
OBus user manual

Jérémie Dimino

October 2, 2012

Abstract

D-Bus is an inter-processes communication protocol, or IPC for short, which has recently become
a standard on desktop oriented computers. It is now possible to talk to a lot application using D-Bus.
Moreover, it has many bindings/implementations for differents languages, which make it easily accessible.
OBus is a pure OCaml implementation of this protocol. What makes it different from other bindings/im-
plementations is that it is the only one using cooperative threads, which make it very simple to fully
exploit the asynchronous nature of D-Bus.

Note: it is advised to have some knowledge about the Lwt library before reading this manual.

Contents

1 Introduction 2
1.1 Overview of OBus . 2

2 Quick start 2

3 Basis 3
3.1 Connections and message buses . 3
3.2 Names . 4
3.3 Peers . 5
3.4 Objects and proxies . 5

4 Interaction between the OCaml world and the D-Bus world 6
4.1 Value mapping . 6
4.2 Errors mapping . 7

5 Using D-Bus services 7
5.1 Defining and using members . 7
5.2 Using tools to generate member definitions . 8
5.3 The OBus IDL language . 8
5.4 Name tracking . 9

6 Writing D-Bus services 9

7 One-to-one communication 10

8 Low-level use of D-Bus 10
8.1 Message filters . 10
8.2 Matching rules . 11
8.3 Defining new transports . 11
8.4 Defining new authentication mechanisms . 11

1

1 Introduction

1.1 Overview of OBus

1.1.1 Packages

The main packages of the OBus distribution is the OBus package, available via findlib. It contains the core
library. Moveover, OBus although provides packages for using a bunch of services of the Freedesktop project:

• obus.hal

• obus.notification

• obus.network-manager

• obus.policykit

• obus.udisks

• obus.upower

The use of these packages is straightforward and you need to know almost nothing about D-Bus or OBus.
For example, here is a program which open a popup notification:

open Notification

lwt () =

lwt id = Notification.notify ~summary:"Hello , world!" () in

return ()

Lastly OBus also provides a syntax extension (package obus.syntax) and a parser/printer for the IDL
language (package obus.idl).

1.1.2 Modules

OBus contains about 30 public modules. But do not be scared, most of the time you will need a very small
subset of them. These modules can be divided in two categories:

• the high-level API

• the low-level API

The low-level API is described in the section 8 of this manual. Note that you must have a good knowledge
of D-Bus to use it.

2 Quick start

In this section we explain how to quickly uses a D-Bus service using OBus.

• The first step is to obtain the introspection of the service. Some applications put theses file into
/usr/share/dbus-1/interfaces/. Otherwise you can get it by introspecting a running service, for
example:

$ obus -introspect -rec org.foo.bar / > foo.xml

will recursivelly introspect the service named org.foo.bar and put all the interfaces it implements
into foo.xml.

2

• The second step is to turn this file into an ocaml module which contains the description of the interface:

$ obus -gen -interface foo.xml

This will create the two files foo interfaces.ml and foo interfaces.ml.

• The final step is to turn the introspection file into a module for client-side use:

$ obus -gen -client foo.xml

This will produce the two files foo client.mli and foo client.ml. These two files can be edited,
and must be compiled with the lwt.syntax syntax extension.

After that, you can use Foo client module to access the service. Methods are mapped to functions
returning a lwt thread, signals are mapped to values of type OBus signal.t, and properties to values of
type OBus property.t. For example:

lwt () =

(* Connect to the session bus *)

lwt bus = OBus_bus.session () in

(* Create a proxy for a remote object *)

let proxy =

OBus_proxy.make

(OBus_peer.make bus "org.foo.bar")

["org"; "foo"; "bar"]

in

(* Call a method of the servivce *)

lwt result = Foo_client.Org_foo_bar.plop proxy ... in

(* Connect to a signal of the service *)

lwt () =

Lwt_react.E.notify (fun args -> ...)

=|< OBus_signal.connect (Foo_client.Org_foo_bar.plip proxy)

in

(* Read the contents of a property *)

lwt value = OBus_property.get (Foo_client.Org_foo_bar.plap proxy) in

...

3 Basis

In this section we will describe the minimum you must know to use OBus and interfaces for D-Bus services
written with OBus (like the ones provided in the OBus distribution: obus.notification, obus.upower, . . .).

3.1 Connections and message buses

A connection is a way of exchanging messages with another application speaking the D-Bus protocol. Most
of the time applications use connection to a special application called a message bus. A message bus act
as a router between several applications. On a desktop computer, there are two well-known instances: the
system message bus, and the user session message bus.

3

The first one is unique given a computer, and use security policies. The second is unique given a user
session. Its goal is to allow programs running in the session to talk to each other. OBus offers two function
for connecting to these message buses: OBus bus.session and OBus bus.system.

The session bus exists for the life-time of a user session. It exits when the session is closed, and any
programs using it should exit to, that is why OBus will exit the program when the connection to the session
bus is lost. However this behavior can be changed.

On the other hand the system bus can be restarted and program using it may try to reopen the connection.
System-wide application should handle the lost of the connection with the system bus.

Here is a small example which connects the session bus and prints its id:

open Lwt

lwt () =

(* Open a connection to the session message bus: *)

lwt bus = OBus_bus.session () in

(* Obtain its id: *)

lwt id = OBus_bus.get_id bus in

Lwt_io.printlf "The session bus id is %d." (OBus_uuid.to_string id)

3.2 Names

On a message bus, applications are referenced using names. There is a special category of names called
unique names. Each time an application connects to a bus, the bus give it a unique name. Unique name are
of the form :1.42 and cannot be changed. You can think of a unique name as an ip (such as 192.168.1.42).

Once connected, the unique name can is returned by the function OBus bus.name. Here is an example
of a program that prints its unique name:

open Lwt

lwt () =

(* Connects to the session bus: *)

lwt bus = OBus_bus.session () in

(* Read our unique name: *)

let name = OBus_bus.name bus in

Lwt_io.printlf "My unique connection name is %s." name

Unique name are usefull to uniquelly identify an application. However when you want to use a specific
service you may prefer using a well-known name such as org.freedesktop.Notifications. D-Bus allows
applications to own as many non-unique names as they want. You can think of a non-unique name as a dns
(such as “obus.forge.ocamlcore.org”).

Names can be requested or resolved using functions of the OBus bus module.
Here is an example:

open Lwt

lwt () =

lwt bus = OBus_bus.session () in

lwt () =

4

try_lwt

(* Try to resolve a name , this may fail if nobody owns it: *)

lwt owner = OBus_bus.get_name_owner bus "org.freedesktop.Notifications" in

Lwt_io.printlf "The owner is %d."

with OBus_bus.Name_has_no_owner msg ->

Lwt_io.printlf "Cannot resolve the name: %s." msg

in

(* Request a name: *)

OBus_bus.request_name bus "org.foo.bar" >>= function

| ‘Primary_owner ->

Lwt_io.printl "I own the name org.foo.bar!"

| ‘In_queue ->

Lwt_io.printl "Somebody else owns the name , i am in the queue."

| ‘Exists ->

Lwt_io.printl "Somebody else owns the name\

and does not want to loose it :(."

| ‘Already_owner

(* Cannot happen *)

Lwt_io.printl "I already owns this name."

Note that the OBus resolver module offer a better way of resolving names and monitoring name owners.
See section 5.4 for details.

3.3 Peers

A peer represent an application accessible through a D-Bus connection. To uniquelly identify a peer one
needs a connection and a name. The module OBus peer defines the type type of peers. There are two
requests that should be available on all peers: ping and get machine id. The first one just ping the peer
to see if it is alive, and the second returns the id of the machine the peer is currently running on.

3.4 Objects and proxies

In order to export services, D-Bus uses the concept of objects. An application may holds as many objects as
it wants. From the inside of the application, D-Bus objects are generally mapped to language native objects.
From the outside, objects are refered by object-paths, which looks like “/org/freedesktop/DBus”. You can
think of an object path as a pointer.

Objects may have members which are organized by interfaces (such as “org.freedesktop.DBus”). There
are three types of members:

• Methods

• Signals

• Properties

Methods act like functions. Clients can call methods of objects. Signals are spontaneous events that
may occurs at any time. Clients may register to these signals and then be notified when a signal arrive.
Properties act as variable, that can be read and/or written and sometimes monitored.

In order to uniquelly identify an object, we need its path and the peer that owns it. We call such a thing
a proxy. Proxies are defined in the module OBus proxy.

Here is a simple example on how to call a method on a proxy (we will explain latter what means the
C.seq... things):

5

open Lwt

open OBus_value

lwt () =

lwt bus = OBus_bus.session () in

(* Create the peer: *)

let peer = OBus_peer.make ~name:"org.freedesktop.DBus" ~connection:bus in

(* Create the proxy: *)

let proxy = OBus_proxy.make ~peer ~path:["org"; "freedesktop"; "DBus"] in

(* Call a method: *)

lwt id =

OBus_proxy.call proxy

~interface:"org.freedesktop.DBus"

~member:"GetId"

~i_args:C.seq0

~o_args :(C.seq1 C.basic_string)

()

in

Lwt_io.printlf "The bus id is: %s" id

4 Interaction between the OCaml world and the D-Bus world

4.1 Value mapping

D-Bus defines its own type system, which is used to serialize and deserialize messages. These types are
defined in the module OBus value.T and D-Bus values that are defined in the module OBus value.V. When
a message is received, its contents is represented as a value of type OBus value.V.sequence. Simillary, when
a message is sent, it is first converted into this format.

Manipulating boxed D-Bus values is not very handy. To make the interaction more transparent, OBus
defines a set of type combinators which allow to easilly switch between the D-Bus representation and the
ocaml representation. These convertors are defined in the module OBus value.C.

Here is an example of convertion (in the toplevel):

open OBus_value ;;

(* Make a D-Bus value from an ocaml one: *)

C.make_sequence (C.seq2 C.basic_int32 (C.array C.basic_string)) (42l, ["foo"; "bar"]);;

- : OBus_value.V.sequence =

[OBus_value.V.Basic (OBus_value.V.Int32 42l);

OBus_value.V.Array (OBus_value.T.Basic OBus_value.T.String ,

[OBus_value.V.Basic (OBus_value.V.String "foo");

OBus_value.V.Basic (OBus_value.V.String "bar")])]

(* Cast a D-Bus value to an ocaml one: *)

C.cast_sequence (C.seq1 C.basic_string) [V.basic(V.string "foobar")];;

- : string = "foobar"

6

(* Try to cast a D-Bus value to an ocaml one with the wrong type: *)

C.cast_sequence (C.seq1 C.basic_string) [V.basic(V.int32 0l)];;

Exception: OBus_value.C.Signature_mismatch.

4.2 Errors mapping

A call to a method may fails. In this case the service sends an error to the caller. D-Bus errors are mapped
to ocaml exceptions by the OBus error module. Basically, to defines a mapping between an exception and
a D-Bus error, here is what you have to do:

exception My_exn of string

let module M = OBus_error.Register(struct

exception E = My_exn

let name = "org.foo.bar.MyError"

end)

in ()

Or, if you use the syntax extension:

exception My_exn of string

with obus("org.foo.bar.MyError")

5 Using D-Bus services

In this section we describe the canonical way of using a D-Bus service with OBus.

5.1 Defining and using members

For all types of members (methods, signals and properties), D-Bus provides types to defines them and
functions to use these definitions. A member definition contains all the information about a member. For
example, here is the definition of a method call named “foo” on interface “org.foo.bar” which takes a string
and returns an 32-bits signed integer:

open OBus_member

let m_Foo = {

Method.interface = "org.foo.bar";

Method.member = "Foo";

Method.i_args = C.seq1 C.basic_string;

Method.o_args = C.seq1 C.basic_int32;

Method.annotations = [];

}

Once a member is defined, it can be used by the corresponding modules:

open Lwt

open OBus_members

(* Definition of a method *)

let m_GetId = {

Method.interface = "org.freedesktop.DBus";

Method.member = "GetId";

7

Method.i_args = C.seq0;

Method.o_args = C.seq1 C.basic_string;

Method.annotations = [];

}

(* Definition of a signal *)

let s_NameAcquired = {

Signal.interface = "org.freedesktop.DBus";

Signal.member = "NameAcquired";

Signal.args = C.seq1 (C.basic C.string);

Signal.annotations = [];

}

lwt () =

lwt bus = OBus_bus.session () in

let proxy =

OBus_proxy.make

(OBus_peer.make bus "org.freedesktop.DBus")

["org"; "freedesktop"; "DBus"]

in

(* Call the method we just defined: *)

lwt id = OBus_method.call m_GetId proxy () in

(* Register to the signal we just defined: *)

lwt event = OBus_signal.connect (OBus_signal.make s_NameAcquired proxy) in

Lwt_react.E.notify_p

(fun name ->

Lwt_io.printlf "name acquired: %s" name)

event;

Lwt_io.printlf "The message bus id is %s" id

Of course, writting definitions by hand may be very boring and error-prone. To avoid that OBus can
automatically convert introspection data into ocaml definitions.

5.2 Using tools to generate member definitions

There are two tools that are usefull for client-side code: obus-gen-interface and obus-gen-client. The
first one converts an xml introspection document (or an idl file) into an ocaml module containing all the
camlized definitions. This generated file is in fact also needed for server-side code. Note that fiels produced
by obus-gen-interface are not meant to be edited.

The second tool maps members into their ocaml counterpart: methods are mapped to functions, signals
to value of type OBus signal.t and properties to values of type OBus property.t. This generated file is
meant to be edited. For example, you can edit it in order to change the type of values taken/returned by
methods.

5.3 The OBus IDL language

Since editing XML is horrible, OBus provides a intermediate language to write D-Bus interfaces. Moreover
this language allow you to automatically converts integers to ocaml variants when needed.

8

The syntax is pretty simple. Here is an example, taken from OBus sources (file src/oBus interfaces.obus):

interface org.freedesktop.DBus {

(** A method definition: *)

method Hello : () -> (name : string)

(** Bitwise flags definition: *)

flag request_name_flags : uint32 {

0b001: allow_replacement

0b010: replace_existing

0b100: do_not_queue

}

(** Definition of an enumeration: *)

enum request_name_result : uint32 {

1: primary_owner

2: in_queue

3: exists

4: already_owner

}

(** A method that use newly defined types: *)

method RequestName :

(name : string , flags : request_name_flags)

->

(result : request_name_result)

}

All OBus tools that accept XML files also accept IDL files. Moreover it is possible to convert them by
using obus-idl2xml and obus-xml2idl.

5.4 Name tracking

The owner of a on-unique name may change over the time. OBus provides the OBus resolver module to
deals with it. The owner is mapped into a React’s signal holding the current owner of a name.

6 Writing D-Bus services

In this section we describe the canonical way of writing D-Bus services with OBus.
Local D-Bus objects are represented by values of type OBus object.t. The main operations on objects

are: adding an interface and exporting it on a connection. Exporting an object means making it available
to all peers reachable from the connection.

In order to add callable methods to objects you have to create interfaces descriptions (of type ’a

OBus object.interface) and add them to objects.
The canonical way to create interfaces with OBus is to first write its signature in an XML introspection

file or in an OBus idl file, then convert it into an ocaml definition module with obus-gen-interface and in
a template ocaml source file with obus-gen-server.

Here is a small example of interface:

interface org.Foo.Bar {

method GetApplicationName : () -> (name : string)

(** Returns the name of the application *)

}

9

It is converted with:

$ obus -gen -interface foobar.obus -o foobar_interfaces

file "foobar_interfaces.ml" written

file "foobar_interfaces.mli" written

$ obus -gen -server foobar.obus -o foobar

file "foobar.ml" written

Now all that you have to do is to edit the file generated by obus-gen-server and replace the “Not
implemented” errors by your code.

Once it is done, here is how to actually create the object, add the interface and export it:

lwt () =

lwt bus = OBus_bus.session () in

(* Request a name: *)

lwt _ = OBus_bus.request_name bus "org.Foo.Bar" in

(* Create the object: *)

let obj =

OBus_object.make

~interfaces :[Foobar.Org_Foo_Bar.interface]

["plip"]

in

(* Attach it some data: *)

OBus_object.attach obj ();

(* Export the object on the connection *)

OBus_object.export bus obj;

(* Wait forever *)

fst (wait ())

Note the you can attach custom data to the object with OBus object.attach.

7 One-to-one communication

Instead of connection to a message bus, you may want to directly connects to another application. This can
be done with OBus connection.of addresses.

If you want to allow other applications to connect to your application then you have to start a server.
Starting a server is very simple, all you have to do is to call OBus server.make with a callback that will
receive new connections.

8 Low-level use of D-Bus

This section describes the low-level part of OBus.

8.1 Message filters

Message filters are function that are applied to all incomming/outgoing messages. Filters are of type:

type filter = OBus_message.t -> OBus_message.t option

Each filter may use and/or modify the message. If None is returned the message is dropped.

10

8.2 Matching rules

When using a message bus, an application do not receive messages that are not destined to it. In order to
receive such messages, one need to add rules on the message bus. All messages matching a rule are sent to
the application which defined that rule.

There are two ways of adding matching rules: by using the module OBus bus, or by using OBus match.
The functions OBus bus.add match and OBus bus.remove match are directly mapped to the corresponding
methods of the message bus. The function OBus match.export is more clever:

• it exports only one time duplicated rules,

• it exports only the most general rules.

We say that a rule r1 is more general that a rule r2 if all messages matched by r2 are also matched by
r1. For example a rule that accept all messages with interface field equal to foo.bar is more general that a
rule that accept all messages with interface field equal to foo.bar and with member field equal to plop.

Note that you must be carefull if you use both modules that automatically manage rules (such as
OBus signal, OBus resolver or OBus property) and OBus bus.add match or OBus bus.remove match.

8.3 Defining new transports

A transport is a way of receiving and sending messages. The OBus transport allow to defines new transports.
If you want to create a new transport that use the same serialization format as default transport, then you
can use the OBus wire module.

By definning new transports, you can for example write an application that forward messages over the
network in a very few lines of code.

8.4 Defining new authentication mechanisms

When openning a connection, before we can send and receive message over it, D-Bus requires a authentication
procedure. OBus implements both client and server side authentication. The OBus auth allow to write new
client and server side authentication mechanisms.

11

	Introduction
	Overview of OBus

	Quick start
	Basis
	Connections and message buses
	Names
	Peers
	Objects and proxies

	Interaction between the OCaml world and the D-Bus world
	Value mapping
	Errors mapping

	Using D-Bus services
	Defining and using members
	Using tools to generate member definitions
	The OBus IDL language
	Name tracking

	Writing D-Bus services
	One-to-one communication
	Low-level use of D-Bus
	Message filters
	Matching rules
	Defining new transports
	Defining new authentication mechanisms

