:18:49 j_novak
93 * Modified #include directives to use c++ syntax.
94 *
95 * Revision 1.1 2004/12/21 17:06:02 j_novak
96 * Added all files for using fftw3.
97 *
98 * Revision 1.5 2003/01/31 10:31:23 e_gourgoulhon
99 * Suppressed the directive #include <malloc.h> for malloc is defined
100 * in <stdlib.h>
101 *
102 * Revision 1.4 2002/10/16 14:36:53 j_novak
103 * Reorganization of #include instructions of standard C++, in order to
104 * use experimental version 3 of gcc.
105 *
106 * Revision 1.3 2002/09/09 14:04:22 e_gourgoulhon
107 *
108 * Correction of an error : fft991_ -> F77_fft991
109 *
110 * Revision 1.2 2002/09/09 13:00:40 e_gourgoulhon
111 * Modification of declaration of Fortran 77 prototypes for
112 * a better portability (in particular on IBM AIX systems):
113 * All Fortran subroutine names are now written F77_* and are
114 * defined in the new file C++/Include/proto_f77.h.
115 *
116 * Revision 1.1.1.1 2001/11/20 15:19:29 e_gourgoulhon
117 * LORENE
118 *
119 * Revision 2.0 1999/02/22 15:43:47 hyc
120 * *** empty log message ***
121 *
122 *
123 * $Header: /cvsroot/Lorene/C++/Source/Non_class_members/Coef/FFTW3/circheb.C,v 1.3 2014/10/13 08:53:19 j_novak Exp $
124 *
125 */
126
127// headers du C
128#include <cassert>
129#include <cstdlib>
130#include <fftw3.h>
131
132//Lorene prototypes
133#include "tbl.h"
134
135// Prototypage des sous-routines utilisees:
136namespace Lorene {
137fftw_plan back_fft(int, Tbl*&) ;
138double* cheb_ini(const int) ;
139//*****************************************************************************
140
141void circheb(const int* deg, const int* dimc, double* cf, const int* dimf,
142 double* ff)
143
144{
145int i, j, k ;
146
147// Dimensions des tableaux ff et cf :
148 int n1f = dimf[0] ;
149 int n2f = dimf[1] ;
150 int n3f = dimf[2] ;
151 int n1c = dimc[0] ;
152 int n2c = dimc[1] ;
153 int n3c = dimc[2] ;
154
155// Nombres de degres de liberte en r :
156 int nr = deg[2] ;
157
158// Tests de dimension:
159 if (nr > n3c) {
160 cout << "circheb: nr > n3c : nr = " << nr << " , n3c = "
161 << n3c << endl ;
162 abort () ;
163 exit(-1) ;
164 }
165 if (nr > n3f) {
166 cout << "circheb: nr > n3f : nr = " << nr << " , n3f = "
167 << n3f << endl ;
168 abort () ;
169 exit(-1) ;
170 }
171 if (n1c > n1f) {
172 cout << "circheb: n1c > n1f : n1c = " << n1c << " , n1f = "
173 << n1f << endl ;
174 abort () ;
175 exit(-1) ;
176 }
177 if (n2c > n2f) {
178 cout << "circheb: n2c > n2f : n2c = " << n2c << " , n2f = "
179 << n2f << endl ;
180 abort () ;
181 exit(-1) ;
182 }
183
184// Nombre de points pour la FFT inverse:
185 int nm1 = nr - 1;
186 int nm1s2 = nm1 / 2;
187
188// Recherche des tables pour la FFT inverse:
189 Tbl* pg = 0x0 ;
190 fftw_plan p = back_fft(nm1, pg) ;
191 Tbl& g = *pg ;
192
193// Recherche de la table des sin(psi) :
194 double* sinp = cheb_ini(nr);
195
196// boucle sur phi et theta
197
198 int n2n3f = n2f * n3f ;
199 int n2n3c = n2c * n3c ;
200
201/*
202 * Borne de la boucle sur phi:
203 * si n1c = 1, on effectue la boucle une fois seulement.
204 * si n1c > 1, on va jusqu'a j = n1c-2 en sautant j = 1 (les coefficients
205 * j=n1c-1 et j=0 ne sont pas consideres car nuls).
206 */
207 int borne_phi = ( n1c > 1 ) ? n1c-1 : 1 ;
208
209 for (j=0; j< borne_phi; j++) {
210
211 if (j==1) continue ; // on ne traite pas le terme en sin(0 phi)
212
213 for (k=0; k<n2c; k++) {
214
215 int i0 = n2n3c * j + n3c * k ; // indice de depart
216 double* cf0 = cf + i0 ; // tableau des donnees a transformer
217
218 i0 = n2n3f * j + n3f * k ; // indice de depart
219 double* ff0 = ff + i0 ; // tableau resultat
220
221/*
222 * NB: dans les commentaires qui suivent, psi designe la variable de [0, pi]
223 * reliee a x par x = - cos(psi) et F(psi) = f(x(psi)).
224 */
225
226// Calcul des coefficients de Fourier de la fonction
227// G(psi) = F+(psi) + F_(psi) sin(psi)
228// en fonction des coefficients de Tchebyshev de f:
229
230// Coefficients impairs de G
231//--------------------------
232
233 double c1 = cf0[1] ;
234
235 double som = 0;
236 ff0[1] = 0 ;
237 for ( i = 3; i < nr; i += 2 ) {
238 ff0[i] = cf0[i] - c1 ;
239 som += ff0[i] ;
240 }
241// Valeur en psi=0 de la partie antisymetrique de F, F_ :
242 double fmoins0 = - nm1s2 * c1 - som ;
243
244// Coef. impairs de G
245// NB: le facteur -0.25 est du a la normalisation de fftw; si fftw
246// donnait exactement les coef. des sinus, ce facteur serait +0.5.
247 for ( i = 3; i < nr; i += 2 ) {
248 g.set(nm1-i/2) = -0.25 * ( ff0[i] - ff0[i-2] ) ;
249 }
250
251// Coefficients pairs de G
252//------------------------
253// Ces coefficients sont egaux aux coefficients pairs du developpement de
254// f en polynomes de Tchebyshev.
255// NB: le facteur 0.5 est du a la normalisation de fftw; si fftw
256// donnait exactement les coef. des cosinus, ce facteur serait 1.
257
258 g.set(0) = cf0[0] ;
259 for (i=1; i<nm1s2; i ++ ) g.set(i) = 0.5 * cf0[2*i] ;
260 g.set(nm1s2) = cf0[nm1] ;
261
262// Transformation de Fourier inverse de G
263//---------------------------------------
264
265// FFT inverse
266 fftw_execute(p) ;
267
268// Valeurs de f deduites de celles de G
269//-------------------------------------
270
271 for ( i = 1; i < nm1s2 ; i++ ) {
272// ... indice du pt symetrique de psi par rapport a pi/2:
273 int isym = nm1 - i ;
274
275 double fp = .5 * ( g(i) + g(isym) ) ;
276 double fm = .5 * ( g(i) - g(isym) ) / sinp[i] ;
277
278 ff0[i] = fp + fm ;
279 ff0[isym] = fp - fm ;
280 }
281
282//... cas particuliers:
283 ff0[0] = g(0) + fmoins0 ;
284 ff0[nm1] = g(0) - fmoins0 ;
285 ff0[nm1s2] = g(nm1s2) ;
286
287 } // fin de la boucle sur theta
288 } // fin de la boucle sur phi
289}
290}
Lorene prototypes.
Definition app_hor.h:64