
debian-binary
2.0

control.tar.xz
control.tar

./control

Package: ocrmypdf-doc
Source: ocrmypdf
Version: 6.1.2-1ubuntu1
Architecture: all
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Installed-Size: 507
Depends: libjs-sphinxdoc (>= 1.0), sphinx-rtd-theme-common
Built-Using: sphinx (= 1.6.7-1ubuntu1)
Section: doc
Priority: optional
Homepage: https://github.com/jbarlow83/OCRmyPDF
Description: add an OCR text layer to PDF files - documentation
 OCRmyPDF generates a searchable PDF/A file from a regular PDF
 containing only images, allowing it to be searched.
 .
 It uses the Tesseract OCR engine and so supports all the languages
 that Tesseract does.
 .
 This package includes OCRmyPDF's HTML documentation.
Original-Maintainer: Sean Whitton <spwhitton@spwhitton.name>

./md5sums

f81bcf8eeffe2a5a45a12b29719ca15b usr/share/doc-base/ocrmypdf
679264e2c4ea7107b8db1e86f2b32265 usr/share/doc/ocrmypdf-doc/NEWS.Debian.gz
6c26f9bf29934ceedda70f955084e750 usr/share/doc/ocrmypdf-doc/changelog.Debian.gz
f23f9c41aef2a0ecace04b51994b16b2 usr/share/doc/ocrmypdf-doc/copyright
271f686fd57bec69ce15dafb58d0b9f0 usr/share/doc/ocrmypdf/html/_images/bitmap_vs_svg.svg
c7d8c825340766645fb66ed31aab2fe1 usr/share/doc/ocrmypdf/html/_sources/advanced.rst.txt
76e7b8b500ac5f7c80658da03b703074 usr/share/doc/ocrmypdf/html/_sources/batch.rst.txt
aa6d4ee7471c4f010b80b8963c2054da usr/share/doc/ocrmypdf/html/_sources/cookbook.rst.txt
5ec71167e68a8e8fb3642a2eedb37988 usr/share/doc/ocrmypdf/html/_sources/errors.rst.txt
7b6cca92d4f2b25e84751cb718de6cd4 usr/share/doc/ocrmypdf/html/_sources/index.rst.txt
157ef2cfc2590b71fcef23d820cdca82 usr/share/doc/ocrmypdf/html/_sources/installation.rst.txt
2b484ac0effe5600228ea61bca9c0a74 usr/share/doc/ocrmypdf/html/_sources/introduction.rst.txt
d685c73d6ed3d26d6f5ea0ea392ef593 usr/share/doc/ocrmypdf/html/_sources/languages.rst.txt
5f8ce7d2e016c05724c941b91c3847eb usr/share/doc/ocrmypdf/html/_sources/release_notes.rst.txt
d67be884434fe70cfd13666e33f36726 usr/share/doc/ocrmypdf/html/_sources/security.rst.txt
ae6667053ad118020b8e68ccf307b519 usr/share/doc/ocrmypdf/html/_static/ajax-loader.gif
51f38af5a8e054ab5d6757bb2e8b6dcc usr/share/doc/ocrmypdf/html/_static/basic.css
ca43c60728796aa9160b7027b36e01a6 usr/share/doc/ocrmypdf/html/_static/comment-bright.png
83e7b2332e16cd321db50e26111b9cc8 usr/share/doc/ocrmypdf/html/_static/comment-close.png
7ed0c2b7fb278cc440c76768afe74662 usr/share/doc/ocrmypdf/html/_static/comment.png
b7476a4885b1414399e86b671db699a2 usr/share/doc/ocrmypdf/html/_static/down-pressed.png
24b6890f892eae0f6f71df68c0debbce usr/share/doc/ocrmypdf/html/_static/down.png
ba0c95766a77a6c598a7ca542f1db738 usr/share/doc/ocrmypdf/html/_static/file.png
36b1a4b05451c7acde7ced60b2f6bc21 usr/share/doc/ocrmypdf/html/_static/minus.png
0d7849fd4d4148b7f78cab60a087633a usr/share/doc/ocrmypdf/html/_static/plus.png
d333af43c416a54be77c5a73aca6437c usr/share/doc/ocrmypdf/html/_static/pygments.css
e4c170583ce14925793a311aa18476a8 usr/share/doc/ocrmypdf/html/_static/up-pressed.png
996d2339e806acfcace088fcc2f66228 usr/share/doc/ocrmypdf/html/_static/up.png
8298e792cfb899d3d8ad2dc000292ce7 usr/share/doc/ocrmypdf/html/advanced.html
35444489e846c61388ef96f08d61aca7 usr/share/doc/ocrmypdf/html/batch.html
97f1953fb10dbd030491e0759cae999e usr/share/doc/ocrmypdf/html/cookbook.html
15a685c962477a1c6821893e87f4f963 usr/share/doc/ocrmypdf/html/errors.html
740d78f53ea96930de05915a4a0fa078 usr/share/doc/ocrmypdf/html/genindex.html
1b0f05e2577242461af246a71c5a67e7 usr/share/doc/ocrmypdf/html/index.html
d6b5edccc4c0e33816488609ef9af1c9 usr/share/doc/ocrmypdf/html/installation.html
2038c8041dbd0c37c89c4a4579a62316 usr/share/doc/ocrmypdf/html/introduction.html
c346e4163d71013d946ddc5081ae5067 usr/share/doc/ocrmypdf/html/languages.html
3369b3c40f6fa4f219e2f1c7caa9c8d2 usr/share/doc/ocrmypdf/html/objects.inv
219e2290bf9d46ebf65a86ee2912aff6 usr/share/doc/ocrmypdf/html/release_notes.html
7132d407ad84aaf459c46a52260b6037 usr/share/doc/ocrmypdf/html/search.html
0d1ad36ad663d9bee0336348d1e87994 usr/share/doc/ocrmypdf/html/searchindex.js
47134f419bd4e54cc6271e3c6e2b9a0d usr/share/doc/ocrmypdf/html/security.html

data.tar.xz
data.tar

./usr/share/doc/ocrmypdf/html/_images/bitmap_vs_svg.svg

 Raster
 Vector

 .jpeg .gif .png
 .svg

./usr/share/doc/ocrmypdf/html/_sources/advanced.rst.txt

Advanced features
=================

Control of OCR options

OCRmyPDF provides many features to control the behavior of the OCR engine, Tesseract.

When OCR is skipped
"""""""""""""""""""

If a page in a PDF seems to have text, by default OCRmyPDF will exit without modifying the PDF. This is to ensure that PDFs that were previously OCRed or were "born digital" rather than scanned are not processed.

If ``--skip-text`` is issued, then no OCR will be performed on pages that already have text. The page will be copied to the output. This may be useful for documents that contain both "born digital" and scanned content, or to use OCRmyPDF to normalize and convert to PDF/A regardless of their contents.

If ``--force-ocr`` is issued, then all pages will be rasterized to images, discarding any hidden OCR text, and rasterizing any printable text. This is useful for redoing OCR, for fixing OCR text with a damaged character map (text is selectable but not searchable), and destroying redacted information.

Time and image size limits
""""""""""""""""""""""""""

By default, OCRmyPDF permits tesseract to run for only three minutes (180 seconds) per page. This is usually more than enough time to find all text on a reasonably sized page with modern hardware.

If a page is skipped, it will be inserted without OCR. If preprocessing was requested, the preprocessed image layer will be inserted.

If you want to adjust the amount of time spent on OCR, change ``--tesseract-timeout``. You can also automatically skip images that exceed a certain number of megapixels with ``--skip-big``. (A 300 DPI, 8.5×11" page is 8.4 megapixels.)

.. code-block:: bash

	# Allow 300 seconds for OCR; skip any page larger than 50 megapixels
	ocrmypdf --tesseract-timeout 300 --skip-big 50 bigfile.pdf output.pdf

Overriding default tesseract
""""""""""""""""""""""""""""

OCRmyPDF checks the system ``PATH`` for the ``tesseract`` binary.

.. envvar:: TESSDATA_PREFIX

	A Tesseract environment variable that overrides the path to Tesseract's data files.

For example, if you are testing tesseract 4.00 and don't wish to use an existing tesseract 3.04 installation, you can launch OCRmyPDF as follows:

.. code-block:: bash

	env \
		PATH=/home/user/src/tesseract4/api:$PATH \
		TESSDATA_PREFIX=/home/user/src/tesseract4 \
		ocrmypdf --tesseract-oem 2 input.pdf output.pdf

In this example ``TESSDATA_PREFIX`` directs Tesseract 4.0 to use LSTM training data. ``--tesseract-oem 1`` requests tesseract 4.0's new LSTM engine. (Tesseract 4.0 only.)

Overriding other support programs
"""""""""""""""""""""""""""""""""

In addition to tesseract, OCRmyPDF uses the following external binaries:

* ``gs`` (Ghostscript)
* ``unpaper``
* ``qpdf``

In each case OCRmyPDF will search the ``PATH`` environment variable to locate the binaries.

Changing tesseract configuration variables
""

You can override tesseract's default `control parameters <https://github.com/tesseract-ocr/tesseract/wiki/ControlParams>`_ with a configuration file.

As an example, this configuration will disable Tesseract's dictionary for current language. Normally the dictionary is helpful for interpolating words that are unclear, but it may interfere with OCR if the document does not contain many words (for example, a list of part numbers).

Create a file named "no-dict.cfg" with these contents:

::

	load_system_dawg 0
	language_model_penalty_non_dict_word 0
	language_model_penalty_non_freq_dict_word 0

then run ocrmypdf as follows (along with any other desired arguments):

.. code-block:: bash

	ocrmypdf --tesseract-config no-dict.cfg input.pdf output.pdf

.. warning::

	Some combinations of control parameters will break Tesseract or break assumptions that OCRmyPDF makes about Tesseract's output.

Changing the PDF renderer

rasterizing
 Converting a PDF to an image for display.

rendering
 Creating a new PDF from other data (such as an existing PDF).

OCRmyPDF has three PDF renderers: ``sandwich``, ``hocr``, ``tesseract``. The renderer may be selected using ``--pdf-renderer``. The default is ``auto`` which lets OCRmyPDF select the renderer to use. Currently, ``auto`` selects ``sandwich`` for Tesseract 3.05.01 or newer, or ``hocr`` for older versions of Tesseract.

The ``sandwich`` renderer
"""""""""""""""""""""""""

The ``sandwich`` renderer uses Tesseract's new text-only PDF feature, which produces a PDF page that lays out the OCR in invisible text. This page is then "sandwiched" onto the original PDF page, allowing lossless application of OCR even to PDF pages that contain other vector objects.

When image preprocessing features like ``--deskew`` are used, the original PDF will be rendered as a full page and the OCR layer will be placed on top.

This renderer requires Tesseract 3.05.01 or newer.

The ``hocr`` renderer
"""""""""""""""""""""

The ``hocr`` renderer works with older versions of Tesseract. The image layer is copied from the original PDF page if possible, avoiding potentially lossy transcoding or loss of other PDF information. If preprocessing is specified, then the image layer is a new PDF.

This works in all versions of Tesseract.

The ``tesseract`` renderer
""""""""""""""""""""""""""

The ``tesseract`` renderer creates a PDF with the image and text layers precomposed, meaning that it always transcodes, loses image quality and rasterizes any vector objects. It does a better job on non-Latin text and document structure than ``hocr``.

If a PDF created with this renderer using Tesseract versions older than 3.05.00 is then passed through Ghostscript's pdfwrite feature, the OCR text *may* be corrupted. The ``--output-type=pdfa`` argument will produce a warning in this situation.

This renderer is deprecated and will be removed whenever support for older versions of Tesseract is dropped.

./usr/share/doc/ocrmypdf/html/_sources/batch.rst.txt

Batch processing
================

This article provides information about running OCRmyPDF on multiple files or configuring it as a service triggered by file system events.

Batch jobs

Consider using the excellent `GNU Parallel <https://www.gnu.org/software/parallel/>`_ to apply OCRmyPDF to multiple files at once.

Both ``parallel`` and ``ocrmypdf`` will try to use all available processors. To maximize parallelism without overloading your system with processes, consider using ``parallel -j 2`` to limit parallel to running two jobs at once.

This command will run all ocrmypdf all files named ``*.pdf`` in the current directory and write them to the previous created ``output/`` folder. It will not search subdirectories.

The ``--tag`` argument tells parallel to print the filename as a prefix whenever a message is printed, so that one can trace any errors to the file that produced them.

.. code-block:: bash

	parallel --tag -j 2 ocrmypdf '{}' 'output/{}' ::: *.pdf

OCRmyPDF automaticaly repairs PDFs before parsing and gathering information from them. If you are already repairing PDFs with ``qpdf`` prior to attempting OCR, or you can use ``--skip-repair`` to skip this step. It may improve performance for large files, since repairing PDFs is single-threaded.

Directory trees

This will walk through a directory tree and run OCR on all files in place, printing the output in a way that makes

.. code-block:: bash

	find . --printf '%p' -name '*.pdf' -exec ocrmypdf '{}' '{}' \;

This only runs one ``ocrmypdf`` process at a time. This variation uses ``find`` to create a directory list and ``parallel`` to parallelize runs of ``ocrmypdf``, again updating files in place.

.. code-block:: bash

	find . -name '*.pdf' | parallel --tag -j 2 ocrmypdf '{}' '{}'

Sample script
"""""""""""""

This user contributed script also provides an example of batch processing.

.. code-block:: python

	#!/usr/bin/env python3
	# Walk through directory tree, replacing all files with OCR'd version
	# Contributed by DeliciousPickle@github

	import logging
	import os
	import subprocess
	import sys

	script_dir = os.path.dirname(os.path.realpath(__file__))
	print(script_dir + '/ocr-tree.py: Start')

	if len(sys.argv) > 1:
	 start_dir = sys.argv[1]
	else:
	 start_dir = '.'

	if len(sys.argv) > 2:
	 log_file = sys.argv[2]
	else:
	 log_file = script_dir + '/ocr-tree.log'

	logging.basicConfig(
			level=logging.INFO, format='%(asctime)s %(message)s',
			filename=log_file, filemode='w')

	for dir_name, subdirs, file_list in os.walk(start_dir):
	 logging.info('\n')
	 logging.info(dir_name + '\n')
	 os.chdir(dir_name)
	 for filename in file_list:
	 file_ext = os.path.splitext(filename)[1]
	 if file_ext == '.pdf':
	 full_path = dir_name + '/' + filename
	 print(full_path)
	 cmd = ["ocrmypdf", "--deskew", filename, filename]
	 logging.info(cmd)
	 proc = subprocess.Popen(
	 	cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
	 result = proc.stdout.read()
	 if proc.returncode == 6:
	 print("Skipped document because it already contained text")
	 elif proc.returncode == 0:
	 print("OCR complete")
	 logging.info(result)

API
"""

OCRmyPDF is currently supported as a command line interface. This means that even if you are using OCRmyPDF in a Python script, you should run it in a subprocess rather importing the ocrmypdf package.

The reason for this limitation is that the `ruffus <https://github.com/bunbun/ruffus/>`_ library that OCRmyPDF depends on is unfortunately not reentrant. OCRmyPDF works by defining each operation it does as a ruffus task that takes one or more files as input and generates one or more files as output. As such ruffus is fairly fundamental.

(If you find individual functions implemented in OCRmyPDF useful (such as ``ocrmypdf.pdfinfo``), you can use these if you wish to.)

Synology DiskStations
"""""""""""""""""""""

Synology DiskStations (Network Attached Storage devices) can run the Docker image of OCRmyPDF if the Synology `Docker package <https://www.synology.com/en-global/dsm/packages/Docker>`_ is installed. Attached is a script to address particular quirks of using OCRmyPDF on one of these devices.

This is only possible for x86-based Synology products. Some Synology products use ARM or Power processors and do not support Docker. Further adjustments might be needed to deal with the Synology's relatively limited CPU and RAM.

.. code-block:: python

	#!/bin/env python3
	# Contributed by github.com/Enantiomerie

	# script needs 2 arguments
	# 1. source dir with *.pdf - default is location of script
	# 2. move dir where *.pdf and *_OCR.pdf are moved to

	import logging
	import os
	import subprocess
	import sys
	import time
	import shutil

	script_dir = os.path.dirname(os.path.realpath(__file__))
	timestamp = time.strftime("%Y-%m-%d-%H%M_")
	log_file = script_dir + '/' + timestamp + 'ocrmypdf.log'
	logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s', filename=log_file, filemode='w')

	if len(sys.argv) > 1:
	 start_dir = sys.argv[1]
	else:
	 start_dir = '.'

	for dir_name, subdirs, file_list in os.walk(start_dir):
	 logging.info('\n')
	 logging.info(dir_name + '\n')
	 os.chdir(dir_name)
	 for filename in file_list:
	 file_ext = os.path.splitext(filename)[1]
	 if file_ext == '.pdf':
	 full_path = dir_name + '/' + filename
	 file_noext = os.path.splitext(filename)[0]
	 timestamp_OCR = time.strftime("%Y-%m-%d-%H%M_OCR_")
	 filename_OCR = timestamp_OCR + file_noext + '.pdf'
	 docker_mount = dir_name + ':/home/docker'
	# create string for pdf processing
	# diskstation needs a user:group docker:docker. find uid:gid of your diskstation docker:docker with id docker.
	# use this uid:gid in -u flag
	# rw rights for docker:docker at source dir are also necessary
	# the script is processed as root user via chron
	 cmd = ['docker', 'run', '--rm', '-v', docker_mount, '-u=1030:65538', 'jbarlow83/ocrmypdf', , '--deskew' , filename, filename_OCR]
	 logging.info(cmd)
	 proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
	 result = proc.stdout.read()
	 logging.info(result)
	 full_path_OCR = dir_name + '/' + filename_OCR
	 os.chmod(full_path_OCR, 0o666)
	 os.chmod(full_path, 0o666)
	 full_path_OCR_archive = sys.argv[2]
	 full_path_archive = sys.argv[2] + '/no_ocr'
	 shutil.move(full_path_OCR,full_path_OCR_archive)
	 shutil.move(full_path, full_path_archive)
	logging.info('Finished.\n')

Huge batch jobs
"""""""""""""""

If you have thousands of files to work with, contact the author. Consulting work related to OCRmyPDF helps fund this open source project and all inquiries are appreciated.

Hot (watched) folders

To set up a "hot folder" that will trigger OCR for every file inserted, use a program like Python `watchdog <https://pypi.python.org/pypi/watchdog>`_ (supports all major OS).

One could then configure a scanner to automatically place scanned files in a hot folder, so that they will be queued for OCR and copied to the destination.

.. code-block:: bash

	pip install watchdog

watchdog installs the command line program ``watchmedo``, which can be told to run ``ocrmypdf`` on any .pdf added to the current directory (``.``) and place the result in the previously created ``out/`` folder.

.. code-block:: bash

	cd hot-folder
	mkdir out
	watchmedo shell-command \
		--patterns="*.pdf" \
		--ignore-directories \
		--command='ocrmypdf "${watch_src_path}" "out/${watch_src_path}" ' \
		. # don't forget the final dot

For more complex behavior you can write a Python script around to use the watchdog API.

On file servers, you could configure watchmedo as a system service so it will run all the time.

Caveats
"""""""

* ``watchmedo`` may not work properly on a networked file system, depending on the capabilities of the file system client and server.
* This simple recipe does not filter for the type of file system event, so file copies, deletes and moves, and directory operations, will all be sent to ocrmypdf, producing errors in several cases. Disable your watched folder if you are doing anything other than copying files to it.
* If the source and destination directory are the same, watchmedo may create an infinite loop.
* On BSD, FreeBSD and older versions of macOS, you may need to increase the number of file descriptors to monitor more files, using ``ulimit -n 1024`` to watch a folder of up to 1024 files.

Alternatives
""""""""""""

* `Watchman <https://facebook.github.io/watchman/>`_ is a more powerful alternative to ``watchmedo``.

./usr/share/doc/ocrmypdf/html/_sources/cookbook.rst.txt

Cookbook
========

Basic examples

Help!
"""""

ocrmypdf has built-in help.

.. code-block:: bash

 ocrmypdf --help

Add an OCR layer and convert to PDF/A
"""""""""""""""""""""""""""""""""""""

.. code-block:: bash

 ocrmypdf input.pdf output.pdf

Add an OCR layer and output a standard PDF
""

.. code-block:: bash

 ocrmypdf --output-type pdf input.pdf output.pdf

Create a PDF/A with all color and grayscale images converted to JPEG
""

.. code-block:: bash

 ocrmypdf --output-type pdfa --pdfa-image-compression jpeg input.pdf output.pdf

Modify a file in place
""""""""""""""""""""""

The file will only be overwritten if OCRmyPDF is successful.

.. code-block:: bash

 ocrmypdf myfile.pdf myfile.pdf

Correct page rotation
"""""""""""""""""""""

OCR will attempt to automatic correct the rotation of each page. This can help fix a scanning job that contains a mix of landscape and portrait pages.

.. code-block:: bash

 ocrmypdf --rotate-pages myfile.pdf myfile.pdf

You can increase (decrease) the parameter ``--rotate-pages-threshold`` to make page rotation more (less) aggressive.

OCR languages other than English
""""""""""""""""""""""""""""""""

By default OCRmyPDF assumes the document is English.

.. code-block:: bash

 ocrmypdf -l fre LeParisien.pdf LeParisien.pdf
 ocrmypdf -l eng+fre Bilingual-English-French.pdf Bilingual-English-French.pdf

Language packs must be installed for all languages specified. See :ref:`Installing additional language packs <lang-packs>`.

Produce PDF and text file containing OCR text
"""

This produces a file named "output.pdf" and a companion text file named "output.txt".

.. code-block:: bash

 ocrmypdf --sidecar output.txt input.pdf output.pdf

OCR images, not PDFs

Use a program like `img2pdf <https://gitlab.mister-muffin.de/josch/img2pdf>`_ to convert your images to PDFs, and then pipe the results to run ocrmypdf:

.. code-block:: bash

 img2pdf my-images*.jpg | ocrmypdf - myfile.pdf

``img2pdf`` also has features to control the position of images on a page, if desired.

For convenience, OCRmyPDF can convert single images to PDFs on its own. If the resolution (dots per inch, DPI) of an image is not set or is incorrect, it can be overridden with ``--image-dpi``. (As 1 inch is 2.54 cm, 1 dpi = 0.39 dpcm).

.. code-block:: bash

 ocrmypdf --image-dpi 300 image.png myfile.pdf

If you have multiple images, you must use ``img2pdf`` to convert the images to PDF.

.. note::

 ImageMagick ``convert`` can also convert a group of images to PDF, but in the author's experience it takes a long time, transcodes unnecessarily and gives poor results.

You can also use Tesseract 3.04+ directly to convert single page images or multi-page TIFFs to PDF:

.. code-block:: bash

 tesseract my-image.jpg output-prefix pdf

Image processing

OCRmyPDF perform some image processing on each page of a PDF, if desired. The same processing is applied to each page. It is suggested that the user review files after image processing as these commands might remove desirable content, especially from poor quality scans.

* ``--rotate-pages`` attempts to determine the correct orientation for each page and rotates the page if necessary.

* ``--remove-background`` attempts to detect and remove a noisy background from grayscale or color images. Monochrome images are ignored. This should not be used on documents that contain color photos as it may remove them.

* ``--deskew`` will correct pages were scanned at a skewed angle by rotating them back into place. Skew determination and correction is performed using `Postl's variance of line sums <http://www.leptonica.com/skew-measurement.html>`_ algorithm as implemented in `Leptonica <http://www.leptonica.com/index.html>`_.

* ``--clean`` uses `unpaper <https://www.flameeyes.eu/projects/unpaper>`_ to clean up pages before OCR, but does not alter the final output. This makes it less likely that OCR will try to find text in background noise.

* ``--clean-final`` uses unpaper to clean up pages before OCR and inserts the page into the final output. You will want to review each page to ensure that unpaper did not remove something important.

.. note::

 In many cases image processing will rasterize PDF pages as images, potentially losing quality.

.. warning::

 ``--clean-final`` and ``-remove-background`` may leave undesirable visual artifacts in some images where their algorithms have shortcomings. Files should be visually reviewed after using these options.

OCR and correct document skew (crooked scan)
""

Deskew:

.. code-block:: bash

 ocrmypdf --deskew input.pdf output.pdf

Image processing commands can be combined. The order in which options are given does not matter. OCRmyPDF always applies the steps of the image processing pipeline in the same order (rotate, remove background, deskew, clean).

.. code-block:: bash

 ocrmypdf --deskew --clean --rotate-pages input.pdf output.pdf

Don't actually OCR my PDF
"""""""""""""""""""""""""

If you set ``--tesseract-timeout 0`` OCRmyPDF will apply its image processing without performing OCR, if all you want to is to apply image processing or PDF/A conversion.

.. code-block:: bash

 ocrmypdf --tesseract-timeout=0 --remove-background input.pdf output.pdf

Redo OCR
""""""""

To redo OCR on a file OCRed with other OCR software or a previous version of OCRmyPDF and/or Tesseract, you may use the ``--force-ocr`` argument. Normally, OCRmyPDF does not modify files that already appear to contain OCR text.

.. code-block:: bash

 ocrmypdf --force-ocr input.pdf output.pdf

Note that the method above will force rasterization of all pages, potentially reducing quality or losing vector content.

To ensure quality is preserved, one could extract all of the images and rebuild the PDF for a lossless transformation. This recipe does not work when PDFs contain multiple images per page, as many do in practice. It will also lose any page rotation information.

.. code-block:: bash

 pdfimages -all old-ocr.pdf prefix # extract all images
 img2pdf -o temp.pdf prefix* # construct new PDF from the images
 # review the new PDF to ensure it visually matches the old one
 ocrmypdf --output-type pdf temp.pdf new-ocr.pdf

``--output-type pdf`` is used here to avoid using Ghostscript which will also rasterize images.

Improving OCR quality

The `Image processing`_ features can improve OCR quality.

Rotating pages and deskewing helps to ensure that the page orientation is correct before OCR begins. Removing the background and/or cleaning the page can also improve results. The ``--oversample DPI`` argument can be specified to resample images to higher resolution before attempting OCR; this can improve results as well.

OCR quality will suffer if the resolution of input images is not correct (since the range of pixel sizes that will be checked for possible fonts will also be incorrect).

./usr/share/doc/ocrmypdf/html/_sources/errors.rst.txt

Common error messages
=====================

Page already has text

.. code::

	ERROR - 1: page already has text! – aborting (use --force-ocr to force OCR)

You ran ocrmypdf on a file that already contains printable text or a hidden OCR text layer (it can't quite tell the difference). You probably don't want to do this, because the file is already searchable.

As the error message suggests, your options are:

- ``ocrmypdf --force-ocr`` to :ref:`rasterize <raster-vector>` all vector content and run OCR on the images. This is useful if a previous OCR program failed, or if the document contains a text watermark.

- ``ocrmypdf --skip-text`` to skip OCR and other processing on any pages that contain text. Text pages will be copied into the output PDF without modification.

Input file 'filename' is not a valid PDF
--

OCRmyPDF passes files through qpdf, a program that fixes errors in PDFs, before it tries to work on them. In most cases this happens because the PDF is corrupt and
truncated (incomplete file copying) and not much can be done.

You can try rewriting the file with Ghostscript or pdftk:

- ``gs -o output.pdf -dSAFER -sDEVICE=pdfwrite input.pdf``

- ``pdftk input.pdf cat output output.pdf``

Sometimes Acrobat can repair PDFs with its `Preflight tool <https://helpx.adobe.com/acrobat/using/correcting-problem-areas-preflight-tool.html>`_.

./usr/share/doc/ocrmypdf/html/_sources/index.rst.txt

.. ocrmypdf documentation master file, created by
 sphinx-quickstart on Sun Sep 4 14:29:43 2016.
 You can adapt this file completely to your liking, but it should at least
 contain the root `toctree` directive.

OCRmyPDF documentation
======================

OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to
be searched.

PDF is the best format for storing and exchanging scanned documents. Unfortunately, PDFs can be difficult to modify. OCRmyPDF makes it easy to apply image processing and OCR to existing PDFs.

.. toctree::
 :maxdepth: 1

 introduction
 release_notes
 languages

.. toctree::
 :caption: Usage
 :maxdepth: 2

 cookbook
 advanced
 batch
 security
 errors

Indices and tables
==================

* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

./usr/share/doc/ocrmypdf/html/_sources/installation.rst.txt

Installation
============

OCRmyPDF requires Python 3.5 (or newer) and Tesseract 3.04 (or newer).

Installing on Debian and Ubuntu 16.10 or newer
--

Users of Debian 9 ("stretch") or later or Ubuntu 16.10 or later may simply

.. code-block:: bash

 apt-get install ocrmypdf

Installing on macOS

OCRmyPDF is now a standard `Homebrew <https://brew.sh>`_ formula. To install on macOS:

.. code-block:: bash

 brew install ocrmypdf

.. note::

 Users who previously installed OCRmyPDF on macOS using ``pip install ocrmypdf`` should remove the pip version (``pip3 uninstall ocrmypdf``) before switching to the Homebrew version.

.. note::

 Users who previously installed OCRmyPDF from the private tap should switch to the mainline version (``brew untap jbarlow83/ocrmypdf``) and install from there.

.. _Docker-install:

Installing the Docker image

For many users, installing the Docker image will be easier than installing all of OCRmyPDF's dependencies. For Windows, it is the only option.

If you have `Docker <https://docs.docker.com/>`_ installed on your system, you can install
a Docker image of the latest release.

Follow the Docker installation instructions for your platform. If you can run this command
successfully, your system is ready to download and execute the image:

.. code-block:: bash

 docker run hello-world

OCRmyPDF will use all available CPU cores. By default, the VirtualBox machine instance on Windows and macOS has only a single CPU core enabled. Use the VirtualBox Manager to determine the name of your Docker engine host, and then follow these optional steps to enable multiple CPUs:

.. code-block:: bash

 # Optional step for Mac OS X users
 docker-machine stop "yourVM"
 VBoxManage modifyvm "yourVM" --cpus 2 # or whatever number of core is desired
 docker-machine start "yourVM"
 eval $(docker-machine env "yourVM")

Assuming you have a Docker engine running, you can download one of the three available images:

+-----------------------------+---+---+
| Image name | Download command | Notes |
+-----------------------------+---+---+
| ocrmypdf | ``docker pull jbarlow83/ocrmypdf`` | Latest ocrmypdf with Tesseract 3.04. Includes English, French, German, Spanish. |
+-----------------------------+---+---+
| ocrmypdf-polyglot | ``docker pull jbarlow83/ocrmypdf-polyglot`` | As above, with all available language packs. |
+-----------------------------+---+---+
| ocrmypdf-tess4 | ``docker pull jbarlow83/ocrmypdf-tess4`` | Latest ocrmypdf with Tesseract 4.00.00alpha and English, French, German, |
| | | Spanish, Portuguese, Chinese Simplified, Arabic and Russian (the top 8). |
+-----------------------------+---+---+

For example:

.. code-block:: bash

 docker pull jbarlow83/ocrmypdf-tess4

Then tag it to give a more convenient name, just ocrmypdf:

.. code-block:: bash

 docker tag jbarlow83/ocrmypdf-tess4 ocrmypdf

.. _docker-polyglot:

The alternative "polyglot" image provides `all available language packs <https://github.com/tesseract-ocr/tesseract/blob/master/doc/tesseract.1.asc#languages>`_.

You can then run ocrmypdf using the command:

.. code-block:: bash

 docker run --rm ocrmypdf --help

To execute the OCRmyPDF on a local file, you must `provide a writable volume to the Docker image <https://docs.docker.com/userguide/dockervolumes/>`_, and both the input and output file must be inside the writable volume. This example command uses the current working directory as the writable volume:

.. code-block:: bash

 docker run --rm -v "$(pwd):/home/docker" <other docker arguments> ocrmypdf <your arguments to ocrmypdf>

In this worked example, the current working directory contains an input file called ``test.pdf`` and the output will go to ``output.pdf``:

.. code-block:: bash

 docker run --rm -v "$(pwd):/home/docker" ocrmypdf --skip-text test.pdf output.pdf

.. note:: The working directory should be a writable local volume or Docker may not have permission to access it.

Note that ``ocrmypdf`` has its own separate ``-v VERBOSITYLEVEL`` argument to control debug verbosity. All Docker arguments should before the ``ocrmypdf`` image name and all arguments to ``ocrmypdf`` should be listed after.

In some environments the permissions associated with Docker can be complex to configure. The process that executes Docker may end up not having the permissions to write the specified file system. In that case one can stream the file into and out of the Docker process and avoid all permission hassles, using ``-`` as the input and output filename:

.. code-block:: bash

 docker run --rm -i ocrmypdf <other arguments to ocrmypdf> - - <input.pdf >output.pdf

For convenience, a shell alias can hide the docker command:

.. code-block:: bash

 alias ocrmypdf='docker run --rm -v "$(pwd):/home/docker" ocrmypdf'
 ocrmypdf --version # runs docker version

Or in the wonderful `fish shell <https://fishshell.com/>`_:

.. code-block:: fish

 alias ocrmypdf 'docker run --rm -v (pwd):/home/docker ocrmypdf'
 funcsave ocrmypdf

.. note::

 The ocrmypdf Docker containers are designed to be used for a single OCR job. The ``docker run --rm`` argument tells Docker to delete temporary storage associated with container when it is done executing.

Manual installation on macOS

These instructions probably work on all macOS supported by Homebrew.

If it's not already present, `install Homebrew <http://brew.sh/>`_.

Update Homebrew:

.. code-block:: bash

 brew update

Install or upgrade the required Homebrew packages, if any are missing:

.. code-block:: bash

 brew install libpng openjpeg jbig2dec libtiff # image libraries
 brew install qpdf
 brew install ghostscript
 brew install python3
 brew install libxml2 libffi leptonica
 brew install unpaper # optional

Python 3.5 and 3.6 are supported.

Install the required Tesseract OCR engine with the language packs you plan to use:

.. code-block:: bash

 brew install tesseract # Option 1: for English, French, German, Spanish

.. _macos-all-languages:

.. code-block:: bash

 brew install tesseract --with-all-languages # Option 2: for all language packs

Update the homebrew pip and install Pillow:

.. code-block:: bash

 pip3 install --upgrade pip
 pip3 install --upgrade pillow

You can then install OCRmyPDF from PyPI, for the current user:

.. code-block:: bash

 pip3 install --user ocrmypdf

or system-wide:

.. code-block:: bash

 pip3 install ocrmypdf

The command line program should now be available:

.. code-block:: bash

 ocrmypdf --help

Installing on Ubuntu 16.04 LTS

No package is currently available for Ubuntu 16.04, but you can install the dependencies manually:

.. code-block:: bash

 sudo apt-get update
 sudo apt-get install \
 unpaper \
 ghostscript \
 tesseract-ocr \
 qpdf \
 python3-pip \
 python3-cffi

If you wish install OCRmyPDF for the current user:

.. code-block:: bash

 pip3 install --user ocrmypdf

Alternately, system-wide. Note that this may modify the system Python environment:

.. code-block:: bash

 sudo pip3 install ocrmypdf

If you wish to install OCRmyPDF to a virtual environment to isolate the system Python, you can
follow these steps.

.. code-block:: bash

 python3 -m venv venv-ocrmypdf
 source venv-ocrmypdf/bin/activate
 pip3 install ocrmypdf

Installing on Ubuntu 14.04 LTS

Installing on Ubuntu 14.04 LTS (trusty) is more difficult than some other options,
because it is older and does not provide ``pip``.

Update apt-get:

.. code-block:: bash

 sudo apt-get update

Install system dependencies:

.. code-block:: bash

 sudo apt-get install \
 software-properties-common python-software-properties \
 zlib1g-dev \
 libjpeg-dev \
 libffi-dev \
 qpdf

We will need backports of Ghostscript 9.16, libav-11 (for unpaper 6.1),
Tesseract 4.00 (alpha), and Python 3.6. This will replace Ghostscript and
Tesseract 3.x on your system. Python 3.6 will be installed alongside the system
Python 3.

If you prefer to not modify your system in this matter, consider using a Docker container.

.. code-block:: bash

 sudo add-apt-repository ppa:vshn/ghostscript -y
 sudo add-apt-repository ppa:heyarje/libav-11 -y
 sudo add-apt-repository ppa:alex-p/tesseract-ocr -y
 sudo add-apt-repository ppa:jonathonf/python-3.6 -y

 sudo apt-get update

 sudo apt-get install \
 python3.6 \
 ghostscript \
 tesseract-ocr \
 tesseract-ocr-eng \
 libavformat56 libavcodec56 libavutil54 \
 wget

Now we need to install ``pip`` and let it install ocrmypdf:

.. code-block:: bash

 wget -O - -o /dev/null https://bootstrap.pypa.io/get-pip.py | python3.6
 pip3.6 install ocrmypdf

The ``wget`` command will download a program and run it.

These installation instructions omit the optional dependency ``unpaper``, which is only available at version 0.4.2 in Ubuntu 14.04. The author could not find a backport of ``unpaper``, and created a .deb package to do the job of installing unpaper 6.1 (for x86 64-bit only):

.. code-block:: bash

 wget -q 'https://www.dropbox.com/s/vaq0kbwi6e6au80/unpaper_6.1-1.deb?raw=1' -O unpaper_6.1-1.deb
 sudo dpkg -i unpaper_6.1-1.deb

Installing on ArchLinux

The author is aware of an `ArchLinux package for ocrmypdf <https://aur.archlinux.org/packages/ocrmypdf/>`_. It seems like the following command might work.

.. code-block:: bash

 pacman -S ocrmypdf

Installing on Windows

Direct installation on Windows is not possible. Install the _`Docker` container as described above. Ensure that your command prompt can run the docker "hello world" container.

Running on Windows
~~~~~~~~~~~~~~~~~~

The command line syntax to run ocrmypdf from a command prompt will resemble:

.. code-block:: bat

    docker run -v /c/Users/sampleuser:/home/docker ocrmypdf --skip-text test.pdf output.pdf

where /c/Users/sampleuser is a Unix representation of the Windows path C:\\Users\\sampleuser, assuming a user named "sampleuser" is running ocrmypdf on a file in their home directory, and the files "test.pdf" and "output.pdf" are in the sampleuser folder. The Windows user must have read and write permissions.

`Bash on Ubuntu on Windows <https://github.com/Microsoft/BashOnWindows>`_ should also be a viable route for running the OCRmyPDF Docker container.

Installing HEAD revision from sources
-------------------------------------

If you have ``git`` and Python 3.5 or newer installed, you can install from source. When the ``pip`` installer runs,
it will alert you if dependencies are missing.

To install the HEAD revision from sources in the current Python 3 environment:

.. code-block:: bash

    pip3 install git+https://github.com/jbarlow83/OCRmyPDF.git

Or, to install in `development mode <https://pythonhosted.org/setuptools/setuptools.html#development-mode>`_,  allowing customization of OCRmyPDF, use the ``-e`` flag:

.. code-block:: bash

    pip3 install -e git+https://github.com/jbarlow83/OCRmyPDF.git

On certain Linux distributions such as Ubuntu, you may need to use 
run the install command as superuser:

.. code-block:: bash

    sudo pip3 install [-e] git+https://github.com/jbarlow83/OCRmyPDF.git

Note that this will alter your system's Python distribution. If you prefer 
to not install as superuser, you can install the package in a Python virtual environment:

.. code-block:: bash

    git clone -b master https://github.com/jbarlow83/OCRmyPDF.git
    python3 -m venv
    source venv/bin/activate
    cd OCRmyPDF
    pip3 install .

However, ``ocrmypdf`` will only be accessible on the system PATH after
you activate the virtual environment.

To run the program:

.. code-block:: bash

    ocrmypdf --help

If not yet installed, the script will notify you about dependencies that
need to be installed. The script requires specific versions of the
dependencies. Older version than the ones mentioned in the release notes
are likely not to be compatible to OCRmyPDF.










./usr/share/doc/ocrmypdf/html/_sources/introduction.rst.txt


Introduction
============

OCRmyPDF is a Python 3 package that adds OCR layers to PDFs.


About OCR
---------

`Optical character recognition <https://en.wikipedia.org/wiki/Optical_character_recognition>`_ is technology that converts images of typed or handwritten text, such as in a scanned document, to computer text that can be searched and copied.

OCRmyPDF uses `Tesseract <https://github.com/tesseract-ocr/tesseract>`_, the best available open source OCR engine, to perform OCR.

.. _raster-vector:

About PDFs
----------

PDFs are page description files that attempts to preserve a layout exactly. They  contain `vector graphics <http://vector-conversions.com/vectorizing/raster_vs_vector.html>`_ that can contain raster objects such as scanned images. Because PDFs can contain multiple pages (unlike many image formats) and can contain fonts and text, it is a good formats for exchanging scanned documents.

.. image:: bitmap_vs_svg.svg

A PDF page might contain multiple images, even if it only appears to have one image.  Some scanners or scanning software will segment pages into monochromatic text and color regions for example, to improve the compression ratio and appearance of the page.

Rasterizing a PDF is the process of generating an image suitable for display or analyzing with an OCR engine.  OCR engines like Tesseract work with images, not vector objects.


About PDF/A
-----------

`PDF/A <https://en.wikipedia.org/wiki/PDF/A>`_ is an ISO-standardized subset of the full PDF specification that is designed for archiving (the 'A' stands for Archive).  PDF/A differs from PDF primarily by omitting features that would make it difficult to read the file in the future, such as embedded Javascript, video, audio and references to external fonts.  All fonts and resources needed to interpret the PDF must be contained within it. Because PDF/A disables Javascript and other types of embedded content, it is probably more secure.

There are various conformance levels and versions, such as "PDF/A-2b".

Generally speaking, the best format for scanned documents is PDF/A. Some governments and jurisdictions, US Courts in particular, `mandate the use of PDF/A <https://pdfblog.com/2012/02/13/what-is-pdfa/>`_ for scanned documents.

Since most people who scan documents are interested in reading them indefinitely into the future, OCRmyPDF generates PDF/A-2b by default.

PDF/A has a few drawbacks.  Some PDF viewers include an alert that the file is a PDF/A, which may confuse some users.  It also tends to produce larger files than PDF, because it embeds certain resources even if they are commonly available. PDF/A files can be digitally signed, but may not be encrypted, to ensure they can be read in the future.  Fortunately, converting from PDF/A to a regular PDF is trivial, and any PDF viewer can view PDF/A.


What OCRmyPDF does
------------------

OCRmyPDF analyzes each page of a PDF to determine the colorspace and resolution (DPI) needed to capture all of the information on that page without losing content.  It uses `Ghostscript <http://ghostscript.com/>`_ to rasterize the page, and then performs on OCR on the rasterized image to create an OCR "layer". The layer is then grafted back onto the original PDF.

While one can use a program like Ghostscript or ImageMagick to get an image and put the image through Tesseract, that actually creates a new PDF and many details may be lost. OCRmyPDF can produce a minimally changed PDF as output.

OCRmyPDF also some image processing options like deskew which improve the appearance of files and quality of OCR. When these are used, the OCR layer is grafted onto the processed image instead.

By default, OCRmyPDF produces archival PDFs – PDF/A, which are a stricter subset of PDF features designed for long term archives. If regular PDFs are desired, this can be disabled with ``--output-type pdf``.


Why you shouldn't do this manually
----------------------------------

A PDF is similar to an HTML file, in that it contains document structure along with images.  Sometimes a PDF does nothing more than present a full page image, but often there is additional content that would be lost.

A manual process could work like either of these:

1. Rasterize each page as an image, OCR the images, and combine the output into a PDF. This preserves the layout of each page, but resamples all images (possibly losing quality, increasing file size, introducing compression artifacts, etc.).

2. Extract each image, OCR, and combine the output into a PDF. This loses the context in which images are used in the PDF, meaning that cropping, rotation and scaling of pages may be lost. Some scanned PDFs use multiple images segmented into black and white, grayscale and color regions, with stencil masks to prevent overlap, as this can enhance the appearance of a file while reducing file size. Clearly, reassembling these images will be easy. This also loses and text or vector art on any pages in a PDF with both scanned and pure digital content.

In the case of a PDF that is nothing other than a container of images (no rotation, scaling, cropping, one image per page), the second approach can be lossless.

OCRmyPDF uses several strategies depending on input options and the input PDF itself, but generally speaking it rasterizes a page for OCR and then grafts the OCR back onto the original. As such it can handle complex PDFs and still preserve their contents as much as possible.


Limitations
-----------

OCRmyPDF is limited by the Tesseract OCR engine.  As such it experiences these limitations, as do any other programs that rely on Tesseract:

* The OCR is not as accurate as commercial solutions such as Abbyy.
* It is not capable of recognizing handwriting.
* It may find gibberish and report this as OCR output.
* If a document contains languages outside of those given in the ``-l LANG`` arguments, results may be poor.
* It is not always good at analyzing the natural reading order of documents. For example, it may fail to recognize that a document contains two columns and join text across the columns.
* Poor quality scans may produce poor quality OCR. Garbage in, garbage out.
* PDFs that use transparent layers are not currently checked in the test suite, so they may not work correctly.
  
OCRmyPDF is also limited by the PDF specification:

* PDF encodes the position of text glyphs but does not encode document structure.  There is no markup that divides a document in sections, paragraphs, sentences, or even words (since blank spaces are not represented). As such all elements of document structure including the spaces between words must be derived heuristically.  Some PDF viewers do a better job of this than others.
* Because some popular open source PDF viewers have a particularly hard time with spaces betweem words, OCRmyPDF appends a space to each text element as a workaround. While this mixes document structure with graphical information that ideally should be left to the PDF viewer to interpret, it improves compatibility with some viewers and does not cause problems for better ones.

Ghostscript also imposes some limitations:

* PDFs containing JBIG2-encoded content will be converted to CCITT Group4 encoding, which has lower compression ratios, if Ghostscript PDF/A is enabled.
* PDFs containing JPEG 2000-encoded content will be converted to JPEG encoding, which may introduce compression artifacts, if Ghostscript PDF/A is enabled.
* Ghostscript may transcode grayscale and color images, either lossy to lossless or lossless to lossy, based on an internal algorithm. This behavior can be suppressed by setting ``--pdfa-image-compression`` to ``jpeg`` or ``lossless`` to set all images to one type or the other. Ghostscript has no option to maintain the input image's format.
  
OCRmyPDF is currently not designed to be used as a Python API; it is designed to be run as a command line tool. ``import ocrmypf`` currently attempts to process the command line on ``sys.argv`` at import time so it has side effects that will interfere with its use as a package. The API it presents should not be considered stable.


Similar programs
----------------

To the author's knowledge, OCRmyPDF is the most feature-rich and thoroughly tested command line OCR PDF conversion tool. If it does not meet your needs, contributions and suggestions are welcome. If not, consider one of these similar open source programs:

* pdf2pdfocr
* pdfsandwich
* pypdfocr
* pdfbeads

Web front-ends
--------------

* `Nextcloud OCR <https://github.com/janis91/ocr>`_ is a free software plugin for the Nextcloud private cloud software
* `OCRmyPDF-web <https://github.com/sseemayer/OCRmyPDF-web>`_, a micro web-frontend for OCRmyPDF (third-party, not actively maintained)

Bear in mind that OCRmyPDF is not designed to be secure against malware-bearing PDFs (see `Using OCRmyPDF online`_).











./usr/share/doc/ocrmypdf/html/_sources/languages.rst.txt


.. _lang-packs:

Installing additional language packs
====================================

OCRmyPDF uses Tesseract for OCR, and relies on its language packs for languages other than English. 

Tesseract supports `most languages <https://github.com/tesseract-ocr/tesseract/blob/master/doc/tesseract.1.asc#languages>`_.

You can often find packages that provide language packs:

.. code-block:: bash

   # Display a list of all Tesseract language packs
   apt-cache search tesseract-ocr

   # Debian/Ubuntu users
   apt-get install tesseract-ocr-chi-sim  # Example: Install Chinese Simplified language back
   
You can then pass the ``-l LANG`` argument to OCRmyPDF to give a hint as to what languages it should search for. Multiple
languages can be requested using either ``-l eng+fre`` (English and French) or ``-l eng -l fre``.

Known limitations
-----------------

As of v4.2, users of ocrmypdf working languages outside the Latin alphabet should use the following syntax:

.. code-block:: bash

	ocrmypdf -l eng+gre --output-type pdf --pdf-renderer tesseract

The reasons for this are:

* The latest version of Ghostscript (9.19 as of this writing) has unfixed bugs in Unicode handling that generate invalid character maps, so Ghostscript cannot be used for PDF/A conversion
* The default "hocr" PDF renderer does not handle Asian fonts properly










./usr/share/doc/ocrmypdf/html/_sources/release_notes.rst.txt


Release notes
=============

OCRmyPDF uses `semantic versioning <http://semver.org/>`_ for its command line interface.

The OCRmyPDF package itself does not contain a public API, although it is fairly stable and breaking changes are usually timed with a major release. A future release will clearly define the stable public API.

v6.1.2
------

-   Upgrade to PyMuPDF v1.12.5 which includes a more complete fix to #239.

-   Add ``defusedxml`` dependency.


v6.1.1
------

-   Fix text being reported as found on all pages if PyMuPDF is not installed.


v6.1.0
------

-   PyMuPDF is now an optional but recommended dependency, to alleviate installation difficulties on platforms that have less access to PyMuPDF than the author anticipated.  Install OCRmyPDF with ``pip install ocrmypdf[fitz]`` to use it to its full potential.

-   Fix ``FileExistsError`` that could occur if OCR timed out while it was generating the output file. (#218)

-   Fix table of contents/bookmarks all being redirected to page 1 when generating a PDF/A (with PyMuPDF).  (Without PyMuPDF the table of contents is removed in PDF/A mode.)

-   Fix "RuntimeError: invalid key in dict" when table of contents/bookmarks titles contained the character ``)``. (#239)

-   Added a new argument ``--skip-repair`` to skip the initial PDF repair step if the PDF is already well-formed (because another program repaired it).


v6.0.0
------

-   The software license has been changed to GPLv3. Test resource files and some individual sources may have other licenses.

-   OCRmyPDF now depends on `PyMuPDF <https://pymupdf.readthedocs.io/en/latest/installation/>`_. Including PyMuPDF is the primary reason for the change to GPLv3.

-   Other backward incompatible changes

    + The ``OCRMYPDF_TESSERACT``, ``OCRMYPDF_QPDF``, ``OCRMYPDF_GS`` and ``OCRMYPDF_UNPAPER`` environment variables are no longer used. Change ``PATH`` if you need to override the external programs OCRmyPDF uses.

    + The ``ocrmypdf`` package has been moved to ``src/ocrmypdf`` to avoid issues with accidental import.

    + The function ``ocrmypdf.exec.get_program`` was removed.

    + The deprecated module ``ocrmypdf.pageinfo`` was removed.

    + The ``--pdf-renderer tess4`` alias for ``sandwich`` was removed.

-   Fixed an issue where OCRmyPDF failed to detect existing text on pages, depending on how the text and fonts were encoded within the PDF. (#233, #232)

-   Fixed an issue that caused dramatic inflation of file sizes when ``--skip-text --output-type pdf`` was used. OCRmyPDF now removes duplicate resources such as fonts, images and other objects that it generates. (#237)

-   Improved performance of the initial page splitting step. Originally this step was not believed to be expensive and ran in a process. Large file testing revealed it to be a bottleneck, so it is now parallelized. On a 700 page file with quad core machine, this change saves about 2 minutes. (#234)

-   The test suite now includes a cache that can be used to speed up test runs across platforms. This also does not require computing checksums, so it's faster. (#217)


v5.7.0
------

-   Fixed an issue that caused poor CPU utilization on machines more than 4 cores when running Tesseract 4. (Related to issue #217.)

-   The 'hocr' renderer has been improved. The 'sandwich' and 'tesseract' renderers are still better for most use cases, but 'hocr' may be useful for people who work with the PDF.js renderer in English/ASCII languages. (#225)

    + It now formats text in a matter that is easier for certain PDF viewers to select and extract copy and paste text. This should help macOS Preview and PDF.js in particular.
    + The appearance of selected text and behavior of selecting text is improved.
    + The PDF content stream now uses relative moves, making it more compact and easier for viewers to determine when two words on the same line.
    + It can now deal with text on a skewed baseline.
    + Thanks to @cforcey for the pull request, @jbreiden for many helpful suggestions, @ctbarbour for another round of improvements, and @acaloiaro for an independent review.

v5.6.3
------

-   Suppress two debug messages that were too verbose


v5.6.2
------

-   Development branch accidentally tagged as release. Do not use.


v5.6.1
------

-   Fix issue #219: change how the final output file is created to avoid triggering permission errors when the output is a special file such as ``/dev/null``
-   Fix test suite failures due to a qpdf 8.0.0 regression and Python 3.5's handling of symlink
-   The "encrypted PDF" error message was different depending on the type of PDF encryption. Now a single clear message appears for all types of PDF encryption.
-   ocrmypdf is now in Homebrew. Homebrew users are advised to the version of ocrmypdf in the official homebrew-core formulas rather than the private tap.
-   Some linting


v5.6.0
------

-   Fix issue #216: preserve "text as curves" PDFs without rasterizing file
-   Related to the above, messages about rasterizing are more consistent
-   For consistency versions minor releases will now get the trailing .0 they always should have had.


v5.5
----

-   Add new argument ``--max-image-mpixels``. Pillow 5.0 now raises an exception when images may be decompression bombs. This argument can be used to override the limit Pillow sets.
-   Fix output page cropped when using the sandwich renderer and OCR is skipped on a rotated and image-processed page
-   A warning is now issued when old versions of Ghostscript are used in cases known to cause issues with non-Latin characters
-   Fix a few parameter validation checks for ``-output-type pdfa-1`` and ``pdfa-2`` 


v5.4.4
------

-   Fix issue #181: fix final merge failure for PDFs with more pages than the system file handle limit (``ulimit -n``)
-   Fix issue #200: an uncommon syntax for formatting decimal numbers in a PDF would cause qpdf to issue a warning, which ocrmypdf treated as an error. Now this the warning is relayed.
-   Fix an issue where intermediate PDFs would be created at version 1.3 instead of the version of the original file. It's possible but unlikely this had side effects.
-   A warning is now issued when older versions of qpdf are used since issues like #200 cause qpdf to infinite-loop
-   Address issue #140: if Tesseract outputs invalid UTF-8, escape it and print its message instead of aborting with a Unicode error 
-   Adding previously unlisted setup requirement, pytest-runner
-   Update documentation: fix an error in the example script for Synology with Docker images, improved security guidance, advised ``pip install --user``


v5.4.3
------

-   If a subprocess fails to report its version when queried, exit cleanly with an error instead of throwing an exception
-   Added test to confirm that the system locale is Unicode-aware and fail early if it's not
-   Clarified some copyright information
-   Updated pinned requirements.txt so the homebrew formula captures more recent versions


v5.4.2
------

-   Fixed a regression from v5.4.1 that caused sidecar files to be created as empty files


v5.4.1
------

-   Add workaround for Tesseract v4.00alpha crash when trying to obtain orientation and the latest language packs are installed


v5.4
----

-   Change wording of a deprecation warning to improve clarity
-   Added option to generate PDF/A-1b output if desired (``--output-type pdfa-1``); default remains PDF/A-2b generation
-   Update documentation


v5.3.3
------

-   Fixed missing error message that should occur when trying to force ``--pdf-renderer sandwich`` on old versions of Tesseract
-   Update copyright information in test files
-   Set system ``LANG`` to UTF-8 in Dockerfiles to avoid UTF-8 encoding errors


v5.3.2
------

-   Fixed a broken test case related to language packs


v5.3.1
------

-   Fixed wrong return code given for missing Tesseract language packs
-   Fixed "brew audit" crashing on Travis when trying to auto-brew


v5.3
----

-   Added ``--user-words`` and ``--user-patterns`` arguments which are forwarded to Tesseract OCR as words and regular expressions respective to use to guide OCR. Supplying a list of subject-domain words should assist Tesseract with resolving words. (#165)
-   Using a non Latin-1 language with the "hocr" renderer now warns about possible OCR quality and recommends workarounds (#176)
-   Output file path added to error message when that location is not writable (#175)
-   Otherwise valid PDFs with leading whitespace at the beginning of the file are now accepted


v5.2
----

-   When using Tesseract 3.05.01 or newer, OCRmyPDF will select the "sandwich" PDF renderer by default, unless another PDF renderer is specified with the ``--pdf-renderer`` argument. The previous behavior was to select ``--pdf-renderer=hocr``.
-   The "tesseract" PDF renderer is now deprecated, since it can cause problems with Ghostscript on Tesseract 3.05.00
-   The "tess4" PDF renderer has been renamed to "sandwich". "tess4" is now a deprecated alias for "sandwich".


v5.1
----

-   Files with pages larger than 200" (5080 mm) in either dimension are now supported with ``--output-type=pdf`` with the page size preserved (in the PDF specification this feature is called UserUnit scaling). Due to Ghostscript limitations this is not available in conjunction with PDF/A output.


v5.0.1
------

-   Fixed issue #169, exception due to failure to create sidecar text files on some versions of Tesseract 3.04, including the jbarlow83/ocrmypdf Docker image


v5.0
----

-   Backward incompatible changes

     + Support for Python 3.4 dropped. Python 3.5 is now required.
     + Support for Tesseract 3.02 and 3.03 dropped. Tesseract 3.04 or newer is required. Tesseract 4.00 (alpha) is supported.
     + The OCRmyPDF.sh script was removed.

-   Add a new feature, ``--sidecar``, which allows creating "sidecar" text files which contain the OCR results in plain text. These OCR text is more reliable than extracting text from PDFs. Closes #126.
-   New feature: ``--pdfa-image-compression``, which allows overriding Ghostscript's lossy-or-lossless image encoding heuristic and making all images JPEG encoded or lossless encoded as desired. Fixes #163.
-   Fixed issue #143, added ``--quiet`` to suppress "INFO" messages
-   Fixed issue #164, a typo
-   Removed the command line parameters ``-n`` and ``--just-print`` since they have not worked for some time (reported as Ubuntu bug `#1687308 <https://bugs.launchpad.net/ubuntu/+source/ocrmypdf/+bug/1687308>`_)


v4.5.6
------

-   Fixed issue #156, 'NoneType' object has no attribute 'getObject' on pages with no optional /Contents record.  This should resolve all issues related to pages with no /Contents record.
-   Fixed issue #158, ocrmypdf now stops and terminates if Ghostscript fails on an intermediate step, as it is not possible to proceed.
-   Fixed issue #160, exception thrown on certain invalid arguments instead of error message


v4.5.5
------

-   Automated update of macOS homebrew tap
-   Fixed issue #154, KeyError '/Contents' when searching for text on blank pages that have no /Contents record.  Note: incomplete fix for this issue.


v4.5.4
------

-   Fix ``--skip-big`` raising an exception if a page contains no images (#152) (thanks to @TomRaz)
-   Fix an issue where pages with no images might trigger "cannot write mode P as JPEG" (#151)


v4.5.3
------

-   Added a workaround for Ghostscript 9.21 and probably earlier versions would fail with the error message "VMerror -25", due to a Ghostscript bug in XMP metadata handling
-   High Unicode characters (U+10000 and up) are no longer accepted for setting metadata on the command line, as Ghostscript may not handle them correctly.
-   Fixed an issue where the ``tess4`` renderer would duplicate content onto output pages if tesseract failed or timed out
-   Fixed ``tess4`` renderer not recognized when lossless reconstruction is possible


v4.5.2
------

-   Fix issue #147. ``--pdf-renderer tess4 --clean`` will produce an oversized page containing the original image in the bottom left corner, due to loss DPI information.
-   Make "using Tesseract 4.0" warning less ominous
-   Set up machinery for homebrew OCRmyPDF tap


v4.5.1
------

-   Fix issue #137, proportions of images with a non-square pixel aspect ratio would be distorted in output for ``--force-ocr`` and some other combinations of flags


v4.5
----

-   Exotic PDFs containing "Form XObjects" are now supported (issue #134; PDF reference manual 8.10), and images they contain are taken into account when determining the resolution for rasterizing
-   The Tesseract 4 Docker image no longer includes all languages, because it took so long to build something would tend to fail
-   OCRmyPDF now warns about using ``--pdf-renderer tesseract`` with Tesseract 3.04 or lower due to issues with Ghostscript corrupting the OCR text in these cases


v4.4.2
------

-   The Docker images (ocrmypdf, ocrmypdf-polyglot, ocrmypdf-tess4) are now based on Ubuntu 16.10 instead of Debian stretch

    + This makes supporting the Tesseract 4 image easier
    + This could be a disruptive change for any Docker users who built customized these images with their own changes, and made those changes in a way that depends on Debian and not Ubuntu

-   OCRmyPDF now prevents running the Tesseract 4 renderer with Tesseract 3.04, which was permitted in v4.4 and v4.4.1 but will not work


v4.4.1
------

-   To prevent a `TIFF output error <https://github.com/python-pillow/Pillow/issues/2206>`_ caused by img2pdf >= 0.2.1 and Pillow <= 3.4.2, dependencies have been tightened
-   The Tesseract 4.00 simultaneous process limit was increased from 1 to 2, since it was observed that 1 lowers performance
-   Documentation improvements to describe the ``--tesseract-config`` feature 
-   Added test cases and fixed error handling for ``--tesseract-config``
-   Tweaks to setup.py to deal with issues in the v4.4 release

v4.4
----

-   Tesseract 4.00 is now supported on an experimental basis.

    +  A new rendering option ``--pdf-renderer tess4`` exploits Tesseract 4's new text-only output PDF mode. See the documentation on PDF Renderers for details.
    +  The ``--tesseract-oem`` argument allows control over the Tesseract 4 OCR engine mode (tesseract's ``--oem``). Use ``--tesseract-oem 2`` to enforce the new LSTM mode.
    +  Fixed poor performance with Tesseract 4.00 on Linux

-   Fixed an issue that caused corruption of output to stdout in some cases
-   Removed test for Pillow JPEG and PNG support, as the minimum supported version of Pillow now enforces this
-   OCRmyPDF now tests that the intended destination file is writable before proceeding
-   The test suite now requires ``pytest-helpers-namespace`` to run (but not install)
-   Significant code reorganization to make OCRmyPDF re-entrant and improve performance. All changes should be backward compatible for the v4.x series.

    + However, OCRmyPDF's dependency "ruffus" is not re-entrant, so no Python API is available. Scripts should continue to use the command line interface.


v4.3.5
------

-   Update documentation to confirm Python 3.6.0 compatibility. No code changes were needed, so many earlier versions are likely supported.


v4.3.4
------

-   Fixed "decimal.InvalidOperation: quantize result has too many digits" for high DPI images


v4.3.3
------

-   Fixed PDF/A creation with Ghostscript 9.20 properly
-   Fixed an exception on inline stencil masks with a missing optional parameter


v4.3.2
------

-   Fixed a PDF/A creation issue with Ghostscript 9.20 (note: this fix did not actually work)


v4.3.1
------

-   Fixed an issue where pages produced by the "hocr" renderer after a Tesseract timeout would be rotated incorrectly if the input page was rotated with a /Rotate marker
-   Fixed a file handle leak in LeptonicaErrorTrap that would cause a "too many open files" error for files around hundred pages of pages long when ``--deskew`` or ``--remove-background`` or other Leptonica based image processing features were in use, depending on the system value of ``ulimit -n``
-   Ability to specify multiple languages for multilingual documents is now advertised in documentation
-   Reduced the file sizes of some test resources
-   Cleaned up debug output
-   Tesseract caching in test cases is now more cautious about false cache hits and reproducing exact output, not that any problems were observed


v4.3
----

-   New feature ``--remove-background`` to detect and erase the background of color and grayscale images
-   Better documentation
-   Fixed an issue with PDFs that draw images when the raster stack depth is zero 
-   ocrmypdf can now redirect its output to stdout for use in a shell pipeline

    +  This does not improve performance since temporary files are still used for buffering
    +  Some output validation is disabled in this mode

v4.2.5
------

-   Fixed an issue (#100) with PDFs that omit the optional /BitsPerComponent parameter on images
-   Removed non-free file milk.pdf


v4.2.4
------

-   Fixed an error (#90) caused by PDFs that use stencil masks properly
-   Fixed handling of PDFs that try to draw images or stencil masks without properly setting up the graphics state (such images are now ignored for the purposes of calculating DPI)

v4.2.3
------

-   Fixed an issue with PDFs that store page rotation (/Rotate) in an indirect object
-   Integrated a few fixes to simplify downstream packaging (Debian)

    +  The test suite no longer assumes it is installed
    +  If running Linux, skip a test that passes Unicode on the command line

-   Added a test case to check explicit masks and stencil masks
-   Added a test case for indirect objects and linearized PDFs
-   Deprecated the OCRmyPDF.sh shell script


v4.2.2
------

-   Improvements to documentation


v4.2.1
------

-   Fixed an issue where PDF pages that contained stencil masks would report an incorrect DPI and cause Ghostscript to abort
-   Implemented stdin streaming


v4.2
----

-   ocrmypdf will now try to convert single image files to PDFs if they are provided as input (#15)

    +  This is a basic convenience feature. It only supports a single image and always makes the image fill the whole page.
    +  For better control over image to PDF conversion, use ``img2pdf`` (one of ocrmypdf's dependencies)

-   New argument ``--output-type {pdf|pdfa}`` allows disabling Ghostscript PDF/A generation

    +  ``pdfa`` is the default, consistent with past behavior
    +  ``pdf`` provides a workaround for users concerned about the increase in file size from Ghostscript forcing JBIG2 images to CCITT and transcoding JPEGs
    +  ``pdf`` preserves as much as it can about the original file, including problems that PDF/A conversion fixes

-   PDFs containing images with "non-square" pixel aspect ratios, such as 200x100 DPI, are now handled and converted properly (fixing a bug that caused to be cropped)
-   ``--force-ocr`` rasterizes pages even if they contain no images

    +  supports users who want to use OCRmyPDF to reconstruct text information in PDFs with damaged Unicode maps (copy and paste text does not match displayed text)
    +  supports reinterpreting PDFs where text was rendered as curves for printing, and text needs to be recovered
    +  fixes issue #82

-   Fixes an issue where, with certain settings, monochrome images in PDFs would be converted to 8-bit grayscale, increasing file size (#79)
-   Support for Ubuntu 12.04 LTS "precise" has been dropped in favor of (roughly) Ubuntu 14.04 LTS "trusty" 

    +  Some Ubuntu "PPAs" (backports) are needed to make it work

-   Support for some older dependencies dropped

    +  Ghostscript 9.15 or later is now required (available in Ubuntu trusty with backports)
    +  Tesseract 3.03 or later is now required (available in Ubuntu trusty)

-   Ghostscript now runs in "safer" mode where possible

v4.1.4
------

-   Bug fix: monochrome images with an ICC profile attached were incorrectly converted to full color images if lossless reconstruction was not possible due to other settings; consequence was increased file size for these images


v4.1.3
------

-   More helpful error message for PDFs with version 4 security handler
-   Update usage instructions for Windows/Docker users
-   Fix order of operations for matrix multiplication (no effect on most users)
-   Add a few leptonica wrapper functions (no effect on most users)


v4.1.2
------

-   Replace IEC sRGB ICC profile with Debian's sRGB (from icc-profiles-free) which is more compatible with the MIT license
-   More helpful error message for an error related to certain types of malformed PDFs


v4.1
----

-   ``--rotate-pages`` now only rotates pages when reasonably confidence in the orientation. This behavior can be adjusted with the new argument ``--rotate-pages-threshold``
-   Fixed problems in error checking if ``unpaper`` is uninstalled or missing at run-time
-   Fixed problems with "RethrownJobError" errors during error handling that suppressed the useful error messages


v4.0.7
------

-   Minor correction to Ghostscript output settings


v4.0.6
------

-   Update install instructions
-   Provide a sRGB profile instead of using Ghostscript's


v4.0.5
------

-   Remove some verbose debug messages from v4.0.4
-   Fixed temporary that wasn't being deleted
-   DPI is now calculated correctly for cropped images, along with other image transformations
-   Inline images are now checked during DPI calculation instead of rejecting the image

v4.0.4
------

Released with verbose debug message turned on. Do not use. Skip to v4.0.5.


v4.0.3
------

New features
^^^^^^^^^^^^

-   Page orientations detected are now reported in a summary comment


Fixes
^^^^^

-   Show stack trace if unexpected errors occur
-   Treat "too few characters" error message from Tesseract as a reason to skip that page rather than
    abort the file
-   Docker: fix blank JPEG2000 issue by insisting on Ghostscript versions that have this fixed


v4.0.2
------

Fixes
^^^^^

-   Fixed compatibility with Tesseract 3.04.01 release, particularly its different way of outputting
    orientation information
-   Improved handling of Tesseract errors and crashes
-   Fixed use of chmod on Docker that broke most test cases


v4.0.1
------

Fixes
^^^^^

-   Fixed a KeyError if tesseract fails to find page orientation information


v4.0
----

New features
^^^^^^^^^^^^

-   Automatic page rotation (``-r``) is now available. It uses ignores any prior rotation information
    on PDFs and sets rotation based on the dominant orientation of detectable text. This feature is
    fairly reliable but some false positives occur especially if there is not much text to work with. (#4) 
-   Deskewing is now performed using Leptonica instead of unpaper. Leptonica is faster and more reliable
    at image deskewing than unpaper.


Fixes
^^^^^

-   Fixed an issue where lossless reconstruction could cause some pages to be appear incorrectly
    if the page was rotated by the user in Acrobat after being scanned (specifically if it a /Rotate tag)
-   Fixed an issue where lossless reconstruction could misalign the graphics layer with respect to
    text layer if the page had been cropped such that its origin is not (0, 0) (#49)


Changes
^^^^^^^

-   Logging output is now much easier to read
-   ``--deskew`` is now performed by Leptonica instead of unpaper (#25)
-   libffi is now required
-   Some changes were made to the Docker and Travis build environments to support libffi
-   ``--pdf-renderer=tesseract`` now displays a warning if the Tesseract version is less than 3.04.01,
    the planned release that will include fixes to an important OCR text rendering bug in Tesseract 3.04.00.
    You can also manually install ./share/sharp2.ttf on top of pdf.ttf in your Tesseract tessdata folder
    to correct the problem.


v3.2.1
------

Changes
^^^^^^^

-   Fixed issue #47 "convert() got and unexpected keyword argument 'dpi'" by upgrading to img2pdf 0.2
-   Tweaked the Dockerfiles


v3.2
----

New features
^^^^^^^^^^^^

-   Lossless reconstruction: when possible, OCRmyPDF will inject text layers without 
    otherwise manipulating the content and layout of a PDF page. For example, a PDF containing a mix
    of vector and raster content would see the vector content preserved. Images may still be transcoded
    during PDF/A conversion.  (``--deskew`` and ``--clean-final`` disable this mode, necessarily.)
-   New argument ``--tesseract-pagesegmode`` allows you to pass page segmentation arguments to Tesseract OCR.
    This helps for two column text and other situations that confuse Tesseract.
-   Added a new "polyglot" version of the Docker image, that generates Tesseract with all languages packs installed,
    for the polyglots among us. It is much larger.

Changes
^^^^^^^

-   JPEG transcoding quality is now 95 instead of the default 75. Bigger file sizes for less degradation.



v3.1.1
------

Changes
^^^^^^^

-   Fixed bug that caused incorrect page size and DPI calculations on documents with mixed page sizes

v3.1
----

Changes
^^^^^^^

-   Default output format is now PDF/A-2b instead of PDF/A-1b
-   Python 3.5 and macOS El Capitan are now supported platforms - no changes were
    needed to implement support
-   Improved some error messages related to missing input files
-   Fixed issue #20 - uppercase .PDF extension not accepted
-   Fixed an issue where OCRmyPDF failed to text that certain pages contained previously OCR'ed text, 
    such as OCR text produced by Tesseract 3.04
-   Inserts /Creator tag into PDFs so that errors can be traced back to this project
-   Added new option ``--pdf-renderer=auto``, to let OCRmyPDF pick the best PDF renderer. 
    Currently it always chooses the 'hocrtransform' renderer but that behavior may change.
-   Set up Travis CI automatic integration testing

v3.0
----

New features
^^^^^^^^^^^^

-   Easier installation with a Docker container or Python's ``pip`` package manager 
-   Eliminated many external dependencies, so it's easier to setup
-   Now installs ``ocrmypdf`` to ``/usr/local/bin`` or equivalent for system-wide
    access and easier typing
-   Improved command line syntax and usage help (``--help``)
-   Tesseract 3.03+ PDF page rendering can be used instead for better positioning
    of recognized text (``--pdf-renderer tesseract``)
-   PDF metadata (title, author, keywords) are now transferred to the 
    output PDF
-   PDF metadata can also be set from the command line (``--title``, etc.)
-   Automatic repairs malformed input PDFs if possible
-   Added test cases to confirm everything is working
-   Added option to skip extremely large pages that take too long to OCR and are 
    often not OCRable (e.g. large scanned maps or diagrams); other pages are still
    processed (``--skip-big``)
-   Added option to kill Tesseract OCR process if it seems to be taking too long on
    a page, while still processing other pages (``--tesseract-timeout``)
-   Less common colorspaces (CMYK, palette) are now supported by conversion to RGB
-   Multiple images on the same PDF page are now supported

Changes
^^^^^^^

-   New, robust rewrite in Python 3.4+ with ruffus_ pipelines
-   Now uses Ghostscript 9.14's improved color conversion model to preserve PDF colors
-   OCR text is now rendered in the PDF as invisible text. Previous versions of OCRmyPDF
    incorrectly rendered visible text with an image on top.
-   All "tasks" in the pipeline can be executed in parallel on any
    available CPUs, increasing performance
-   The ``-o DPI`` argument has been phased out, in favor of ``--oversample DPI``, in
    case we need ``-o OUTPUTFILE`` in the future
-   Removed several dependencies, so it's easier to install.  We no 
    longer use:
    
    - GNU parallel_
    - ImageMagick_
    - Python 2.7
    - Poppler
    - MuPDF_ tools
    - shell scripts
    - Java and JHOVE_
    - libxml2

-   Some new external dependencies are required or optional, compared to v2.x:

    - Ghostscript 9.14+
    - qpdf_ 5.0.0+
    - Unpaper_ 6.1 (optional)
    - some automatically managed Python packages
  
.. _ruffus: http://www.ruffus.org.uk/index.html
.. _parallel: https://www.gnu.org/software/parallel/
.. _ImageMagick: http://www.imagemagick.org/script/index.php
.. _MuPDF: http://mupdf.com/docs/
.. _qpdf: http://qpdf.sourceforge.net/
.. _Unpaper: https://github.com/Flameeyes/unpaper
.. _JHOVE: http://jhove.sourceforge.net/

Release candidates
^^^^^^^^^^^^^^^^^^

-   rc9:

    - fix issue #118: report error if ghostscript iccprofiles are missing
    - fixed another issue related to #111: PDF rasterized to palette file
    - add support image files with a palette
    - don't try to validate PDF file after an exception occurs

-   rc8:

    - fix issue #111: exception thrown if PDF is missing DocumentInfo dictionary

-   rc7:

    - fix error when installing direct from pip, "no such file 'requirements.txt'"

-   rc6:

    - dropped libxml2 (Python lxml) since Python 3's internal XML parser is sufficient
    - set up Docker container
    - fix Unicode errors if recognized text contains Unicode characters and system locale is not UTF-8

-   rc5:

    - dropped Java and JHOVE in favour of qpdf
    - improved command line error output
    - additional tests and bug fixes
    - tested on Ubuntu 14.04 LTS

-   rc4:

    - dropped MuPDF in favour of qpdf
    - fixed some installer issues and errors in installation instructions
    - improve performance: run Ghostscript with multithreaded rendering
    - improve performance: use multiple cores by default
    - bug fix: checking for wrong exception on process timeout 

-   rc3: skipping version number intentionally to avoid confusion with Tesseract
-   rc2: first release for public testing to test-PyPI, Github
-   rc1: testing release process

Compatibility notes
-------------------

-   ``./OCRmyPDF.sh`` script is still available for now
-   Stacking the verbosity option like ``-vvv`` is no longer supported

-   The configuration file ``config.sh`` has been removed.  Instead, you can
    feed a file to the arguments for common settings:

::

    ocrmypdf input.pdf output.pdf @settings.txt

where ``settings.txt`` contains *one argument per line*, for example:

::

    -l 
    deu 
    --author 
    A. Merkel 
    --pdf-renderer 
    tesseract


Fixes
^^^^^

-   Handling of filenames containing spaces: fixed

Notes and known issues
^^^^^^^^^^^^^^^^^^^^^^

-   Some dependencies may work with lower versions than tested, so try
    overriding dependencies if they are "in the way" to see if they work.

-   ``--pdf-renderer tesseract`` will output files with an incorrect page size in Tesseract 3.03,
    due to a bug in Tesseract.

-   PDF files containing "inline images" are not supported and won't be for the 3.0 release. Scanned
    images almost never contain inline images.


v2.2-stable (2014-09-29)
------------------------

OCRmyPDF versions 1 and 2 were implemented as shell scripts. OCRmyPDF 3.0+ is a fork that gradually replaced all shell scripts with Python while maintaining the existing command line arguments. No one is maintaining old versions.

For details on older versions, see the `final version of its release notes <https://github.com/fritz-hh/OCRmyPDF/blob/7fd3dbdf42ca53a619412ce8add7532c5e81a9d1/RELEASE_NOTES.md>`_.










./usr/share/doc/ocrmypdf/html/_sources/security.rst.txt


PDF security issues
===================

	OCRmyPDF should only be used on PDFs you trust. It is not designed to protect you against malware. 

Recognizing that many users have an interest in handling PDFs and applying OCR to PDFs they did not generate themselves, this article discusses the security implications of PDFs and how users can protect themselves.

The disclaimer applies: this software has no warranties of any kind.

PDFs may contain malware
------------------------

PDF is a rich, complex file format. The official PDF 1.7 specification, ISO 32000:2008, is hundreds of pages long and references several annexes each of which are similar in length. PDFs can contain video, audio, XML, JavaScript and other programming, and forms. In some cases, they can open internet connections to pre-selected URLs. All of these possible attack vectors.

In short, PDFs `may contain viruses <https://security.stackexchange.com/questions/64052/can-a-pdf-file-contain-a-virus>`_.

This `article <https://theinvisiblethings.blogspot.ca/2013/02/converting-untrusted-pdfs-into-trusted.html>`_ describes a high-paranoia method which allows potentially hostile PDFs to be viewed and rasterized safely in a disposable virtual machine. A trusted PDF created in this manner is converted to images and loses all information making it searchable and losing all compression. OCRmyPDF could be used restore searchability.

How OCRmyPDF processes PDFs
---------------------------

OCRmyPDF must open and interpret your PDF in order to insert an OCR layer. First, it runs all PDFs through `qpdf <https://github.com/qpdf/qpdf>`_, a program that repairs PDFs with syntax errors. This is done because, in the author's experience, a significant number of PDFs in the wild especially those created by scanners are not well-formed files. qpdf makes it more likely that OCRmyPDF will succeed, but offers no security guarantees. qpdf is also used to split the PDF into single page PDFs.

After qpdf, OCRmyPDF examines each page using `PyPDF2 <https://github.com/mstamy2/PyPDF2>`_. This library also has no warranties or guarantees. OCRmyPDF works with qpdf 5.0 and up, but version 7.0 is recommended because of known security vulnerabilities in early versions.

Finally, OCRmyPDF rasterizes each page of the PDF using `Ghostscript <http://ghostscript.com/>`_ in ``-dSAFER`` mode.

Depending on the options specified, OCRmyPDF may graft the OCR layer into the existing PDF or it may essentially reconstruct ("re-fry") a visually identical PDF that may be quite different at the binary level. That said, OCRmyPDF is not a tool designed for sanitizing PDFs.

Using OCRmyPDF online or as a service
-------------------------------------

OCRmyPDF should not be deployed as a public-facing service, such as a website where a potential attacker could upload a PDF of their choice for OCR. OCRmyPDF is not designed to be secure against PDF malware. Another concern is PDFs specifically designed to be a denial of service attack: PDFs can contain recursive data structures that sometimes send parsers into infinite loops, and issue complex graphics drawing commands.

Setting aside these concerns, a side effect of OCRmyPDF is it may incidentally sanitize PDFs that contain malware. It runs ``qpdf`` to repair the PDF, which could correct malformed PDF structures that are part of an attack. When PDF/A output is selected (the default), the input PDF is partially reconstructed by Ghostscript. When ``--force-ocr`` is used, all pages are rasterized and reconverted to PDF, which could remove malware in embedded images. No guarantees.

OCRmyPDF should be relatively safe to use in a trusted intranet, with some considerations:

Limiting CPU usage
^^^^^^^^^^^^^^^^^^

OCRmyPDF will attempt to use all available CPUs and storage, so executing ``nice ocrmypdf`` or limiting the number of jobs with the ``-j`` argument may ensure the server remains available. Another option would be run OCRmyPDF jobs inside a Docker container, a virtual machine, or a cloud instance, which can impose its own limits on CPU usage and be terminated "from orbit" if it fails to complete.

Temporary storage requirements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

OCRmyPDF will use a large amount of temporary storage for its work, proportional to the total number of pixels needed to rasterize the PDF. The raster image of a 8.5×11" color page at 300 DPI takes 25 MB uncompressed; OCRmyPDF saves its intermediates as PNG, but that still means it requires about 9 MB per intermediate based on average compression ratios. Multiple intermediates per page are also required, depending on the command line given. A rule of thumb would be to allow 100 MB of temporary storage per page in a file – meaning that a small cloud servers or small VM partitions should be provisioned with plenty of extra space, if say, a 500 page file might be sent.

To check temporary storage usage on actual files, run ``ocrmypdf -k ...`` which will preserve and print the path to temporary storage when the job is done.

To change where temporary files are stored, change the ``TMPDIR`` environment variable for ocrmypdf's environment. (Python's ``tempfile.gettempdir()`` returns the root directory in which temporary files will be stored.) For example, one could redirect ``TMPDIR`` to a large RAM disk to avoid wear on HDD/SSD and potentially improve performance. On Amazon Web Services, ``TMPDIR`` can be set to `empheral storage <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html>`_.

Timeouts
^^^^^^^^

To prevent excessively long OCR jobs consider setting ``--tesseract-timeout`` and/or ``--skip-big`` arguments. ``--skip-big`` is particularly helpful if your PDFs include documents such as reports on standard page sizes with large images attached - often large images are not worth OCR'ing anyway.

Commercial alternatives
^^^^^^^^^^^^^^^^^^^^^^^

The author also provides professional services that include OCR and building databases around PDFs, and is happy to provide consultation.

Abbyy Cloud OCR is a viable commercial alternative with a web services API. 


Password protection, digital signatures and certification
---------------------------------------------------------

Password protected PDFs usually have two passwords, and owner and user password. When the user password is set to empty, PDF readers will open the file automatically and marked it as "(SECURED)". While not as reliable as a digital signature, this indicates that whoever set the password approved of the file at that time. When the user password is set, the document cannot be viewed without the password. 

Either way, OCRmyPDF does not remove passwords from PDFs and exits with an error on encountering them.

``qpdf``, one of OCRmyPDF's dependencies, can remove passwords. If the owner and user password are set, a password is required for ``qpdf``. If only the owner password is set, then the password can be stripped, even if one does not have the owner password.

After OCR is applied, password protection is not permitted on PDF/A documents but the file can be converted to regular PDF.

Many programs exist which are capable of inserting an image of someone's signature. On its own, this offers no security guarantees. It is trivial to remove the signature image and apply it to other files. This practice offers no real security.

Important documents can be digitally signed and certified to attest to their authorship. OCRmyPDF cannot do this. Open source tools such as pdfbox (Java) have this capability as does Adobe Acrobat. 









./usr/share/doc/ocrmypdf/html/_static/ajax-loader.gif








./usr/share/doc/ocrmypdf/html/_static/basic.css


/*
 * basic.css
 * ~~~~~~~~~
 *
 * Sphinx stylesheet -- basic theme.
 *
 * :copyright: Copyright 2007-2018 by the Sphinx team, see AUTHORS.
 * :license: BSD, see LICENSE for details.
 *
 */

/* -- main layout ----------------------------------------------------------- */

div.clearer {
    clear: both;
}

/* -- relbar ---------------------------------------------------------------- */

div.related {
    width: 100%;
    font-size: 90%;
}

div.related h3 {
    display: none;
}

div.related ul {
    margin: 0;
    padding: 0 0 0 10px;
    list-style: none;
}

div.related li {
    display: inline;
}

div.related li.right {
    float: right;
    margin-right: 5px;
}

/* -- sidebar --------------------------------------------------------------- */

div.sphinxsidebarwrapper {
    padding: 10px 5px 0 10px;
}

div.sphinxsidebar {
    float: left;
    width: 230px;
    margin-left: -100%;
    font-size: 90%;
    word-wrap: break-word;
    overflow-wrap : break-word;
}

div.sphinxsidebar ul {
    list-style: none;
}

div.sphinxsidebar ul ul,
div.sphinxsidebar ul.want-points {
    margin-left: 20px;
    list-style: square;
}

div.sphinxsidebar ul ul {
    margin-top: 0;
    margin-bottom: 0;
}

div.sphinxsidebar form {
    margin-top: 10px;
}

div.sphinxsidebar input {
    border: 1px solid #98dbcc;
    font-family: sans-serif;
    font-size: 1em;
}

div.sphinxsidebar #searchbox input[type="text"] {
    width: 170px;
}

img {
    border: 0;
    max-width: 100%;
}

/* -- search page ----------------------------------------------------------- */

ul.search {
    margin: 10px 0 0 20px;
    padding: 0;
}

ul.search li {
    padding: 5px 0 5px 20px;
    background-image: url(file.png);
    background-repeat: no-repeat;
    background-position: 0 7px;
}

ul.search li a {
    font-weight: bold;
}

ul.search li div.context {
    color: #888;
    margin: 2px 0 0 30px;
    text-align: left;
}

ul.keywordmatches li.goodmatch a {
    font-weight: bold;
}

/* -- index page ------------------------------------------------------------ */

table.contentstable {
    width: 90%;
    margin-left: auto;
    margin-right: auto;
}

table.contentstable p.biglink {
    line-height: 150%;
}

a.biglink {
    font-size: 1.3em;
}

span.linkdescr {
    font-style: italic;
    padding-top: 5px;
    font-size: 90%;
}

/* -- general index --------------------------------------------------------- */

table.indextable {
    width: 100%;
}

table.indextable td {
    text-align: left;
    vertical-align: top;
}

table.indextable ul {
    margin-top: 0;
    margin-bottom: 0;
    list-style-type: none;
}

table.indextable > tbody > tr > td > ul {
    padding-left: 0em;
}

table.indextable tr.pcap {
    height: 10px;
}

table.indextable tr.cap {
    margin-top: 10px;
    background-color: #f2f2f2;
}

img.toggler {
    margin-right: 3px;
    margin-top: 3px;
    cursor: pointer;
}

div.modindex-jumpbox {
    border-top: 1px solid #ddd;
    border-bottom: 1px solid #ddd;
    margin: 1em 0 1em 0;
    padding: 0.4em;
}

div.genindex-jumpbox {
    border-top: 1px solid #ddd;
    border-bottom: 1px solid #ddd;
    margin: 1em 0 1em 0;
    padding: 0.4em;
}

/* -- domain module index --------------------------------------------------- */

table.modindextable td {
    padding: 2px;
    border-collapse: collapse;
}

/* -- general body styles --------------------------------------------------- */

div.body p, div.body dd, div.body li, div.body blockquote {
    -moz-hyphens: auto;
    -ms-hyphens: auto;
    -webkit-hyphens: auto;
    hyphens: auto;
}

a.headerlink {
    visibility: hidden;
}

h1:hover > a.headerlink,
h2:hover > a.headerlink,
h3:hover > a.headerlink,
h4:hover > a.headerlink,
h5:hover > a.headerlink,
h6:hover > a.headerlink,
dt:hover > a.headerlink,
caption:hover > a.headerlink,
p.caption:hover > a.headerlink,
div.code-block-caption:hover > a.headerlink {
    visibility: visible;
}

div.body p.caption {
    text-align: inherit;
}

div.body td {
    text-align: left;
}

.first {
    margin-top: 0 !important;
}

p.rubric {
    margin-top: 30px;
    font-weight: bold;
}

img.align-left, .figure.align-left, object.align-left {
    clear: left;
    float: left;
    margin-right: 1em;
}

img.align-right, .figure.align-right, object.align-right {
    clear: right;
    float: right;
    margin-left: 1em;
}

img.align-center, .figure.align-center, object.align-center {
  display: block;
  margin-left: auto;
  margin-right: auto;
}

.align-left {
    text-align: left;
}

.align-center {
    text-align: center;
}

.align-right {
    text-align: right;
}

/* -- sidebars -------------------------------------------------------------- */

div.sidebar {
    margin: 0 0 0.5em 1em;
    border: 1px solid #ddb;
    padding: 7px 7px 0 7px;
    background-color: #ffe;
    width: 40%;
    float: right;
}

p.sidebar-title {
    font-weight: bold;
}

/* -- topics ---------------------------------------------------------------- */

div.topic {
    border: 1px solid #ccc;
    padding: 7px 7px 0 7px;
    margin: 10px 0 10px 0;
}

p.topic-title {
    font-size: 1.1em;
    font-weight: bold;
    margin-top: 10px;
}

/* -- admonitions ----------------------------------------------------------- */

div.admonition {
    margin-top: 10px;
    margin-bottom: 10px;
    padding: 7px;
}

div.admonition dt {
    font-weight: bold;
}

div.admonition dl {
    margin-bottom: 0;
}

p.admonition-title {
    margin: 0px 10px 5px 0px;
    font-weight: bold;
}

div.body p.centered {
    text-align: center;
    margin-top: 25px;
}

/* -- tables ---------------------------------------------------------------- */

table.docutils {
    border: 0;
    border-collapse: collapse;
}

table.align-center {
    margin-left: auto;
    margin-right: auto;
}

table caption span.caption-number {
    font-style: italic;
}

table caption span.caption-text {
}

table.docutils td, table.docutils th {
    padding: 1px 8px 1px 5px;
    border-top: 0;
    border-left: 0;
    border-right: 0;
    border-bottom: 1px solid #aaa;
}

table.footnote td, table.footnote th {
    border: 0 !important;
}

th {
    text-align: left;
    padding-right: 5px;
}

table.citation {
    border-left: solid 1px gray;
    margin-left: 1px;
}

table.citation td {
    border-bottom: none;
}

/* -- figures --------------------------------------------------------------- */

div.figure {
    margin: 0.5em;
    padding: 0.5em;
}

div.figure p.caption {
    padding: 0.3em;
}

div.figure p.caption span.caption-number {
    font-style: italic;
}

div.figure p.caption span.caption-text {
}

/* -- field list styles ----------------------------------------------------- */

table.field-list td, table.field-list th {
    border: 0 !important;
}

.field-list ul {
    margin: 0;
    padding-left: 1em;
}

.field-list p {
    margin: 0;
}

.field-name {
    -moz-hyphens: manual;
    -ms-hyphens: manual;
    -webkit-hyphens: manual;
    hyphens: manual;
}

/* -- other body styles ----------------------------------------------------- */

ol.arabic {
    list-style: decimal;
}

ol.loweralpha {
    list-style: lower-alpha;
}

ol.upperalpha {
    list-style: upper-alpha;
}

ol.lowerroman {
    list-style: lower-roman;
}

ol.upperroman {
    list-style: upper-roman;
}

dl {
    margin-bottom: 15px;
}

dd p {
    margin-top: 0px;
}

dd ul, dd table {
    margin-bottom: 10px;
}

dd {
    margin-top: 3px;
    margin-bottom: 10px;
    margin-left: 30px;
}

dt:target, span.highlighted {
    background-color: #fbe54e;
}

rect.highlighted {
    fill: #fbe54e;
}

dl.glossary dt {
    font-weight: bold;
    font-size: 1.1em;
}

.optional {
    font-size: 1.3em;
}

.sig-paren {
    font-size: larger;
}

.versionmodified {
    font-style: italic;
}

.system-message {
    background-color: #fda;
    padding: 5px;
    border: 3px solid red;
}

.footnote:target  {
    background-color: #ffa;
}

.line-block {
    display: block;
    margin-top: 1em;
    margin-bottom: 1em;
}

.line-block .line-block {
    margin-top: 0;
    margin-bottom: 0;
    margin-left: 1.5em;
}

.guilabel, .menuselection {
    font-family: sans-serif;
}

.accelerator {
    text-decoration: underline;
}

.classifier {
    font-style: oblique;
}

abbr, acronym {
    border-bottom: dotted 1px;
    cursor: help;
}

/* -- code displays --------------------------------------------------------- */

pre {
    overflow: auto;
    overflow-y: hidden;  /* fixes display issues on Chrome browsers */
}

span.pre {
    -moz-hyphens: none;
    -ms-hyphens: none;
    -webkit-hyphens: none;
    hyphens: none;
}

td.linenos pre {
    padding: 5px 0px;
    border: 0;
    background-color: transparent;
    color: #aaa;
}

table.highlighttable {
    margin-left: 0.5em;
}

table.highlighttable td {
    padding: 0 0.5em 0 0.5em;
}

div.code-block-caption {
    padding: 2px 5px;
    font-size: small;
}

div.code-block-caption code {
    background-color: transparent;
}

div.code-block-caption + div > div.highlight > pre {
    margin-top: 0;
}

div.code-block-caption span.caption-number {
    padding: 0.1em 0.3em;
    font-style: italic;
}

div.code-block-caption span.caption-text {
}

div.literal-block-wrapper {
    padding: 1em 1em 0;
}

div.literal-block-wrapper div.highlight {
    margin: 0;
}

code.descname {
    background-color: transparent;
    font-weight: bold;
    font-size: 1.2em;
}

code.descclassname {
    background-color: transparent;
}

code.xref, a code {
    background-color: transparent;
    font-weight: bold;
}

h1 code, h2 code, h3 code, h4 code, h5 code, h6 code {
    background-color: transparent;
}

.viewcode-link {
    float: right;
}

.viewcode-back {
    float: right;
    font-family: sans-serif;
}

div.viewcode-block:target {
    margin: -1px -10px;
    padding: 0 10px;
}

/* -- math display ---------------------------------------------------------- */

img.math {
    vertical-align: middle;
}

div.body div.math p {
    text-align: center;
}

span.eqno {
    float: right;
}

span.eqno a.headerlink {
    position: relative;
    left: 0px;
    z-index: 1;
}

div.math:hover a.headerlink {
    visibility: visible;
}

/* -- printout stylesheet --------------------------------------------------- */

@media print {
    div.document,
    div.documentwrapper,
    div.bodywrapper {
        margin: 0 !important;
        width: 100%;
    }

    div.sphinxsidebar,
    div.related,
    div.footer,
    #top-link {
        display: none;
    }
}









./usr/share/doc/ocrmypdf/html/_static/comment-bright.png








./usr/share/doc/ocrmypdf/html/_static/comment-close.png








./usr/share/doc/ocrmypdf/html/_static/comment.png








./usr/share/doc/ocrmypdf/html/_static/down-pressed.png








./usr/share/doc/ocrmypdf/html/_static/down.png








./usr/share/doc/ocrmypdf/html/_static/file.png








./usr/share/doc/ocrmypdf/html/_static/minus.png








./usr/share/doc/ocrmypdf/html/_static/plus.png








./usr/share/doc/ocrmypdf/html/_static/pygments.css


.highlight .hll { background-color: #ffffcc }
.highlight  { background: #eeffcc; }
.highlight .c { color: #408090; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #007020; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .ch { color: #408090; font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: #408090; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #007020 } /* Comment.Preproc */
.highlight .cpf { color: #408090; font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: #408090; font-style: italic } /* Comment.Single */
.highlight .cs { color: #408090; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #333333 } /* Generic.Output */
.highlight .gp { color: #c65d09; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0044DD } /* Generic.Traceback */
.highlight .kc { color: #007020; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #007020; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #007020; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #007020 } /* Keyword.Pseudo */
.highlight .kr { color: #007020; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #902000 } /* Keyword.Type */
.highlight .m { color: #208050 } /* Literal.Number */
.highlight .s { color: #4070a0 } /* Literal.String */
.highlight .na { color: #4070a0 } /* Name.Attribute */
.highlight .nb { color: #007020 } /* Name.Builtin */
.highlight .nc { color: #0e84b5; font-weight: bold } /* Name.Class */
.highlight .no { color: #60add5 } /* Name.Constant */
.highlight .nd { color: #555555; font-weight: bold } /* Name.Decorator */
.highlight .ni { color: #d55537; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #007020 } /* Name.Exception */
.highlight .nf { color: #06287e } /* Name.Function */
.highlight .nl { color: #002070; font-weight: bold } /* Name.Label */
.highlight .nn { color: #0e84b5; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #062873; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #bb60d5 } /* Name.Variable */
.highlight .ow { color: #007020; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #208050 } /* Literal.Number.Bin */
.highlight .mf { color: #208050 } /* Literal.Number.Float */
.highlight .mh { color: #208050 } /* Literal.Number.Hex */
.highlight .mi { color: #208050 } /* Literal.Number.Integer */
.highlight .mo { color: #208050 } /* Literal.Number.Oct */
.highlight .sa { color: #4070a0 } /* Literal.String.Affix */
.highlight .sb { color: #4070a0 } /* Literal.String.Backtick */
.highlight .sc { color: #4070a0 } /* Literal.String.Char */
.highlight .dl { color: #4070a0 } /* Literal.String.Delimiter */
.highlight .sd { color: #4070a0; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #4070a0 } /* Literal.String.Double */
.highlight .se { color: #4070a0; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #4070a0 } /* Literal.String.Heredoc */
.highlight .si { color: #70a0d0; font-style: italic } /* Literal.String.Interpol */
.highlight .sx { color: #c65d09 } /* Literal.String.Other */
.highlight .sr { color: #235388 } /* Literal.String.Regex */
.highlight .s1 { color: #4070a0 } /* Literal.String.Single */
.highlight .ss { color: #517918 } /* Literal.String.Symbol */
.highlight .bp { color: #007020 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #06287e } /* Name.Function.Magic */
.highlight .vc { color: #bb60d5 } /* Name.Variable.Class */
.highlight .vg { color: #bb60d5 } /* Name.Variable.Global */
.highlight .vi { color: #bb60d5 } /* Name.Variable.Instance */
.highlight .vm { color: #bb60d5 } /* Name.Variable.Magic */
.highlight .il { color: #208050 } /* Literal.Number.Integer.Long */









./usr/share/doc/ocrmypdf/html/_static/up-pressed.png








./usr/share/doc/ocrmypdf/html/_static/up.png








./usr/share/doc/ocrmypdf/html/advanced.html




   
  

    
    
      
        
          

          
             ocrmypdf
          

          
          

          

          

  
    
    
    
  




          
        


        
          
            
            
              
            
            
              				Introduction



				Release notes



				Installing additional language packs








Usage




				Cookbook



				Advanced features				Control of OCR options				When OCR is skipped



				Time and image size limits



				Overriding default tesseract



				Overriding other support programs



				Changing tesseract configuration variables












				Changing the PDF renderer				The sandwich renderer



				The hocr renderer



				The tesseract renderer





















				Batch processing



				PDF security issues



				Common error messages









            
          
        

      

    

    

      
      
        
          
          ocrmypdf
        
      


      
      
        
          

















  				Docs »



				Advanced features



				
        
            
             View page source
          
        
      









  
  



          
           
            
  
Advanced features¶





Control of OCR options¶




OCRmyPDF provides many features to control the behavior of the OCR engine, Tesseract.





When OCR is skipped¶




If a page in a PDF seems to have text, by default OCRmyPDF will exit without modifying the PDF. This is to ensure that PDFs that were previously OCRed or were “born digital” rather than scanned are not processed.




If --skip-text is issued, then no OCR will be performed on pages that already have text. The page will be copied to the output. This may be useful for documents that contain both “born digital” and scanned content, or to use OCRmyPDF to normalize and convert to PDF/A regardless of their contents.




If --force-ocr is issued, then all pages will be rasterized to images, discarding any hidden OCR text, and rasterizing any printable text. This is useful for redoing OCR, for fixing OCR text with a damaged character map (text is selectable but not searchable), and destroying redacted information.







Time and image size limits¶




By default, OCRmyPDF permits tesseract to run for only three minutes (180 seconds) per page. This is usually more than enough time to find all text on a reasonably sized page with modern hardware.




If a page is skipped, it will be inserted without OCR. If preprocessing was requested, the preprocessed image layer will be inserted.




If you want to adjust the amount of time spent on OCR, change --tesseract-timeout.  You can also automatically skip images that exceed a certain number of megapixels with --skip-big. (A 300 DPI, 8.5×11” page is 8.4 megapixels.)




# Allow 300 seconds for OCR; skip any page larger than 50 megapixels
ocrmypdf --tesseract-timeout 300 --skip-big 50 bigfile.pdf output.pdf











Overriding default tesseract¶




OCRmyPDF checks the system PATH for the tesseract binary.




				
TESSDATA_PREFIX¶



				A Tesseract environment variable that overrides the path to Tesseract’s data files.














For example, if you are testing tesseract 4.00 and don’t wish to use an existing tesseract 3.04 installation, you can launch OCRmyPDF as follows:




env \
        PATH=/home/user/src/tesseract4/api:$PATH \
        TESSDATA_PREFIX=/home/user/src/tesseract4 \
        ocrmypdf --tesseract-oem 2 input.pdf output.pdf








In this example TESSDATA_PREFIX directs Tesseract 4.0 to use LSTM training data. --tesseract-oem 1 requests tesseract 4.0’s new LSTM engine. (Tesseract 4.0 only.)







Overriding other support programs¶




In addition to tesseract, OCRmyPDF uses the following external binaries:




				gs (Ghostscript)



				unpaper



				qpdf








In each case OCRmyPDF will search the PATH environment variable to locate the binaries.







Changing tesseract configuration variables¶




You can override tesseract’s default control parameters with a configuration file.




As an example, this configuration will disable Tesseract’s dictionary for current language. Normally the dictionary is helpful for interpolating words that are unclear, but it may interfere with OCR if the document does not contain many words (for example, a list of part numbers).




Create a file named “no-dict.cfg” with these contents:




load_system_dawg 0
language_model_penalty_non_dict_word 0
language_model_penalty_non_freq_dict_word 0








then run ocrmypdf as follows (along with any other desired arguments):




ocrmypdf --tesseract-config no-dict.cfg input.pdf output.pdf









Warning




Some combinations of control parameters will break Tesseract or break assumptions that OCRmyPDF makes about Tesseract’s output.











Changing the PDF renderer¶




				rasterizing



				Converting a PDF to an image for display.



				rendering



				Creating a new PDF from other data (such as an existing PDF).








OCRmyPDF has three PDF renderers: sandwich, hocr, tesseract. The renderer may be selected using --pdf-renderer. The default is auto which lets OCRmyPDF select the renderer to use. Currently, auto selects sandwich for Tesseract 3.05.01 or newer, or hocr for older versions of Tesseract.





The sandwich renderer¶




The sandwich renderer uses Tesseract’s new text-only PDF feature, which produces a PDF page that lays out the OCR in invisible text. This page is then “sandwiched” onto the original PDF page, allowing lossless application of OCR even to PDF pages that contain other vector objects.




When image preprocessing features like --deskew are used, the original PDF will be rendered as a full page and the OCR layer will be placed on top.




This renderer requires Tesseract 3.05.01 or newer.







The hocr renderer¶




The hocr renderer works with older versions of Tesseract. The image layer is copied from the original PDF page if possible, avoiding potentially lossy transcoding or loss of other PDF information. If preprocessing is specified, then the image layer is a new PDF.




This works in all versions of Tesseract.







The tesseract renderer¶




The tesseract renderer creates a PDF with the image and text layers precomposed, meaning that it always transcodes, loses image quality and rasterizes any vector objects. It does a better job on non-Latin text and document structure than hocr.




If a PDF created with this renderer using Tesseract versions older than 3.05.00 is then passed through Ghostscript’s pdfwrite feature, the OCR text may be corrupted. The --output-type=pdfa argument will produce a warning in this situation.




This renderer is deprecated and will be removed whenever support for older versions of Tesseract is dropped.












           

           
            
           

          

          
  
    
      
        Next 
      
      
         Previous
      
    

  

  


  
    
        © Copyright 2018, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..

    




  

  Built with Sphinx using a theme provided by Read the Docs. 



        

      


    

  

  


  

    
      
      
      

  

  
  
    
  

  
  
  
   







./usr/share/doc/ocrmypdf/html/batch.html




   
  

    
    
      
        
          

          
             ocrmypdf
          

          
          

          

          

  
    
    
    
  




          
        


        
          
            
            
              
            
            
              				Introduction



				Release notes



				Installing additional language packs








Usage




				Cookbook



				Advanced features



				Batch processing				Batch jobs



				Directory trees				Sample script



				API



				Synology DiskStations



				Huge batch jobs












				Hot (watched) folders				Caveats



				Alternatives





















				PDF security issues



				Common error messages









            
          
        

      

    

    

      
      
        
          
          ocrmypdf
        
      


      
      
        
          

















  				Docs »



				Batch processing



				
        
            
             View page source
          
        
      









  
  



          
           
            
  
Batch processing¶




This article provides information about running OCRmyPDF on multiple files or configuring it as a service triggered by file system events.





Batch jobs¶




Consider using the excellent GNU Parallel to apply OCRmyPDF to multiple files at once.




Both parallel and ocrmypdf will try to use all available processors. To maximize parallelism without overloading your system with processes, consider using parallel -j 2 to limit parallel to running two jobs at once.




This command will run all ocrmypdf all files named *.pdf in the current directory and write them to the previous created output/ folder. It will not search subdirectories.




The --tag argument tells parallel to print the filename as a prefix whenever a message is printed, so that one can trace any errors to the file that produced them.




parallel --tag -j 2 ocrmypdf '{}' 'output/{}' ::: *.pdf








OCRmyPDF automaticaly repairs PDFs before parsing and gathering information from them.  If you are already repairing PDFs with qpdf prior to attempting OCR, or you can use --skip-repair to skip this step.  It may improve performance for large files, since repairing PDFs is single-threaded.







Directory trees¶




This will walk through a directory tree and run OCR on all files in place, printing the output in a way that makes




find . --printf '%p' -name '*.pdf' -exec ocrmypdf '{}' '{}' \;








This only runs one ocrmypdf process at a time. This variation uses find to create a directory list and parallel to parallelize runs of ocrmypdf, again updating files in place.




find . -name '*.pdf' | parallel --tag -j 2 ocrmypdf '{}' '{}'









Sample script¶




This user contributed script also provides an example of batch processing.




#!/usr/bin/env python3
# Walk through directory tree, replacing all files with OCR'd version
# Contributed by DeliciousPickle@github

import logging
import os
import subprocess
import sys

script_dir = os.path.dirname(os.path.realpath(__file__))
print(script_dir + '/ocr-tree.py: Start')

if len(sys.argv) > 1:
    start_dir = sys.argv[1]
else:
    start_dir = '.'

if len(sys.argv) > 2:
    log_file = sys.argv[2]
else:
    log_file = script_dir + '/ocr-tree.log'

logging.basicConfig(
                level=logging.INFO, format='%(asctime)s %(message)s',
                filename=log_file, filemode='w')

for dir_name, subdirs, file_list in os.walk(start_dir):
    logging.info('\n')
    logging.info(dir_name + '\n')
    os.chdir(dir_name)
    for filename in file_list:
        file_ext = os.path.splitext(filename)[1]
        if file_ext == '.pdf':
            full_path = dir_name + '/' + filename
            print(full_path)
            cmd = ["ocrmypdf",  "--deskew", filename, filename]
            logging.info(cmd)
            proc = subprocess.Popen(
                cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
            result = proc.stdout.read()
            if proc.returncode == 6:
                print("Skipped document because it already contained text")
            elif proc.returncode == 0:
                print("OCR complete")
            logging.info(result)











API¶




OCRmyPDF is currently supported as a command line interface. This means that even if you are using OCRmyPDF in a Python script, you should run it in a subprocess rather importing the ocrmypdf package.




The reason for this limitation is that the ruffus library that OCRmyPDF depends on is unfortunately not reentrant. OCRmyPDF works by defining each operation it does as a ruffus task that takes one or more files as input and generates one or more files as output. As such ruffus is fairly fundamental.




(If you find individual functions implemented in OCRmyPDF useful (such as ocrmypdf.pdfinfo), you can use these if you wish to.)







Synology DiskStations¶




Synology DiskStations (Network Attached Storage devices) can run the Docker image of OCRmyPDF if the Synology Docker package is installed. Attached is a script to address particular quirks of using OCRmyPDF on one of these devices.




This is only possible for x86-based Synology products. Some Synology products use ARM or Power processors and do not support Docker. Further adjustments might be needed to deal with the Synology’s relatively limited CPU and RAM.




#!/bin/env python3
# Contributed by github.com/Enantiomerie

# script needs 2 arguments
# 1. source dir with *.pdf - default is location of script
# 2. move dir where *.pdf and *_OCR.pdf are moved to

import logging
import os
import subprocess
import sys
import time
import shutil

script_dir = os.path.dirname(os.path.realpath(__file__))
timestamp = time.strftime("%Y-%m-%d-%H%M_")
log_file = script_dir + '/' + timestamp + 'ocrmypdf.log'
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s', filename=log_file, filemode='w')

if len(sys.argv) > 1:
    start_dir = sys.argv[1]
else:
    start_dir = '.'

for dir_name, subdirs, file_list in os.walk(start_dir):
    logging.info('\n')
    logging.info(dir_name + '\n')
    os.chdir(dir_name)
    for filename in file_list:
        file_ext = os.path.splitext(filename)[1]
        if file_ext == '.pdf':
            full_path = dir_name + '/' + filename
            file_noext = os.path.splitext(filename)[0]
            timestamp_OCR = time.strftime("%Y-%m-%d-%H%M_OCR_")
            filename_OCR = timestamp_OCR + file_noext + '.pdf'
            docker_mount = dir_name + ':/home/docker'
# create string for pdf processing
# diskstation needs a user:group docker:docker. find uid:gid of your diskstation docker:docker with id docker.
# use this uid:gid in -u flag
# rw rights for docker:docker at source dir are also necessary
# the script is processed as root user via chron
            cmd = ['docker', 'run', '--rm', '-v', docker_mount, '-u=1030:65538', 'jbarlow83/ocrmypdf', , '--deskew' , filename, filename_OCR]
            logging.info(cmd)
            proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
            result = proc.stdout.read()
            logging.info(result)
            full_path_OCR = dir_name + '/' + filename_OCR
            os.chmod(full_path_OCR, 0o666)
            os.chmod(full_path, 0o666)
            full_path_OCR_archive = sys.argv[2]
            full_path_archive = sys.argv[2] + '/no_ocr'
            shutil.move(full_path_OCR,full_path_OCR_archive)
            shutil.move(full_path, full_path_archive)
logging.info('Finished.\n')











Huge batch jobs¶




If you have thousands of files to work with, contact the author. Consulting work related to OCRmyPDF helps fund this open source project and all inquiries are appreciated.









Hot (watched) folders¶




To set up a “hot folder” that will trigger OCR for every file inserted, use a program like Python watchdog (supports all major OS).




One could then configure a scanner to automatically place scanned files in a hot folder, so that they will be queued for OCR and copied to the destination.




pip install watchdog








watchdog installs the command line program watchmedo, which can be told to run ocrmypdf on any .pdf added to the current directory (.) and place the result in the previously created out/ folder.




cd hot-folder
mkdir out
watchmedo shell-command \
        --patterns="*.pdf" \
        --ignore-directories \
        --command='ocrmypdf "${watch_src_path}" "out/${watch_src_path}" ' \
        .  # don't forget the final dot








For more complex behavior you can write a Python script around to use the watchdog API.




On file servers, you could configure watchmedo as a system service so it will run all the time.





Caveats¶




				watchmedo may not work properly on a networked file system, depending on the capabilities of the file system client and server.



				This simple recipe does not filter for the type of file system event, so file copies, deletes and moves, and directory operations, will all be sent to ocrmypdf, producing errors in several cases. Disable your watched folder if you are doing anything other than copying files to it.



				If the source and destination directory are the same, watchmedo may create an infinite loop.



				On BSD, FreeBSD and older versions of macOS, you may need to increase the number of file descriptors to monitor more files, using ulimit -n 1024 to watch a folder of up to 1024 files.











Alternatives¶




				Watchman is a more powerful alternative to watchmedo.
















           

           
            
           

          

          
  
    
      
        Next 
      
      
         Previous
      
    

  

  


  
    
        © Copyright 2018, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..

    




  

  Built with Sphinx using a theme provided by Read the Docs. 



        

      


    

  

  


  

    
      
      
      

  

  
  
    
  

  
  
  
   







./usr/share/doc/ocrmypdf/html/cookbook.html




   
  

    
    
      
        
          

          
             ocrmypdf
          

          
          

          

          

  
    
    
    
  




          
        


        
          
            
            
              
            
            
              				Introduction



				Release notes



				Installing additional language packs








Usage




				Cookbook				Basic examples				Help!



				Add an OCR layer and convert to PDF/A



				Add an OCR layer and output a standard PDF



				Create a PDF/A with all color and grayscale images converted to JPEG



				Modify a file in place



				Correct page rotation



				OCR languages other than English



				Produce PDF and text file containing OCR text












				OCR images, not PDFs



				Image processing				OCR and correct document skew (crooked scan)



				Don’t actually OCR my PDF



				Redo OCR












				Improving OCR quality












				Advanced features



				Batch processing



				PDF security issues



				Common error messages









            
          
        

      

    

    

      
      
        
          
          ocrmypdf
        
      


      
      
        
          

















  				Docs »



				Cookbook



				
        
            
             View page source
          
        
      









  
  



          
           
            
  
Cookbook¶





Basic examples¶





Help!¶




ocrmypdf has built-in help.




ocrmypdf --help











Add an OCR layer and convert to PDF/A¶




ocrmypdf input.pdf output.pdf











Add an OCR layer and output a standard PDF¶




ocrmypdf --output-type pdf input.pdf output.pdf











Create a PDF/A with all color and grayscale images converted to JPEG¶




ocrmypdf --output-type pdfa --pdfa-image-compression jpeg input.pdf output.pdf











Modify a file in place¶




The file will only be overwritten if OCRmyPDF is successful.




ocrmypdf myfile.pdf myfile.pdf











Correct page rotation¶




OCR will attempt to automatic correct the rotation of each page. This can help fix a scanning job that contains a mix of landscape and portrait pages.




ocrmypdf --rotate-pages myfile.pdf myfile.pdf








You can increase (decrease) the parameter --rotate-pages-threshold to make page rotation more (less) aggressive.







OCR languages other than English¶




By default OCRmyPDF assumes the document is English.




ocrmypdf -l fre LeParisien.pdf LeParisien.pdf
ocrmypdf -l eng+fre Bilingual-English-French.pdf Bilingual-English-French.pdf








Language packs must be installed for all languages specified. See Installing additional language packs.







Produce PDF and text file containing OCR text¶




This produces a file named “output.pdf” and a companion text file named “output.txt”.




ocrmypdf --sidecar output.txt input.pdf output.pdf













OCR images, not PDFs¶




Use a program like img2pdf to convert your images to PDFs, and then pipe the results to run ocrmypdf:




img2pdf my-images*.jpg | ocrmypdf - myfile.pdf








img2pdf also has features to control the position of images on a page, if desired.




For convenience, OCRmyPDF can convert single images to PDFs on its own. If the resolution (dots per inch, DPI) of an image is not set or is incorrect, it can be overridden with --image-dpi. (As 1 inch is 2.54 cm, 1 dpi = 0.39 dpcm).




ocrmypdf --image-dpi 300 image.png myfile.pdf








If you have multiple images, you must use img2pdf to convert the images to PDF.





Note




ImageMagick convert can also convert a group of images to PDF, but in the author’s experience it takes a long time, transcodes unnecessarily and gives poor results.






You can also use Tesseract 3.04+ directly to convert single page images or multi-page TIFFs to PDF:




tesseract my-image.jpg output-prefix pdf











Image processing¶




OCRmyPDF perform some image processing on each page of a PDF, if desired.  The same processing is applied to each page.  It is suggested that the user review files after image processing as these commands might remove desirable content, especially from poor quality scans.




				--rotate-pages attempts to determine the correct orientation for each page and rotates the page if necessary.



				--remove-background attempts to detect and remove a noisy background from grayscale or color images.  Monochrome images are ignored. This should not be used on documents that contain color photos as it may remove them.



				--deskew will correct pages were scanned at a skewed angle by rotating them back into place.  Skew determination and correction is performed using Postl’s variance of line sums algorithm as implemented in Leptonica.



				--clean uses unpaper to clean up pages before OCR, but does not alter the final output.  This makes it less likely that OCR will try to find text in background noise.



				--clean-final uses unpaper to clean up pages before OCR and inserts the page into the final output.  You will want to review each page to ensure that unpaper did not remove something important.









Note




In many cases image processing will rasterize PDF pages as images, potentially losing quality.







Warning




--clean-final and -remove-background may leave undesirable visual artifacts in some images where their algorithms have shortcomings. Files should be visually reviewed after using these options.







OCR and correct document skew (crooked scan)¶




Deskew:




ocrmypdf --deskew input.pdf output.pdf








Image processing commands can be combined. The order in which options are given does not matter. OCRmyPDF always applies the steps of the image processing pipeline in the same order (rotate, remove background, deskew, clean).




ocrmypdf --deskew --clean --rotate-pages input.pdf output.pdf











Don’t actually OCR my PDF¶




If you set --tesseract-timeout 0 OCRmyPDF will apply its image processing without performing OCR, if all you want to is to apply image processing or PDF/A conversion.




ocrmypdf --tesseract-timeout=0 --remove-background input.pdf output.pdf











Redo OCR¶




To redo OCR on a file OCRed with other OCR software or a previous version of OCRmyPDF and/or Tesseract, you may use the --force-ocr argument. Normally, OCRmyPDF does not modify files that already appear to contain OCR text.




ocrmypdf --force-ocr input.pdf output.pdf








Note that the method above will force rasterization of all pages, potentially reducing quality or losing vector content.




To ensure quality is preserved, one could extract all of the images and rebuild the PDF for a lossless transformation. This recipe does not work when PDFs contain multiple images per page, as many do in practice. It will also lose any page rotation information.




pdfimages -all old-ocr.pdf prefix  # extract all images
img2pdf -o temp.pdf prefix*        # construct new PDF from the images
# review the new PDF to ensure it visually matches the old one
ocrmypdf --output-type pdf temp.pdf new-ocr.pdf








--output-type pdf is used here to avoid using Ghostscript which will also rasterize images.









Improving OCR quality¶




The Image processing features can improve OCR quality.




Rotating pages and deskewing helps to ensure that the page orientation is correct before OCR begins. Removing the background and/or cleaning the page can also improve results. The --oversample DPI argument can be specified to resample images to higher resolution before attempting OCR; this can improve results as well.




OCR quality will suffer if the resolution of input images is not correct (since the range of pixel sizes that will be checked for possible fonts will also be incorrect).










           

           
            
           

          

          
  
    
      
        Next 
      
      
         Previous
      
    

  

  


  
    
        © Copyright 2018, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..

    




  

  Built with Sphinx using a theme provided by Read the Docs. 



        

      


    

  

  


  

    
      
      
      

  

  
  
    
  

  
  
  
   







./usr/share/doc/ocrmypdf/html/errors.html




   
  

    
    
      
        
          

          
             ocrmypdf
          

          
          

          

          

  
    
    
    
  




          
        


        
          
            
            
              
            
            
              				Introduction



				Release notes



				Installing additional language packs








Usage




				Cookbook



				Advanced features



				Batch processing



				PDF security issues



				Common error messages				Page already has text



				Input file ‘filename’ is not a valid PDF


















            
          
        

      

    

    

      
      
        
          
          ocrmypdf
        
      


      
      
        
          

















  				Docs »



				Common error messages



				
        
            
             View page source
          
        
      









  
  



          
           
            
  
Common error messages¶





Page already has text¶




ERROR -    1: page already has text! – aborting (use --force-ocr to force OCR)








You ran ocrmypdf on a file that already contains printable text or a hidden OCR text layer (it can’t quite tell the difference). You probably don’t want to do this, because the file is already searchable.




As the error message suggests, your options are:




				ocrmypdf --force-ocr to rasterize all vector content and run OCR on the images. This is useful if a previous OCR program failed, or if the document contains a text watermark.



				ocrmypdf --skip-text to skip OCR and other processing on any pages that contain text. Text pages will be copied into the output PDF without modification.











Input file ‘filename’ is not a valid PDF¶




OCRmyPDF passes files through qpdf, a program that fixes errors in PDFs, before it tries to work on them. In most cases this happens because the PDF is corrupt and
truncated (incomplete file copying) and not much can be done.




You can try rewriting the file with Ghostscript or pdftk:




				gs -o output.pdf -dSAFER -sDEVICE=pdfwrite input.pdf



				pdftk input.pdf cat output output.pdf








Sometimes Acrobat can repair PDFs with its Preflight tool.










           

           
            
           

          

          
  
    
      
      
         Previous
      
    

  

  


  
    
        © Copyright 2018, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..

    




  

  Built with Sphinx using a theme provided by Read the Docs. 



        

      


    

  

  


  

    
      
      
      

  

  
  
    
  

  
  
  
   







./usr/share/doc/ocrmypdf/html/genindex.html




   
  

    
    
      
        
          

          
             ocrmypdf
          

          
          

          

          

  
    
    
    
  




          
        


        
          
            
            
              
            
            
              				Introduction



				Release notes



				Installing additional language packs








Usage




				Cookbook



				Advanced features



				Batch processing



				PDF security issues



				Common error messages









            
          
        

      

    

    

      
      
        
          
          ocrmypdf
        
      


      
      
        
          

















  				Docs »



				Index



				
        
            
        
      









  
  



          
           
            

Index






 E
 


E




								
    environment variable

      				TESSDATA_PREFIX




























           

           
            
           

          

          
  

  


  
    
        © Copyright 2018, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..

    




  

  Built with Sphinx using a theme provided by Read the Docs. 



        

      


    

  

  


  

    
      
      
      

  

  
  
    
  

  
  
  
   







./usr/share/doc/ocrmypdf/html/index.html




   
  

    
    
      
        
          

          
             ocrmypdf
          

          
          

          

          

  
    
    
    
  




          
        


        
          
            
            
              
            
            
              				Introduction



				Release notes



				Installing additional language packs








Usage




				Cookbook



				Advanced features



				Batch processing



				PDF security issues



				Common error messages









            
          
        

      

    

    

      
      
        
          
          ocrmypdf
        
      


      
      
        
          

















  				Docs »



				OCRmyPDF documentation



				
        
            
             View page source
          
        
      









  
  



          
           
            
  
OCRmyPDF documentation¶




OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to
be searched.




PDF is the best format for storing and exchanging scanned documents.  Unfortunately, PDFs can be difficult to modify. OCRmyPDF makes it easy to apply image processing and OCR to existing PDFs.





				Introduction



				Release notes



				Installing additional language packs











Usage




				Cookbook				Basic examples



				OCR images, not PDFs



				Image processing



				Improving OCR quality












				Advanced features				Control of OCR options



				Changing the PDF renderer












				Batch processing				Batch jobs



				Directory trees



				Hot (watched) folders












				PDF security issues				PDFs may contain malware



				How OCRmyPDF processes PDFs



				Using OCRmyPDF online or as a service



				Password protection, digital signatures and certification












				Common error messages				Page already has text



				Input file ‘filename’ is not a valid PDF






















Indices and tables¶




				Index



				Module Index



				Search Page












           

           
            
           

          

          
  
    
      
        Next 
      
      
    

  

  


  
    
        © Copyright 2018, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..

    




  

  Built with Sphinx using a theme provided by Read the Docs. 



        

      


    

  

  


  

    
      
      
      

  

  
  
    
  

  
  
  
   







./usr/share/doc/ocrmypdf/html/installation.html




   
  

    
    
      
        
          

          
             ocrmypdf
          

          
          

          

          

  
    
    
    
  




          
        


        
          
            
            
              
            
            
              				Introduction



				Release notes



				Installing additional language packs








Usage




				Cookbook



				Advanced features



				Batch processing



				PDF security issues



				Common error messages









            
          
        

      

    

    

      
      
        
          
          ocrmypdf
        
      


      
      
        
          

















  				Docs »



				Installation



				
        
            
             View page source
          
        
      









  
  



          
           
            
  
Installation¶




OCRmyPDF requires Python 3.5 (or newer) and Tesseract 3.04 (or newer).





Installing on Debian and Ubuntu 16.10 or newer¶




Users of Debian 9 (“stretch”) or later or Ubuntu 16.10 or later may simply




apt-get install ocrmypdf











Installing on macOS¶




OCRmyPDF is now a standard Homebrew formula. To install on macOS:




brew install ocrmypdf









Note




Users who previously installed OCRmyPDF on macOS using pip install ocrmypdf should remove the pip version (pip3 uninstall ocrmypdf) before switching to the Homebrew version.







Note




Users who previously installed OCRmyPDF from the private tap should switch to the mainline version (brew untap jbarlow83/ocrmypdf) and install from there.









Installing the Docker image¶




For many users, installing the Docker image will be easier than installing all of OCRmyPDF’s dependencies. For Windows, it is the only option.




If you have Docker installed on your system, you can install
a Docker image of the latest release.




Follow the Docker installation instructions for your platform.  If you can run this command
successfully, your system is ready to download and execute the image:




docker run hello-world








OCRmyPDF will use all available CPU cores.  By default, the VirtualBox machine instance on Windows and macOS has only a single CPU core enabled. Use the VirtualBox Manager to determine the name of your Docker engine host, and then follow these optional steps to enable multiple CPUs:




# Optional step for Mac OS X users
docker-machine stop "yourVM"
VBoxManage modifyvm "yourVM" --cpus 2  # or whatever number of core is desired
docker-machine start "yourVM"
eval $(docker-machine env "yourVM")








Assuming you have a Docker engine running, you can download one of the three available images:




				Image name				Download command				Notes



				ocrmypdf				docker pull jbarlow83/ocrmypdf				Latest ocrmypdf with Tesseract 3.04. Includes English, French, German, Spanish.



				ocrmypdf-polyglot				docker pull jbarlow83/ocrmypdf-polyglot				As above, with all available language packs.



				ocrmypdf-tess4				docker pull jbarlow83/ocrmypdf-tess4				Latest ocrmypdf with Tesseract 4.00.00alpha and English, French, German,
Spanish, Portuguese, Chinese Simplified, Arabic and Russian (the top 8).








For example:




docker pull jbarlow83/ocrmypdf-tess4








Then tag it to give a more convenient name, just ocrmypdf:




docker tag jbarlow83/ocrmypdf-tess4 ocrmypdf








The alternative “polyglot” image provides all available language packs.




You can then run ocrmypdf using the command:




docker run --rm ocrmypdf --help








To execute the OCRmyPDF on a local file, you must provide a writable volume to the Docker image, and both the input and output file must be inside the writable volume.  This example command uses the current working directory as the writable volume:




docker run --rm -v "$(pwd):/home/docker" <other docker arguments>   ocrmypdf <your arguments to ocrmypdf>








In this worked example, the current working directory contains an input file called test.pdf and the output will go to output.pdf:




docker run --rm -v "$(pwd):/home/docker"   ocrmypdf --skip-text test.pdf output.pdf









Note




The working directory should be a writable local volume or Docker may not have permission to access it.






Note that ocrmypdf has its own separate -v VERBOSITYLEVEL argument to control debug verbosity. All Docker arguments should before the ocrmypdf image name and all arguments to ocrmypdf should be listed after.




In some environments the permissions associated with Docker can be complex to configure. The process that executes Docker may end up not having the permissions to write the specified file system. In that case one can stream the file into and out of the Docker process and avoid all permission hassles, using - as the input and output filename:




docker run --rm -i   ocrmypdf <other arguments to ocrmypdf> - - <input.pdf >output.pdf








For convenience, a shell alias can hide the docker command:




alias ocrmypdf='docker run --rm -v "$(pwd):/home/docker" ocrmypdf'
ocrmypdf --version  # runs docker version








Or in the wonderful fish shell:




alias ocrmypdf 'docker run --rm -v (pwd):/home/docker ocrmypdf'
funcsave ocrmypdf









Note




The ocrmypdf Docker containers are designed to be used for a single OCR job. The docker run --rm argument tells Docker to delete temporary storage associated with container when it is done executing.









Manual installation on macOS¶




These instructions probably work on all macOS supported by Homebrew.




If it’s not already present, install Homebrew.




Update Homebrew:




brew update








Install or upgrade the required Homebrew packages, if any are missing:




brew install libpng openjpeg jbig2dec libtiff     # image libraries
brew install qpdf
brew install ghostscript
brew install python3
brew install libxml2 libffi leptonica
brew install unpaper   # optional








Python 3.5 and 3.6 are supported.




Install the required Tesseract OCR engine with the language packs you plan to use:




brew install tesseract                       # Option 1: for English, French, German, Spanish








brew install tesseract --with-all-languages  # Option 2: for all language packs








Update the homebrew pip and install Pillow:




pip3 install --upgrade pip
pip3 install --upgrade pillow








You can then install OCRmyPDF from PyPI, for the current user:




pip3 install --user ocrmypdf








or system-wide:




pip3 install ocrmypdf








The command line program should now be available:




ocrmypdf --help











Installing on Ubuntu 16.04 LTS¶




No package is currently available for Ubuntu 16.04, but you can install the dependencies manually:




sudo apt-get update
sudo apt-get install \
    unpaper \
    ghostscript \
    tesseract-ocr \
    qpdf \
    python3-pip \
    python3-cffi








If you wish install OCRmyPDF for the current user:




pip3 install --user ocrmypdf








Alternately, system-wide. Note that this may modify the system Python environment:




sudo pip3 install ocrmypdf








If you wish to install OCRmyPDF to a virtual environment to isolate the system Python, you can
follow these steps.




python3 -m venv venv-ocrmypdf
source venv-ocrmypdf/bin/activate
pip3 install ocrmypdf











Installing on Ubuntu 14.04 LTS¶




Installing on Ubuntu 14.04 LTS (trusty) is more difficult than some other options,
because it is older and does not provide pip.




Update apt-get:




sudo apt-get update








Install system dependencies:




sudo apt-get install \
    software-properties-common python-software-properties \
    zlib1g-dev \
    libjpeg-dev \
    libffi-dev \
    qpdf








We will need backports of Ghostscript 9.16, libav-11 (for unpaper 6.1),
Tesseract 4.00 (alpha), and Python 3.6. This will replace Ghostscript and
Tesseract 3.x on your system. Python 3.6 will be installed alongside the system
Python 3.




If you prefer to not modify your system in this matter, consider using a Docker container.




sudo add-apt-repository ppa:vshn/ghostscript -y
sudo add-apt-repository ppa:heyarje/libav-11 -y
sudo add-apt-repository ppa:alex-p/tesseract-ocr -y
sudo add-apt-repository ppa:jonathonf/python-3.6 -y

sudo apt-get update

sudo apt-get install \
    python3.6 \
    ghostscript \
    tesseract-ocr \
    tesseract-ocr-eng \
    libavformat56 libavcodec56 libavutil54 \
    wget








Now we need to install pip and let it install ocrmypdf:




wget -O - -o /dev/null https://bootstrap.pypa.io/get-pip.py | python3.6
pip3.6 install ocrmypdf








The wget command will download a program and run it.




These installation instructions omit the optional dependency unpaper, which is only available at version 0.4.2 in Ubuntu 14.04. The author could not find a backport of unpaper, and created a .deb package to do the job of installing unpaper 6.1 (for x86 64-bit only):




wget -q 'https://www.dropbox.com/s/vaq0kbwi6e6au80/unpaper_6.1-1.deb?raw=1' -O unpaper_6.1-1.deb
sudo dpkg -i unpaper_6.1-1.deb











Installing on ArchLinux¶




The author is aware of an ArchLinux package for ocrmypdf. It seems like the following command might work.




pacman -S ocrmypdf











Installing on Windows¶




Direct installation on Windows is not possible.  Install the Docker container as described above.  Ensure that your command prompt can run the docker “hello world” container.





Running on Windows¶




The command line syntax to run ocrmypdf from a command prompt will resemble:




docker run -v /c/Users/sampleuser:/home/docker ocrmypdf --skip-text test.pdf output.pdf








where /c/Users/sampleuser is a Unix representation of the Windows path C:\Users\sampleuser, assuming a user named “sampleuser” is running ocrmypdf on a file in their home directory, and the files “test.pdf” and “output.pdf” are in the sampleuser folder. The Windows user must have read and write permissions.




Bash on Ubuntu on Windows should also be a viable route for running the OCRmyPDF Docker container.









Installing HEAD revision from sources¶




If you have git and Python 3.5 or newer installed, you can install from source. When the pip installer runs,
it will alert you if dependencies are missing.




To install the HEAD revision from sources in the current Python 3 environment:




pip3 install git+https://github.com/jbarlow83/OCRmyPDF.git








Or, to install in development mode,  allowing customization of OCRmyPDF, use the -e flag:




pip3 install -e git+https://github.com/jbarlow83/OCRmyPDF.git








On certain Linux distributions such as Ubuntu, you may need to use
run the install command as superuser:




sudo pip3 install [-e] git+https://github.com/jbarlow83/OCRmyPDF.git








Note that this will alter your system’s Python distribution. If you prefer
to not install as superuser, you can install the package in a Python virtual environment:




git clone -b master https://github.com/jbarlow83/OCRmyPDF.git
python3 -m venv
source venv/bin/activate
cd OCRmyPDF
pip3 install .








However, ocrmypdf will only be accessible on the system PATH after
you activate the virtual environment.




To run the program:




ocrmypdf --help








If not yet installed, the script will notify you about dependencies that
need to be installed. The script requires specific versions of the
dependencies. Older version than the ones mentioned in the release notes
are likely not to be compatible to OCRmyPDF.










           

           
            
           

          

          
  

  


  
    
        © Copyright 2018, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..

    




  

  Built with Sphinx using a theme provided by Read the Docs. 



        

      


    

  

  


  

    
      
      
      

  

  
  
    
  

  
  
  
   







./usr/share/doc/ocrmypdf/html/introduction.html




   
  

    
    
      
        
          

          
             ocrmypdf
          

          
          

          

          

  
    
    
    
  




          
        


        
          
            
            
              
            
            
              				Introduction				About OCR



				About PDFs



				About PDF/A



				What OCRmyPDF does



				Why you shouldn’t do this manually



				Limitations



				Similar programs



				Web front-ends












				Release notes



				Installing additional language packs








Usage




				Cookbook



				Advanced features



				Batch processing



				PDF security issues



				Common error messages









            
          
        

      

    

    

      
      
        
          
          ocrmypdf
        
      


      
      
        
          

















  				Docs »



				Introduction



				
        
            
             View page source
          
        
      









  
  



          
           
            
  
Introduction¶




OCRmyPDF is a Python 3 package that adds OCR layers to PDFs.





About OCR¶




Optical character recognition is technology that converts images of typed or handwritten text, such as in a scanned document, to computer text that can be searched and copied.




OCRmyPDF uses Tesseract, the best available open source OCR engine, to perform OCR.







About PDFs¶




PDFs are page description files that attempts to preserve a layout exactly. They  contain vector graphics that can contain raster objects such as scanned images. Because PDFs can contain multiple pages (unlike many image formats) and can contain fonts and text, it is a good formats for exchanging scanned documents.




A PDF page might contain multiple images, even if it only appears to have one image.  Some scanners or scanning software will segment pages into monochromatic text and color regions for example, to improve the compression ratio and appearance of the page.




Rasterizing a PDF is the process of generating an image suitable for display or analyzing with an OCR engine.  OCR engines like Tesseract work with images, not vector objects.







About PDF/A¶




PDF/A is an ISO-standardized subset of the full PDF specification that is designed for archiving (the ‘A’ stands for Archive).  PDF/A differs from PDF primarily by omitting features that would make it difficult to read the file in the future, such as embedded Javascript, video, audio and references to external fonts.  All fonts and resources needed to interpret the PDF must be contained within it. Because PDF/A disables Javascript and other types of embedded content, it is probably more secure.




There are various conformance levels and versions, such as “PDF/A-2b”.




Generally speaking, the best format for scanned documents is PDF/A. Some governments and jurisdictions, US Courts in particular, mandate the use of PDF/A for scanned documents.




Since most people who scan documents are interested in reading them indefinitely into the future, OCRmyPDF generates PDF/A-2b by default.




PDF/A has a few drawbacks.  Some PDF viewers include an alert that the file is a PDF/A, which may confuse some users.  It also tends to produce larger files than PDF, because it embeds certain resources even if they are commonly available. PDF/A files can be digitally signed, but may not be encrypted, to ensure they can be read in the future.  Fortunately, converting from PDF/A to a regular PDF is trivial, and any PDF viewer can view PDF/A.







What OCRmyPDF does¶




OCRmyPDF analyzes each page of a PDF to determine the colorspace and resolution (DPI) needed to capture all of the information on that page without losing content.  It uses Ghostscript to rasterize the page, and then performs on OCR on the rasterized image to create an OCR “layer”. The layer is then grafted back onto the original PDF.




While one can use a program like Ghostscript or ImageMagick to get an image and put the image through Tesseract, that actually creates a new PDF and many details may be lost. OCRmyPDF can produce a minimally changed PDF as output.




OCRmyPDF also some image processing options like deskew which improve the appearance of files and quality of OCR. When these are used, the OCR layer is grafted onto the processed image instead.




By default, OCRmyPDF produces archival PDFs – PDF/A, which are a stricter subset of PDF features designed for long term archives. If regular PDFs are desired, this can be disabled with --output-type pdf.







Why you shouldn’t do this manually¶




A PDF is similar to an HTML file, in that it contains document structure along with images.  Sometimes a PDF does nothing more than present a full page image, but often there is additional content that would be lost.




A manual process could work like either of these:




				Rasterize each page as an image, OCR the images, and combine the output into a PDF. This preserves the layout of each page, but resamples all images (possibly losing quality, increasing file size, introducing compression artifacts, etc.).



				Extract each image, OCR, and combine the output into a PDF. This loses the context in which images are used in the PDF, meaning that cropping, rotation and scaling of pages may be lost. Some scanned PDFs use multiple images segmented into black and white, grayscale and color regions, with stencil masks to prevent overlap, as this can enhance the appearance of a file while reducing file size. Clearly, reassembling these images will be easy. This also loses and text or vector art on any pages in a PDF with both scanned and pure digital content.








In the case of a PDF that is nothing other than a container of images (no rotation, scaling, cropping, one image per page), the second approach can be lossless.




OCRmyPDF uses several strategies depending on input options and the input PDF itself, but generally speaking it rasterizes a page for OCR and then grafts the OCR back onto the original. As such it can handle complex PDFs and still preserve their contents as much as possible.







Limitations¶




OCRmyPDF is limited by the Tesseract OCR engine.  As such it experiences these limitations, as do any other programs that rely on Tesseract:




				The OCR is not as accurate as commercial solutions such as Abbyy.



				It is not capable of recognizing handwriting.



				It may find gibberish and report this as OCR output.



				If a document contains languages outside of those given in the -l LANG arguments, results may be poor.



				It is not always good at analyzing the natural reading order of documents. For example, it may fail to recognize that a document contains two columns and join text across the columns.



				Poor quality scans may produce poor quality OCR. Garbage in, garbage out.



				PDFs that use transparent layers are not currently checked in the test suite, so they may not work correctly.








OCRmyPDF is also limited by the PDF specification:




				PDF encodes the position of text glyphs but does not encode document structure.  There is no markup that divides a document in sections, paragraphs, sentences, or even words (since blank spaces are not represented). As such all elements of document structure including the spaces between words must be derived heuristically.  Some PDF viewers do a better job of this than others.



				Because some popular open source PDF viewers have a particularly hard time with spaces betweem words, OCRmyPDF appends a space to each text element as a workaround. While this mixes document structure with graphical information that ideally should be left to the PDF viewer to interpret, it improves compatibility with some viewers and does not cause problems for better ones.








Ghostscript also imposes some limitations:




				PDFs containing JBIG2-encoded content will be converted to CCITT Group4 encoding, which has lower compression ratios, if Ghostscript PDF/A is enabled.



				PDFs containing JPEG 2000-encoded content will be converted to JPEG encoding, which may introduce compression artifacts, if Ghostscript PDF/A is enabled.



				Ghostscript may transcode grayscale and color images, either lossy to lossless or lossless to lossy, based on an internal algorithm. This behavior can be suppressed by setting --pdfa-image-compression to jpeg or lossless to set all images to one type or the other. Ghostscript has no option to maintain the input image’s format.








OCRmyPDF is currently not designed to be used as a Python API; it is designed to be run as a command line tool. import ocrmypf currently attempts to process the command line on sys.argv at import time so it has side effects that will interfere with its use as a package. The API it presents should not be considered stable.







Similar programs¶




To the author’s knowledge, OCRmyPDF is the most feature-rich and thoroughly tested command line OCR PDF conversion tool. If it does not meet your needs, contributions and suggestions are welcome. If not, consider one of these similar open source programs:




				pdf2pdfocr



				pdfsandwich



				pypdfocr



				pdfbeads











Web front-ends¶




				Nextcloud OCR is a free software plugin for the Nextcloud private cloud software



				OCRmyPDF-web, a micro web-frontend for OCRmyPDF (third-party, not actively maintained)








Bear in mind that OCRmyPDF is not designed to be secure against malware-bearing PDFs (see `Using OCRmyPDF online`_).










           

           
            
           

          

          
  
    
      
        Next 
      
      
         Previous
      
    

  

  


  
    
        © Copyright 2018, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..

    




  

  Built with Sphinx using a theme provided by Read the Docs. 



        

      


    

  

  


  

    
      
      
      

  

  
  
    
  

  
  
  
   







./usr/share/doc/ocrmypdf/html/languages.html




   
  

    
    
      
        
          

          
             ocrmypdf
          

          
          

          

          

  
    
    
    
  




          
        


        
          
            
            
              
            
            
              				Introduction



				Release notes



				Installing additional language packs				Known limitations

















Usage




				Cookbook



				Advanced features



				Batch processing



				PDF security issues



				Common error messages









            
          
        

      

    

    

      
      
        
          
          ocrmypdf
        
      


      
      
        
          

















  				Docs »



				Installing additional language packs



				
        
            
             View page source
          
        
      









  
  



          
           
            
  
Installing additional language packs¶




OCRmyPDF uses Tesseract for OCR, and relies on its language packs for languages other than English.




Tesseract supports most languages.




You can often find packages that provide language packs:




# Display a list of all Tesseract language packs
apt-cache search tesseract-ocr

# Debian/Ubuntu users
apt-get install tesseract-ocr-chi-sim  # Example: Install Chinese Simplified language back








You can then pass the -l LANG argument to OCRmyPDF to give a hint as to what languages it should search for. Multiple
languages can be requested using either -l eng+fre (English and French) or -l eng -l fre.





Known limitations¶




As of v4.2, users of ocrmypdf working languages outside the Latin alphabet should use the following syntax:




ocrmypdf -l eng+gre --output-type pdf --pdf-renderer tesseract








The reasons for this are:




				The latest version of Ghostscript (9.19 as of this writing) has unfixed bugs in Unicode handling that generate invalid character maps, so Ghostscript cannot be used for PDF/A conversion



				The default “hocr” PDF renderer does not handle Asian fonts properly














           

           
            
           

          

          
  
    
      
        Next 
      
      
         Previous
      
    

  

  


  
    
        © Copyright 2018, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..

    




  

  Built with Sphinx using a theme provided by Read the Docs. 



        

      


    

  

  


  

    
      
      
      

  

  
  
    
  

  
  
  
   







./usr/share/doc/ocrmypdf/html/objects.inv








./usr/share/doc/ocrmypdf/html/release_notes.html




   
  

    
    
      
        
          

          
             ocrmypdf
          

          
          

          

          

  
    
    
    
  




          
        


        
          
            
            
              
            
            
              				Introduction



				Release notes				v6.1.2



				v6.1.1



				v6.1.0



				v6.0.0



				v5.7.0



				v5.6.3



				v5.6.2



				v5.6.1



				v5.6.0



				v5.5



				v5.4.4



				v5.4.3



				v5.4.2



				v5.4.1



				v5.4



				v5.3.3



				v5.3.2



				v5.3.1



				v5.3



				v5.2



				v5.1



				v5.0.1



				v5.0



				v4.5.6



				v4.5.5



				v4.5.4



				v4.5.3



				v4.5.2



				v4.5.1



				v4.5



				v4.4.2



				v4.4.1



				v4.4



				v4.3.5



				v4.3.4



				v4.3.3



				v4.3.2



				v4.3.1



				v4.3



				v4.2.5



				v4.2.4



				v4.2.3



				v4.2.2



				v4.2.1



				v4.2



				v4.1.4



				v4.1.3



				v4.1.2



				v4.1



				v4.0.7



				v4.0.6



				v4.0.5



				v4.0.4



				v4.0.3				New features



				Fixes












				v4.0.2				Fixes












				v4.0.1				Fixes












				v4.0				New features



				Fixes



				Changes












				v3.2.1				Changes












				v3.2				New features



				Changes












				v3.1.1				Changes












				v3.1				Changes












				v3.0				New features



				Changes



				Release candidates












				Compatibility notes				Fixes



				Notes and known issues












				v2.2-stable (2014-09-29)












				Installing additional language packs








Usage




				Cookbook



				Advanced features



				Batch processing



				PDF security issues



				Common error messages









            
          
        

      

    

    

      
      
        
          
          ocrmypdf
        
      


      
      
        
          

















  				Docs »



				Release notes



				
        
            
             View page source
          
        
      









  
  



          
           
            
  
Release notes¶




OCRmyPDF uses semantic versioning for its command line interface.




The OCRmyPDF package itself does not contain a public API, although it is fairly stable and breaking changes are usually timed with a major release. A future release will clearly define the stable public API.





v6.1.2¶




				Upgrade to PyMuPDF v1.12.5 which includes a more complete fix to #239.



				Add defusedxml dependency.











v6.1.1¶




				Fix text being reported as found on all pages if PyMuPDF is not installed.











v6.1.0¶




				PyMuPDF is now an optional but recommended dependency, to alleviate installation difficulties on platforms that have less access to PyMuPDF than the author anticipated.  Install OCRmyPDF with pip install ocrmypdf[fitz] to use it to its full potential.



				Fix FileExistsError that could occur if OCR timed out while it was generating the output file. (#218)



				Fix table of contents/bookmarks all being redirected to page 1 when generating a PDF/A (with PyMuPDF).  (Without PyMuPDF the table of contents is removed in PDF/A mode.)



				Fix “RuntimeError: invalid key in dict” when table of contents/bookmarks titles contained the character ). (#239)



				Added a new argument --skip-repair to skip the initial PDF repair step if the PDF is already well-formed (because another program repaired it).











v6.0.0¶




				The software license has been changed to GPLv3. Test resource files and some individual sources may have other licenses.



				OCRmyPDF now depends on PyMuPDF. Including PyMuPDF is the primary reason for the change to GPLv3.



				Other backward incompatible changes				The OCRMYPDF_TESSERACT, OCRMYPDF_QPDF, OCRMYPDF_GS and OCRMYPDF_UNPAPER environment variables are no longer used. Change PATH if you need to override the external programs OCRmyPDF uses.



				The ocrmypdf package has been moved to src/ocrmypdf to avoid issues with accidental import.



				The function ocrmypdf.exec.get_program was removed.



				The deprecated module ocrmypdf.pageinfo was removed.



				The --pdf-renderer tess4 alias for sandwich was removed.












				Fixed an issue where OCRmyPDF failed to detect existing text on pages, depending on how the text and fonts were encoded within the PDF. (#233, #232)



				Fixed an issue that caused dramatic inflation of file sizes when --skip-text --output-type pdf was used. OCRmyPDF now removes duplicate resources such as fonts, images and other objects that it generates. (#237)



				Improved performance of the initial page splitting step. Originally this step was not believed to be expensive and ran in a process. Large file testing revealed it to be a bottleneck, so it is now parallelized. On a 700 page file with quad core machine, this change saves about 2 minutes. (#234)



				The test suite now includes a cache that can be used to speed up test runs across platforms. This also does not require computing checksums, so it’s faster. (#217)











v5.7.0¶




				Fixed an issue that caused poor CPU utilization on machines more than 4 cores when running Tesseract 4. (Related to issue #217.)



				The ‘hocr’ renderer has been improved. The ‘sandwich’ and ‘tesseract’ renderers are still better for most use cases, but ‘hocr’ may be useful for people who work with the PDF.js renderer in English/ASCII languages. (#225)				It now formats text in a matter that is easier for certain PDF viewers to select and extract copy and paste text. This should help macOS Preview and PDF.js in particular.



				The appearance of selected text and behavior of selecting text is improved.



				The PDF content stream now uses relative moves, making it more compact and easier for viewers to determine when two words on the same line.



				It can now deal with text on a skewed baseline.



				Thanks to @cforcey for the pull request, @jbreiden for many helpful suggestions, @ctbarbour for another round of improvements, and @acaloiaro for an independent review.




















v5.6.3¶




				Suppress two debug messages that were too verbose











v5.6.2¶




				Development branch accidentally tagged as release. Do not use.











v5.6.1¶




				Fix issue #219: change how the final output file is created to avoid triggering permission errors when the output is a special file such as /dev/null



				Fix test suite failures due to a qpdf 8.0.0 regression and Python 3.5’s handling of symlink



				The “encrypted PDF” error message was different depending on the type of PDF encryption. Now a single clear message appears for all types of PDF encryption.



				ocrmypdf is now in Homebrew. Homebrew users are advised to the version of ocrmypdf in the official homebrew-core formulas rather than the private tap.



				Some linting











v5.6.0¶




				Fix issue #216: preserve “text as curves” PDFs without rasterizing file



				Related to the above, messages about rasterizing are more consistent



				For consistency versions minor releases will now get the trailing .0 they always should have had.











v5.5¶




				Add new argument --max-image-mpixels. Pillow 5.0 now raises an exception when images may be decompression bombs. This argument can be used to override the limit Pillow sets.



				Fix output page cropped when using the sandwich renderer and OCR is skipped on a rotated and image-processed page



				A warning is now issued when old versions of Ghostscript are used in cases known to cause issues with non-Latin characters



				Fix a few parameter validation checks for -output-type pdfa-1 and pdfa-2











v5.4.4¶




				Fix issue #181: fix final merge failure for PDFs with more pages than the system file handle limit (ulimit -n)



				Fix issue #200: an uncommon syntax for formatting decimal numbers in a PDF would cause qpdf to issue a warning, which ocrmypdf treated as an error. Now this the warning is relayed.



				Fix an issue where intermediate PDFs would be created at version 1.3 instead of the version of the original file. It’s possible but unlikely this had side effects.



				A warning is now issued when older versions of qpdf are used since issues like #200 cause qpdf to infinite-loop



				Address issue #140: if Tesseract outputs invalid UTF-8, escape it and print its message instead of aborting with a Unicode error



				Adding previously unlisted setup requirement, pytest-runner



				Update documentation: fix an error in the example script for Synology with Docker images, improved security guidance, advised pip install --user











v5.4.3¶




				If a subprocess fails to report its version when queried, exit cleanly with an error instead of throwing an exception



				Added test to confirm that the system locale is Unicode-aware and fail early if it’s not



				Clarified some copyright information



				Updated pinned requirements.txt so the homebrew formula captures more recent versions











v5.4.2¶




				Fixed a regression from v5.4.1 that caused sidecar files to be created as empty files











v5.4.1¶




				Add workaround for Tesseract v4.00alpha crash when trying to obtain orientation and the latest language packs are installed











v5.4¶




				Change wording of a deprecation warning to improve clarity



				Added option to generate PDF/A-1b output if desired (--output-type pdfa-1); default remains PDF/A-2b generation



				Update documentation











v5.3.3¶




				Fixed missing error message that should occur when trying to force --pdf-renderer sandwich on old versions of Tesseract



				Update copyright information in test files



				Set system LANG to UTF-8 in Dockerfiles to avoid UTF-8 encoding errors











v5.3.2¶




				Fixed a broken test case related to language packs











v5.3.1¶




				Fixed wrong return code given for missing Tesseract language packs



				Fixed “brew audit” crashing on Travis when trying to auto-brew











v5.3¶




				Added --user-words and --user-patterns arguments which are forwarded to Tesseract OCR as words and regular expressions respective to use to guide OCR. Supplying a list of subject-domain words should assist Tesseract with resolving words. (#165)



				Using a non Latin-1 language with the “hocr” renderer now warns about possible OCR quality and recommends workarounds (#176)



				Output file path added to error message when that location is not writable (#175)



				Otherwise valid PDFs with leading whitespace at the beginning of the file are now accepted











v5.2¶




				When using Tesseract 3.05.01 or newer, OCRmyPDF will select the “sandwich” PDF renderer by default, unless another PDF renderer is specified with the --pdf-renderer argument. The previous behavior was to select --pdf-renderer=hocr.



				The “tesseract” PDF renderer is now deprecated, since it can cause problems with Ghostscript on Tesseract 3.05.00



				The “tess4” PDF renderer has been renamed to “sandwich”. “tess4” is now a deprecated alias for “sandwich”.











v5.1¶




				Files with pages larger than 200” (5080 mm) in either dimension are now supported with --output-type=pdf with the page size preserved (in the PDF specification this feature is called UserUnit scaling). Due to Ghostscript limitations this is not available in conjunction with PDF/A output.











v5.0.1¶




				Fixed issue #169, exception due to failure to create sidecar text files on some versions of Tesseract 3.04, including the jbarlow83/ocrmypdf Docker image











v5.0¶




				Backward incompatible changes





				Support for Python 3.4 dropped. Python 3.5 is now required.



				Support for Tesseract 3.02 and 3.03 dropped. Tesseract 3.04 or newer is required. Tesseract 4.00 (alpha) is supported.



				The OCRmyPDF.sh script was removed.


















				Add a new feature, --sidecar, which allows creating “sidecar” text files which contain the OCR results in plain text. These OCR text is more reliable than extracting text from PDFs. Closes #126.








				New feature: --pdfa-image-compression, which allows overriding Ghostscript’s lossy-or-lossless image encoding heuristic and making all images JPEG encoded or lossless encoded as desired. Fixes #163.








				Fixed issue #143, added --quiet to suppress “INFO” messages








				Fixed issue #164, a typo








				Removed the command line parameters -n and --just-print since they have not worked for some time (reported as Ubuntu bug #1687308)
















v4.5.6¶




				Fixed issue #156, ‘NoneType’ object has no attribute ‘getObject’ on pages with no optional /Contents record.  This should resolve all issues related to pages with no /Contents record.



				Fixed issue #158, ocrmypdf now stops and terminates if Ghostscript fails on an intermediate step, as it is not possible to proceed.



				Fixed issue #160, exception thrown on certain invalid arguments instead of error message











v4.5.5¶




				Automated update of macOS homebrew tap



				Fixed issue #154, KeyError ‘/Contents’ when searching for text on blank pages that have no /Contents record.  Note: incomplete fix for this issue.











v4.5.4¶




				Fix --skip-big raising an exception if a page contains no images (#152) (thanks to @TomRaz)



				Fix an issue where pages with no images might trigger “cannot write mode P as JPEG” (#151)











v4.5.3¶




				Added a workaround for Ghostscript 9.21 and probably earlier versions would fail with the error message “VMerror -25”, due to a Ghostscript bug in XMP metadata handling



				High Unicode characters (U+10000 and up) are no longer accepted for setting metadata on the command line, as Ghostscript may not handle them correctly.



				Fixed an issue where the tess4 renderer would duplicate content onto output pages if tesseract failed or timed out



				Fixed tess4 renderer not recognized when lossless reconstruction is possible











v4.5.2¶




				Fix issue #147. --pdf-renderer tess4 --clean will produce an oversized page containing the original image in the bottom left corner, due to loss DPI information.



				Make “using Tesseract 4.0” warning less ominous



				Set up machinery for homebrew OCRmyPDF tap











v4.5.1¶




				Fix issue #137, proportions of images with a non-square pixel aspect ratio would be distorted in output for --force-ocr and some other combinations of flags











v4.5¶




				Exotic PDFs containing “Form XObjects” are now supported (issue #134; PDF reference manual 8.10), and images they contain are taken into account when determining the resolution for rasterizing



				The Tesseract 4 Docker image no longer includes all languages, because it took so long to build something would tend to fail



				OCRmyPDF now warns about using --pdf-renderer tesseract with Tesseract 3.04 or lower due to issues with Ghostscript corrupting the OCR text in these cases











v4.4.2¶




				The Docker images (ocrmypdf, ocrmypdf-polyglot, ocrmypdf-tess4) are now based on Ubuntu 16.10 instead of Debian stretch				This makes supporting the Tesseract 4 image easier



				This could be a disruptive change for any Docker users who built customized these images with their own changes, and made those changes in a way that depends on Debian and not Ubuntu












				OCRmyPDF now prevents running the Tesseract 4 renderer with Tesseract 3.04, which was permitted in v4.4 and v4.4.1 but will not work











v4.4.1¶




				To prevent a TIFF output error caused by img2pdf >= 0.2.1 and Pillow <= 3.4.2, dependencies have been tightened



				The Tesseract 4.00 simultaneous process limit was increased from 1 to 2, since it was observed that 1 lowers performance



				Documentation improvements to describe the --tesseract-config feature



				Added test cases and fixed error handling for --tesseract-config



				Tweaks to setup.py to deal with issues in the v4.4 release











v4.4¶




				Tesseract 4.00 is now supported on an experimental basis.				A new rendering option --pdf-renderer tess4 exploits Tesseract 4’s new text-only output PDF mode. See the documentation on PDF Renderers for details.



				The --tesseract-oem argument allows control over the Tesseract 4 OCR engine mode (tesseract’s --oem). Use --tesseract-oem 2 to enforce the new LSTM mode.



				Fixed poor performance with Tesseract 4.00 on Linux












				Fixed an issue that caused corruption of output to stdout in some cases



				Removed test for Pillow JPEG and PNG support, as the minimum supported version of Pillow now enforces this



				OCRmyPDF now tests that the intended destination file is writable before proceeding



				The test suite now requires pytest-helpers-namespace to run (but not install)



				Significant code reorganization to make OCRmyPDF re-entrant and improve performance. All changes should be backward compatible for the v4.x series.				However, OCRmyPDF’s dependency “ruffus” is not re-entrant, so no Python API is available. Scripts should continue to use the command line interface.




















v4.3.5¶




				Update documentation to confirm Python 3.6.0 compatibility. No code changes were needed, so many earlier versions are likely supported.











v4.3.4¶




				Fixed “decimal.InvalidOperation: quantize result has too many digits” for high DPI images











v4.3.3¶




				Fixed PDF/A creation with Ghostscript 9.20 properly



				Fixed an exception on inline stencil masks with a missing optional parameter











v4.3.2¶




				Fixed a PDF/A creation issue with Ghostscript 9.20 (note: this fix did not actually work)











v4.3.1¶




				Fixed an issue where pages produced by the “hocr” renderer after a Tesseract timeout would be rotated incorrectly if the input page was rotated with a /Rotate marker



				Fixed a file handle leak in LeptonicaErrorTrap that would cause a “too many open files” error for files around hundred pages of pages long when --deskew or --remove-background or other Leptonica based image processing features were in use, depending on the system value of ulimit -n



				Ability to specify multiple languages for multilingual documents is now advertised in documentation



				Reduced the file sizes of some test resources



				Cleaned up debug output



				Tesseract caching in test cases is now more cautious about false cache hits and reproducing exact output, not that any problems were observed











v4.3¶




				New feature --remove-background to detect and erase the background of color and grayscale images



				Better documentation



				Fixed an issue with PDFs that draw images when the raster stack depth is zero



				ocrmypdf can now redirect its output to stdout for use in a shell pipeline				This does not improve performance since temporary files are still used for buffering



				Some output validation is disabled in this mode




















v4.2.5¶




				Fixed an issue (#100) with PDFs that omit the optional /BitsPerComponent parameter on images



				Removed non-free file milk.pdf











v4.2.4¶




				Fixed an error (#90) caused by PDFs that use stencil masks properly



				Fixed handling of PDFs that try to draw images or stencil masks without properly setting up the graphics state (such images are now ignored for the purposes of calculating DPI)











v4.2.3¶




				Fixed an issue with PDFs that store page rotation (/Rotate) in an indirect object



				Integrated a few fixes to simplify downstream packaging (Debian)				The test suite no longer assumes it is installed



				If running Linux, skip a test that passes Unicode on the command line












				Added a test case to check explicit masks and stencil masks



				Added a test case for indirect objects and linearized PDFs



				Deprecated the OCRmyPDF.sh shell script











v4.2.2¶




				Improvements to documentation











v4.2.1¶




				Fixed an issue where PDF pages that contained stencil masks would report an incorrect DPI and cause Ghostscript to abort



				Implemented stdin streaming











v4.2¶




				ocrmypdf will now try to convert single image files to PDFs if they are provided as input (#15)				This is a basic convenience feature. It only supports a single image and always makes the image fill the whole page.



				For better control over image to PDF conversion, use img2pdf (one of ocrmypdf’s dependencies)












				New argument --output-type {pdf|pdfa} allows disabling Ghostscript PDF/A generation				pdfa is the default, consistent with past behavior



				pdf provides a workaround for users concerned about the increase in file size from Ghostscript forcing JBIG2 images to CCITT and transcoding JPEGs



				pdf preserves as much as it can about the original file, including problems that PDF/A conversion fixes












				PDFs containing images with “non-square” pixel aspect ratios, such as 200x100 DPI, are now handled and converted properly (fixing a bug that caused to be cropped)



				--force-ocr rasterizes pages even if they contain no images				supports users who want to use OCRmyPDF to reconstruct text information in PDFs with damaged Unicode maps (copy and paste text does not match displayed text)



				supports reinterpreting PDFs where text was rendered as curves for printing, and text needs to be recovered



				fixes issue #82












				Fixes an issue where, with certain settings, monochrome images in PDFs would be converted to 8-bit grayscale, increasing file size (#79)



				Support for Ubuntu 12.04 LTS “precise” has been dropped in favor of (roughly) Ubuntu 14.04 LTS “trusty”				Some Ubuntu “PPAs” (backports) are needed to make it work












				Support for some older dependencies dropped				Ghostscript 9.15 or later is now required (available in Ubuntu trusty with backports)



				Tesseract 3.03 or later is now required (available in Ubuntu trusty)












				Ghostscript now runs in “safer” mode where possible











v4.1.4¶




				Bug fix: monochrome images with an ICC profile attached were incorrectly converted to full color images if lossless reconstruction was not possible due to other settings; consequence was increased file size for these images











v4.1.3¶




				More helpful error message for PDFs with version 4 security handler



				Update usage instructions for Windows/Docker users



				Fix order of operations for matrix multiplication (no effect on most users)



				Add a few leptonica wrapper functions (no effect on most users)











v4.1.2¶




				Replace IEC sRGB ICC profile with Debian’s sRGB (from icc-profiles-free) which is more compatible with the MIT license



				More helpful error message for an error related to certain types of malformed PDFs











v4.1¶




				--rotate-pages now only rotates pages when reasonably confidence in the orientation. This behavior can be adjusted with the new argument --rotate-pages-threshold



				Fixed problems in error checking if unpaper is uninstalled or missing at run-time



				Fixed problems with “RethrownJobError” errors during error handling that suppressed the useful error messages











v4.0.7¶




				Minor correction to Ghostscript output settings











v4.0.6¶




				Update install instructions



				Provide a sRGB profile instead of using Ghostscript’s











v4.0.5¶




				Remove some verbose debug messages from v4.0.4



				Fixed temporary that wasn’t being deleted



				DPI is now calculated correctly for cropped images, along with other image transformations



				Inline images are now checked during DPI calculation instead of rejecting the image











v4.0.4¶




Released with verbose debug message turned on. Do not use. Skip to v4.0.5.







v4.0.3¶





New features¶




				Page orientations detected are now reported in a summary comment











Fixes¶




				Show stack trace if unexpected errors occur



				Treat “too few characters” error message from Tesseract as a reason to skip that page rather than
abort the file



				Docker: fix blank JPEG2000 issue by insisting on Ghostscript versions that have this fixed













v4.0.2¶





Fixes¶




				Fixed compatibility with Tesseract 3.04.01 release, particularly its different way of outputting
orientation information



				Improved handling of Tesseract errors and crashes



				Fixed use of chmod on Docker that broke most test cases













v4.0.1¶





Fixes¶




				Fixed a KeyError if tesseract fails to find page orientation information













v4.0¶





New features¶




				Automatic page rotation (-r) is now available. It uses ignores any prior rotation information
on PDFs and sets rotation based on the dominant orientation of detectable text. This feature is
fairly reliable but some false positives occur especially if there is not much text to work with. (#4)



				Deskewing is now performed using Leptonica instead of unpaper. Leptonica is faster and more reliable
at image deskewing than unpaper.











Fixes¶




				Fixed an issue where lossless reconstruction could cause some pages to be appear incorrectly
if the page was rotated by the user in Acrobat after being scanned (specifically if it a /Rotate tag)



				Fixed an issue where lossless reconstruction could misalign the graphics layer with respect to
text layer if the page had been cropped such that its origin is not (0, 0) (#49)











Changes¶




				Logging output is now much easier to read



				--deskew is now performed by Leptonica instead of unpaper (#25)



				libffi is now required



				Some changes were made to the Docker and Travis build environments to support libffi



				--pdf-renderer=tesseract now displays a warning if the Tesseract version is less than 3.04.01,
the planned release that will include fixes to an important OCR text rendering bug in Tesseract 3.04.00.
You can also manually install ./share/sharp2.ttf on top of pdf.ttf in your Tesseract tessdata folder
to correct the problem.













v3.2.1¶





Changes¶




				Fixed issue #47 “convert() got and unexpected keyword argument ‘dpi’” by upgrading to img2pdf 0.2



				Tweaked the Dockerfiles













v3.2¶





New features¶




				Lossless reconstruction: when possible, OCRmyPDF will inject text layers without
otherwise manipulating the content and layout of a PDF page. For example, a PDF containing a mix
of vector and raster content would see the vector content preserved. Images may still be transcoded
during PDF/A conversion.  (--deskew and --clean-final disable this mode, necessarily.)



				New argument --tesseract-pagesegmode allows you to pass page segmentation arguments to Tesseract OCR.
This helps for two column text and other situations that confuse Tesseract.



				Added a new “polyglot” version of the Docker image, that generates Tesseract with all languages packs installed,
for the polyglots among us. It is much larger.











Changes¶




				JPEG transcoding quality is now 95 instead of the default 75. Bigger file sizes for less degradation.













v3.1.1¶





Changes¶




				Fixed bug that caused incorrect page size and DPI calculations on documents with mixed page sizes













v3.1¶





Changes¶




				Default output format is now PDF/A-2b instead of PDF/A-1b



				Python 3.5 and macOS El Capitan are now supported platforms - no changes were
needed to implement support



				Improved some error messages related to missing input files



				Fixed issue #20 - uppercase .PDF extension not accepted



				Fixed an issue where OCRmyPDF failed to text that certain pages contained previously OCR’ed text,
such as OCR text produced by Tesseract 3.04



				Inserts /Creator tag into PDFs so that errors can be traced back to this project



				Added new option --pdf-renderer=auto, to let OCRmyPDF pick the best PDF renderer.
Currently it always chooses the ‘hocrtransform’ renderer but that behavior may change.



				Set up Travis CI automatic integration testing













v3.0¶





New features¶




				Easier installation with a Docker container or Python’s pip package manager



				Eliminated many external dependencies, so it’s easier to setup



				Now installs ocrmypdf to /usr/local/bin or equivalent for system-wide
access and easier typing



				Improved command line syntax and usage help (--help)



				Tesseract 3.03+ PDF page rendering can be used instead for better positioning
of recognized text (--pdf-renderer tesseract)



				PDF metadata (title, author, keywords) are now transferred to the
output PDF



				PDF metadata can also be set from the command line (--title, etc.)



				Automatic repairs malformed input PDFs if possible



				Added test cases to confirm everything is working



				Added option to skip extremely large pages that take too long to OCR and are
often not OCRable (e.g. large scanned maps or diagrams); other pages are still
processed (--skip-big)



				Added option to kill Tesseract OCR process if it seems to be taking too long on
a page, while still processing other pages (--tesseract-timeout)



				Less common colorspaces (CMYK, palette) are now supported by conversion to RGB



				Multiple images on the same PDF page are now supported











Changes¶




				New, robust rewrite in Python 3.4+ with ruffus pipelines



				Now uses Ghostscript 9.14’s improved color conversion model to preserve PDF colors



				OCR text is now rendered in the PDF as invisible text. Previous versions of OCRmyPDF
incorrectly rendered visible text with an image on top.



				All “tasks” in the pipeline can be executed in parallel on any
available CPUs, increasing performance



				The -o DPI argument has been phased out, in favor of --oversample DPI, in
case we need -o OUTPUTFILE in the future



				Removed several dependencies, so it’s easier to install.  We no
longer use:				GNU parallel



				ImageMagick



				Python 2.7



				Poppler



				MuPDF tools



				shell scripts



				Java and JHOVE



				libxml2












				Some new external dependencies are required or optional, compared to v2.x:				Ghostscript 9.14+



				qpdf 5.0.0+



				Unpaper 6.1 (optional)



				some automatically managed Python packages




















Release candidates¶




				rc9:				fix issue #118: report error if ghostscript iccprofiles are missing



				fixed another issue related to #111: PDF rasterized to palette file



				add support image files with a palette



				don’t try to validate PDF file after an exception occurs












				rc8:				fix issue #111: exception thrown if PDF is missing DocumentInfo dictionary












				rc7:				fix error when installing direct from pip, “no such file ‘requirements.txt’”












				rc6:				dropped libxml2 (Python lxml) since Python 3’s internal XML parser is sufficient



				set up Docker container



				fix Unicode errors if recognized text contains Unicode characters and system locale is not UTF-8












				rc5:				dropped Java and JHOVE in favour of qpdf



				improved command line error output



				additional tests and bug fixes



				tested on Ubuntu 14.04 LTS












				rc4:				dropped MuPDF in favour of qpdf



				fixed some installer issues and errors in installation instructions



				improve performance: run Ghostscript with multithreaded rendering



				improve performance: use multiple cores by default



				bug fix: checking for wrong exception on process timeout












				rc3: skipping version number intentionally to avoid confusion with Tesseract



				rc2: first release for public testing to test-PyPI, Github



				rc1: testing release process













Compatibility notes¶




				./OCRmyPDF.sh script is still available for now



				Stacking the verbosity option like -vvv is no longer supported



				The configuration file config.sh has been removed.  Instead, you can
feed a file to the arguments for common settings:








ocrmypdf input.pdf output.pdf @settings.txt








where settings.txt contains one argument per line, for example:




-l
deu
--author
A. Merkel
--pdf-renderer
tesseract









Fixes¶




				Handling of filenames containing spaces: fixed











Notes and known issues¶




				Some dependencies may work with lower versions than tested, so try
overriding dependencies if they are “in the way” to see if they work.



				--pdf-renderer tesseract will output files with an incorrect page size in Tesseract 3.03,
due to a bug in Tesseract.



				PDF files containing “inline images” are not supported and won’t be for the 3.0 release. Scanned
images almost never contain inline images.













v2.2-stable (2014-09-29)¶




OCRmyPDF versions 1 and 2 were implemented as shell scripts. OCRmyPDF 3.0+ is a fork that gradually replaced all shell scripts with Python while maintaining the existing command line arguments. No one is maintaining old versions.




For details on older versions, see the final version of its release notes.










           

           
            
           

          

          
  
    
      
        Next 
      
      
         Previous
      
    

  

  


  
    
        © Copyright 2018, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..

    




  

  Built with Sphinx using a theme provided by Read the Docs. 



        

      


    

  

  


  

    
      
      
      

  

  
  
    
  

  
  
  
   







./usr/share/doc/ocrmypdf/html/search.html




   
  

    
    
      
        
          

          
             ocrmypdf
          

          
          

          

          

  
    
    
    
  




          
        


        
          
            
            
              
            
            
              				Introduction



				Release notes



				Installing additional language packs








Usage




				Cookbook



				Advanced features



				Batch processing



				PDF security issues



				Common error messages









            
          
        

      

    

    

      
      
        
          
          ocrmypdf
        
      


      
      
        
          

















  				Docs »



				Search



				
        
      









  
  



          
           
            
  
  
    
      Please activate JavaScript to enable the search
      functionality.
    




  

  


  
  
  
  


           

           
            
           

          

          
  

  


  
    
        © Copyright 2018, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..

    




  

  Built with Sphinx using a theme provided by Read the Docs. 



        

      


    

  

  


  

    
      
      
      
      

  

  
  
    
  

  
  
  
  
  
  
  
   








./usr/share/doc/ocrmypdf/html/searchindex.js


Search.setIndex({docnames:["advanced","batch","cookbook","errors","index","installation","introduction","languages","release_notes","security"],envversion:53,filenames:["advanced.rst","batch.rst","cookbook.rst","errors.rst","index.rst","installation.rst","introduction.rst","languages.rst","release_notes.rst","security.rst"],objects:{"":{TESSDATA_PREFIX:[0,0,1,"-"]}},objnames:{"0":["std","envvar","environment variable"]},objtypes:{"0":"std:envvar"},terms:{"00alpha":[5,8],"0o666":1,"200x100":8,"break":[0,8],"case":[0,1,2,3,5,6,8,9],"default":[1,2,5,6,7,8,9],"final":[1,2,8,9],"function":[1,8],"import":[1,2,6,8,9],"long":[2,6,8,9],"new":[0,2,6],"null":[5,8],"public":[8,9],"return":[8,9],"short":9,"switch":5,"throw":8,"try":[1,2,3,8],"while":[6,8,9],Added:8,Adding:8,For:[0,1,2,5,6,8,9],LTS:8,One:1,That:9,The:[1,2,5,6,7,8,9],Then:5,There:6,These:[5,8],Use:[2,5,8],Using:[4,6,8],__file__:1,_ocr:1,abbyi:[6,9],abil:8,abort:[3,8],about:[0,1,5,8,9],abov:[2,5,8],acaloiaro:8,accept:8,access:[5,8],accident:8,account:8,accur:6,acrobat:[3,8,9],across:[6,8],activ:[5,6],actual:[6,8,9],add:[4,5,6,8],added:[1,8],addit:[0,2,4,6,8],address:[1,8],adjust:[0,1,8],adob:9,advanc:4,advertis:8,advis:8,after:[2,5,8,9],again:1,against:[6,9],aggress:2,alert:[5,6],alex:5,algorithm:[2,6],alia:[5,8],all:[0,1,3,5,6,7,8,9],allevi:8,allow:[0,4,5,8,9],almost:8,along:[0,6,8],alongsid:5,alpha:[5,8],alphabet:7,alreadi:[0,1,2,4,5,8],also:[0,1,2,5,6,8,9],alter:[2,5],altern:5,although:8,alwai:[0,2,6,8],amazon:9,among:8,amount:[0,9],analyz:6,angl:2,ani:[0,1,2,3,5,6,8,9],annex:9,anoth:[8,9],anticip:8,anyth:1,anywai:9,api:[0,6,8,9],appear:[2,6,8],append:6,appli:[1,2,4,9],applic:0,appreci:1,approach:6,approv:9,apt:[5,7],arab:5,archiv:6,argument:[0,1,2,5,6,7,8,9],argv:[1,6],arm:1,around:[1,8,9],art:6,articl:[1,9],artifact:[2,6],ascii:8,asctim:1,asian:7,asid:9,aspect:8,assist:8,associ:5,assum:[2,5,8],assumpt:0,attach:[1,8,9],attack:9,attempt:[1,2,6,9],attest:9,attribut:8,audio:[6,9],audit:8,author:[1,2,5,6,8,9],authorship:9,auto:[0,8],autom:8,automat:[0,1,2,8,9],automaticali:1,avail:[1,5,6,8,9],averag:9,avoid:[0,2,5,8,9],awar:[5,8],back:[2,6,7,8],background:[2,8],backport:[5,8],backward:8,base:[1,6,8,9],baselin:8,bash:5,basi:8,basic:[4,8],basicconfig:1,batch:4,bear:6,becaus:[1,3,5,6,8,9],been:8,befor:[1,2,3,5,8],begin:[2,8],behavior:[0,1,6,8],being:8,believ:8,best:[4,6,8],better:[0,6,8],betweem:6,between:6,big:[0,8,9],bigfil:0,bigger:8,bilingu:2,bin:[1,5,8],binari:[0,9],bit:[5,8],bitspercompon:8,black:6,blank:[6,8],bomb:8,bookmark:8,bootstrap:5,born:0,both:[0,1,5,6],bottleneck:8,bottom:8,branch:8,brew:[5,8],broke:8,broken:8,bsd:1,buffer:8,bug:[7,8],build:[8,9],built:[2,8],cach:[7,8],calcul:8,call:[5,8],can:[0,1,2,3,4,5,6,7,8,9],cannot:[7,8,9],capabl:[1,6,9],capitan:8,captur:[6,8],cat:3,caus:[6,8],cautiou:8,ccitt:[6,8],certain:[0,5,6,8],certif:4,certifi:9,cffi:5,cfg:0,cforcei:8,chang:[4,6,9],charact:[0,6,7,8],chdir:1,check:[0,2,6,8,9],checksum:8,chi:7,chines:[5,7],chmod:[1,8],choic:9,choos:8,chron:1,clarifi:8,clariti:8,clean:[2,8],cleanli:8,clear:8,clearli:[6,8],client:1,clone:5,close:8,cloud:[6,9],cmd:1,cmyk:8,code:8,color:[6,8,9],colorspac:[6,8],column:[6,8],com:[1,5],combin:[0,2,6,8],command:[1,2,5,6,8,9],comment:8,commerci:6,common:[4,5,8],commonli:6,compact:8,companion:2,compar:8,compat:[5,6],complet:[1,8,9],complex:[1,5,6,9],compress:[2,6,8,9],comput:[6,8],concern:[8,9],confid:8,config:[0,8],configur:[1,5,8],confirm:8,conform:6,confus:[6,8],conjunct:8,connect:9,consequ:8,consid:[1,5,6,9],consider:9,consist:8,construct:2,consult:[1,9],contact:1,contain:[0,1,3,4,5,6,8],content:[0,2,3,6,8],context:6,continu:8,contribut:[1,6],control:[2,4,5,8],conveni:[2,5,8],convers:[2,6,7,8],convert:[0,6,8,9],cookbook:4,copi:[0,1,3,6,8],copyright:8,core:[5,8],corner:8,correct:[8,9],correctli:[6,8],corrupt:[0,3,8],could:[1,2,5,6,8,9],court:6,cpu:[1,5,8],crash:8,creat:[0,1,5,6,8,9],creation:8,creator:8,crop:[6,8],ctbarbour:8,current:[0,1,5,6,8],curv:8,custom:[5,8],damag:[0,8],data:[0,9],databas:9,deal:[1,8],deb:5,debian:[7,8],debug:[5,8],decim:8,decompress:8,decreas:2,defin:[1,8],defusedxml:8,degrad:8,delet:[1,5,8],deliciouspickl:1,denial:9,depend:[1,5,6,8,9],deploi:9,deprec:[0,8],depth:8,deriv:6,describ:[5,8,9],descript:6,descriptor:1,design:[5,6,9],desir:[0,2,5,6,8],deskew:[0,1,2,6,8],destin:[1,8],destroi:0,detail:[6,8],detect:[2,8],determin:[2,5,6,8],deu:8,dev:[5,8],develop:[5,8],devic:1,diagram:8,dict:[0,8],dictionari:[0,8],did:[2,8,9],differ:[3,6,8,9],difficult:[4,5,6],difficulti:8,digit:[0,4,6,8],dimens:8,dir:1,dir_nam:1,direct:[0,5,8],directli:2,directori:[4,5,9],dirnam:1,disabl:[0,1,6,8],discard:0,disclaim:9,discuss:9,disk:9,displai:[0,6,7,8],dispos:9,disrupt:8,distort:8,distribut:5,divid:6,docker:[1,8,9],docker_mount:1,dockerfil:8,document:[0,1,3,6,8,9],documentinfo:8,doe:[0,1,2,5,7,8,9],doing:1,domain:8,domin:8,don:[0,1,3,8],done:[3,5,9],dot:[1,2],download:5,downstream:8,dpcm:2,dpi:[0,2,6,8,9],dpkg:5,dramat:8,draw:[8,9],drawback:6,drop:[0,8],dropbox:5,dsafer:[3,9],due:8,duplic:8,dure:8,each:[0,1,2,6,9],earli:[8,9],earlier:8,easi:[4,6],easier:[5,8],effect:[6,8,9],either:[6,7,8,9],element:6,elif:1,elimin:8,els:1,emb:6,embed:[6,9],empher:9,empti:[8,9],enabl:[5,6],enantiomeri:1,encod:[6,8],encount:9,encrypt:[6,8],end:5,enforc:8,eng:[2,5,7],engin:[0,5,6,8],english:[5,7,8],enhanc:6,enough:0,ensur:[0,2,5,6,9],entrant:8,env:[0,1,5],environ:[0,5,8,9],equival:8,eras:8,error:[1,4,8,9],escap:8,especi:[2,8,9],essenti:9,etc:[6,8],eval:5,even:[0,1,6,8,9],event:1,everi:1,everyth:8,exact:8,exactli:6,examin:9,exampl:[0,1,4,5,6,7,8,9],exce:0,excel:1,except:8,excess:9,exchang:[4,6],exec:[1,8],execut:[5,8,9],exist:[0,4,8,9],exit:[0,8,9],exot:8,expens:8,experi:[2,6,9],experiment:8,explicit:8,exploit:8,express:8,extens:8,extern:[0,6,8],extra:9,extract:[2,6,8],extrem:8,face:9,fail:[3,6,8,9],failur:8,fairli:[1,8],fals:8,faster:8,favor:8,favour:8,featur:[2,4,6],feed:8,few:[6,8],file:[0,1,4,5,6,8,9],file_ext:1,file_list:1,file_noext:1,fileexistserror:8,filemod:1,filenam:[1,4,5,8],filename_ocr:1,fill:8,filter:1,find:[0,1,2,5,6,7,8],finish:1,first:[8,9],fish:5,fitz:8,fix:[0,2,3],flag:[1,5,8],folder:[4,5,8],follow:[0,5,7],font:[2,6,7,8],forc:[0,2,3,8,9],forget:1,fork:8,form:[8,9],format:[1,4,6,8,9],formula:[5,8],fortun:6,forward:8,found:8,fre:[2,7],free:[6,8],freebsd:1,french:[2,5,7],from:[0,1,2,6,8,9],frontend:6,fry:9,full:[0,6,8],full_path:1,full_path_arch:1,full_path_ocr:1,full_path_ocr_arch:1,funcsav:5,fund:1,fundament:1,further:1,futur:[6,8],garbag:6,gather:1,gener:[1,6,7,8,9],german:5,get:[5,6,7,8],get_program:8,getobject:8,gettempdir:9,ghostscript:[0,2,3,5,6,7,8,9],gibberish:6,gid:1,git:5,github:[1,5,8],give:[2,5,7],given:[2,6,8,9],glyph:6,gnu:[1,8],good:6,got:8,govern:6,gplv3:8,gradual:8,graft:[6,9],graphic:[6,8,9],grayscal:[6,8],gre:7,group4:6,group:[1,2],guarante:9,guid:8,guidanc:8,had:8,handl:[6,7,8,9],handler:8,handwrit:6,handwritten:6,happen:3,happi:9,hard:6,hardwar:0,has:[0,2,4,5,6,7,8,9],hassl:5,have:[0,1,2,5,6,8,9],hdd:9,hello:5,help:[0,1,5,8,9],helper:8,here:2,heurist:[6,8],heyarj:5,hidden:[0,3],hide:5,high:[8,9],higher:2,hint:7,hit:8,hocr:[7,8],hocrtransform:8,home:[0,1,5],homebrew:[5,8],host:5,hostil:9,hot:4,how:[4,8],howev:[5,8],html:6,http:5,hundr:[8,9],icc:8,iccprofil:8,ideal:6,ident:9,iec:8,ignor:[1,2,8],imag:[1,3,4,6,8,9],imagemagick:[2,6,8],img2pdf:[2,8],implement:[1,2,8],implic:9,impos:[6,9],improv:[1,4,6,8,9],inch:2,incident:9,includ:[5,6,8,9],incompat:8,incomplet:[3,8],incorrect:[2,8],incorrectli:8,increas:[1,2,6,8],indefinit:6,independ:8,index:4,indic:9,indirect:8,individu:[1,8],infinit:[1,8,9],inflat:8,info:[1,8],inform:[0,1,2,6,8,9],ing:9,initi:8,inject:8,inlin:8,input:[0,1,2,4,5,6,8,9],inquiri:1,insert:[0,1,2,8,9],insid:[5,9],insist:8,instal:[0,1,2,4,8],instanc:[5,9],instead:[6,8],instruct:[5,8],integr:8,intend:8,intention:8,interest:[6,9],interfac:[1,8],interfer:[0,6],intermedi:[8,9],intern:[6,8],internet:9,interpol:0,interpret:[6,9],intranet:9,introduc:6,introduct:4,invalid:[7,8],invalidoper:8,invis:[0,8],iso:[6,9],isol:5,issu:[0,4],its:[2,3,5,6,7,8,9],itself:[6,8],java:[8,9],javascript:[6,9],jbarlow83:[1,5,8],jbig2:[6,8],jbig2dec:5,jbreiden:8,jhove:8,job:[0,2,4,5,6,9],join:6,jonathonf:5,jpeg2000:8,jpeg:[6,8],jpg:2,jurisdict:6,just:[5,8],kei:8,keyerror:8,keyword:8,kill:8,kind:9,knowledg:6,known:9,lai:0,landscap:2,lang:[6,7,8],languag:[0,4,5,6,8],language_model_penalty_non_dict_word:0,language_model_penalty_non_freq_dict_word:0,larg:[1,8,9],larger:[0,6,8],later:[5,8],latest:[5,7,8],latin:[0,7,8],launch:0,layer:[0,3,4,6,8,9],layout:[6,8],lead:8,leak:8,leav:2,left:[6,8],len:1,length:9,leparisien:2,leptonica:[2,5,8],leptonicaerrortrap:8,less:[2,8],let:[0,5,8],level:[1,6,9],libav:5,libavcodec56:5,libavformat56:5,libavutil54:5,libffi:[5,8],libjpeg:5,libpng:5,librari:[1,5,9],libtiff:5,libxml2:[5,8],licens:8,like:[0,1,2,5,6,8,9],limit:[1,8],line:[1,2,5,6,8,9],linear:8,lint:8,linux:[5,8],list:[0,1,5,7,8],load_system_dawg:0,local:[5,8],locat:[0,1,8],log:[1,8],log_fil:1,longer:8,loop:[1,8,9],lose:[0,2,6,9],loss:[0,8],lossi:[0,6,8],lossless:[0,2,6,8],lost:6,lower:[6,8],lstm:[0,8],lxml:8,m_ocr_:1,mac:5,machin:[5,8,9],machineri:8,maco:[1,8],made:8,mai:[0,1,2,4,5,6,8],mainlin:5,maintain:[6,8],major:[1,8],make:[0,1,2,4,6,8,9],malform:[8,9],malwar:[4,6],manag:[5,8],mandat:6,mani:[0,2,5,6,8,9],manipul:8,manner:9,manual:8,map:[0,7,8],mark:9,marker:8,markup:6,mask:[6,8],master:5,match:[2,8],matrix:8,matter:[2,5,8],max:8,maxim:1,mean:[0,1,6,9],meet:6,megapixel:0,mention:5,merg:8,merkel:8,messag:[1,4,8],metadata:8,method:[2,9],micro:6,might:[1,2,5,6,8,9],milk:8,mind:6,minim:6,minimum:8,minor:8,minut:[0,8],misalign:8,miss:[5,8],mit:8,mix:[2,6,8],mkdir:1,mode:[5,8,9],model:8,modern:0,modif:3,modifi:[0,4,5],modifyvm:5,modul:[4,8],monitor:1,monochrom:[2,8],monochromat:6,more:[0,1,2,5,6,8,9],most:[3,6,7,8],move:[1,8],mpixel:8,much:[3,6,8],multi:2,multilingu:8,multipl:[1,2,5,6,7,8,9],multithread:8,mupdf:8,must:[2,5,6,9],myfil:2,name:[0,1,2,5],namespac:8,natur:6,necessari:[1,2],necessarili:8,need:[1,5,6,8,9],network:1,never:8,newer:[0,8],nextcloud:6,nice:9,no_ocr:1,nois:2,noisi:2,non:[0,8],nonetyp:8,normal:[0,2],note:[2,4,5],noth:6,notifi:5,now:[5,8],number:[0,1,5,8,9],object:[0,6,8],observ:8,obtain:8,occur:8,ocr:[1,3,4,5,7,8,9],ocrabl:8,ocrmypdf:[0,1,2,3,5,7,8],ocrmypdf_g:8,ocrmypdf_qpdf:8,ocrmypdf_tesseract:8,ocrmypdf_unpap:8,ocrmypf:6,oem:[0,8],offer:9,offici:[8,9],often:[6,7,8,9],old:[2,8],older:[0,1,5,8],omin:8,omit:[5,6,8],onc:1,one:[1,2,5,6,8,9],ones:[5,6],onli:[0,1,2,5,6,8,9],onlin:[4,6],onto:[0,6,8],open:[1,6,8,9],openjpeg:5,oper:[1,8],optic:6,option:[2,3,4,5,6,8,9],orbit:9,order:[2,6,8,9],orient:[2,8],origin:[0,6,8],other:[1,3,5,6,7,8,9],otherwis:8,out:[0,1,5,6,8],output:[0,1,3,5,6,7,8,9],outputfil:8,outsid:[6,7],over:8,overlap:6,overload:1,overrid:8,overridden:2,overs:8,oversampl:[2,8],overwritten:2,own:[2,5,8,9],owner:9,pack:[2,4,5,8],packag:[1,5,6,7,8],pacman:5,page:[0,4,6,8,9],pageinfo:8,pagesegmod:8,palett:8,paragraph:6,parallel:[1,8],paramet:[0,2,8],paranoia:9,pars:1,parser:[8,9],part:[0,9],parti:6,partial:9,particular:[1,6,8],particularli:[6,8,9],partit:9,pass:[0,3,7,8],password:4,past:8,path:[0,1,5,8,9],pattern:[1,8],pdf2pdfocr:6,pdf:[1,4,5,7,8],pdfa:[0,2,6,8],pdfbead:6,pdfbox:9,pdfimag:2,pdfinfo:1,pdfsandwich:6,pdftk:3,pdfwrite:[0,3],peopl:[6,8],per:[0,2,6,8,9],perform:[0,1,2,6,8,9],permiss:[5,8],permit:[0,8,9],phase:8,photo:2,pick:8,pillow:[5,8],pin:8,pip3:5,pip:[1,5,8],pipe:[1,2],pipelin:[2,8],pixel:[2,8,9],place:[0,1],plain:8,plan:[5,8],platform:[5,8],plenti:9,plugin:6,png:[2,8,9],polyglot:[5,8],poor:[2,6,8],popen:1,poppler:8,popular:6,portrait:2,portugues:5,posit:[2,6,8],possibl:[0,1,2,5,6,8,9],postl:2,potenti:[0,2,8,9],power:1,ppa:[5,8],practic:[2,9],pre:9,precis:8,precompos:0,prefer:5,prefix:[1,2],preflight:3,preprocess:0,present:[5,6],preserv:[2,6,8,9],prevent:[6,8,9],preview:8,previou:[1,2,3,8],previous:[0,1,5,8],primari:8,primarili:6,print:[1,8,9],printabl:[0,3],printf:1,prior:[1,8],privat:[5,6,8],probabl:[3,5,6,8],problem:[6,8],proc:1,proce:8,proceed:8,process:[0,3,4,5,6,8],processor:1,produc:[0,1,6,8],product:1,profession:9,profil:8,program:[1,2,3,5,8,9],project:[1,8],prompt:5,properli:[1,7,8],properti:5,proport:[8,9],protect:4,provid:[0,1,5,7,8,9],provis:9,pull:[5,8],pure:6,purpos:8,put:6,pwd:5,pymupdf:8,pypa:5,pypdf2:9,pypdfocr:6,pypi:[5,8],pytest:8,python3:[1,5],python:[1,5,6,8,9],qpdf:[0,1,3,5,8,9],quad:8,qualiti:[0,4,6,8],quantiz:8,queri:8,queu:1,quiet:8,quirk:1,quit:[3,9],rais:8,ram:[1,9],ran:[3,8],rang:2,raster:[0,2,3,6,8,9],rather:[0,1,8],ratio:[6,8,9],raw:5,rc1:8,rc2:8,rc3:8,rc4:8,rc5:8,rc6:8,rc7:8,rc8:8,rc9:8,read:[1,5,6,8],reader:9,readi:5,real:9,realpath:1,reason:[0,1,7,8],reassembl:6,rebuild:2,recent:8,recip:[1,2],recogn:[6,8,9],recognit:6,recommend:[8,9],reconstruct:[8,9],reconvert:9,record:8,recov:8,recurs:9,redact:0,redirect:[8,9],redo:0,reduc:[2,6,8],reentrant:1,refer:[6,8,9],regardless:0,region:6,regress:8,regular:[6,8,9],reinterpret:8,reject:8,rel:[1,8,9],relai:8,relat:[1,8],releas:[4,5],reli:[6,7],reliabl:[8,9],remain:[8,9],remov:[0,2,5,8,9],renam:8,render:[4,7,8],reorgan:8,repair:[1,3,8,9],replac:[1,5,8],report:[6,8,9],repositori:5,repres:6,represent:5,reproduc:8,request:[0,7,8],requir:[0,5,8],resampl:[2,6],resembl:5,resolut:[2,6,8],resolv:8,resourc:[6,8],respect:8,restor:9,result:[1,2,6,8],rethrownjoberror:8,returncod:1,reveal:8,review:[2,8],rewrit:[3,8],rgb:8,rich:[6,9],right:1,robust:8,root:[1,9],rotat:[6,8],roughli:8,round:8,rout:5,ruffu:[1,8],rule:9,run:[0,1,2,3,6,8,9],runner:8,runtimeerror:8,russian:5,safe:9,safer:8,sai:9,said:9,same:[1,2,8],sampleus:5,sandwich:8,sanit:9,save:[8,9],scale:[6,8],scan:[0,1,4,6,8],scanner:[1,6,9],script:[5,8],script_dir:1,sdevic:3,search:[0,1,4,6,7,8],searchabl:[0,3,9],second:[0,6],section:6,secur:[4,6,8],see:[2,6,8],seem:[0,5,8],segment:[6,8],select:[0,8,9],semant:8,send:9,sent:[1,9],sentenc:6,separ:5,seri:8,server:[1,9],servic:[1,4],set:[1,2,6,8,9],setup:8,sever:[1,6,8,9],share:8,sharp2:8,shell:[1,5,8],shortcom:2,should:[1,2,5,6,7,8,9],show:8,shutil:1,side:[6,8,9],sidecar:[2,8],sign:[6,9],signatur:4,signific:[8,9],sim:7,similar:9,simpl:1,simpli:5,simplifi:[5,7,8],simultan:8,sinc:[1,2,6,8],singl:[1,2,5,8,9],situat:[0,8],size:[2,6,8,9],skew:8,skip:[1,3,5,8,9],small:9,softwar:[2,5,6,8,9],solut:6,some:[0,1,2,5,6,8,9],someon:9,someth:[2,8],sometim:[3,6,9],sourc:[1,6,8,9],space:[6,8,9],spanish:5,speak:6,special:8,specif:[5,6,8,9],specifi:[0,2,5,8,9],speed:8,spent:0,split:[8,9],splitext:1,squar:8,src:[0,8],srgb:8,ssd:9,stabl:6,stack:8,stand:6,standard:[5,6,9],start:[1,5],start_dir:1,state:8,stderr:1,stdin:8,stdout:[1,8],stencil:[6,8],step:[1,2,5,8],still:[6,8,9],stop:[5,8],storag:[1,5],store:[4,8,9],strategi:6,stream:[5,8],stretch:[5,8],strftime:1,stricter:6,string:1,strip:9,structur:[0,6,9],subdir:1,subdirectori:1,subject:8,subprocess:[1,8],subset:6,succe:9,success:2,successfulli:5,sudo:5,suffer:2,suffici:8,suggest:[2,3,6,8],suit:[6,8],suitabl:6,sum:2,summari:8,superus:5,suppli:8,support:[1,5,7,8],suppress:[6,8],symlink:8,synolog:8,syntax:[5,7,8,9],sys:[1,6],system:[0,1,5,8],tabl:8,tag:[1,5,8],take:[1,2,8,9],taken:8,tap:[5,8],task:[1,8],technolog:6,tell:[1,3,5],temp:2,tempfil:9,temporari:[5,8],tend:[6,8],term:6,termin:[8,9],tess4:[5,8],tessdata:8,tessdata_prefix:0,tesseract4:0,tesseract:[2,5,6,7,8,9],test:[0,5,6,8],text:[0,1,4,5,6,8],than:[0,1,5,6,7,8],thank:8,thei:[1,6,8,9],them:[1,2,3,4,6,8,9],themselv:9,thi:[0,1,2,3,5,7,8,9],third:6,thoroughli:6,those:[6,8,9],thousand:1,thread:1,three:[0,5],threshold:[2,8],through:[0,1,3,6,9],thrown:8,thumb:9,tiff:[2,8],tighten:8,time:[1,2,6,8,9],timeout:[0,2,8],timestamp:1,timestamp_ocr:1,titl:8,tmpdir:9,told:1,tomraz:8,too:8,took:8,tool:[3,6,8,9],top:[0,5,8],total:9,trace:[1,8],trail:8,train:0,transcod:[0,2,6,8],transfer:8,transform:[2,8],transpar:6,travi:8,treat:8,tree:4,tri:3,trigger:[1,8],trivial:[6,9],truncat:3,trust:9,trusti:[5,8],ttf:8,turn:8,tweak:8,two:[1,6,8,9],txt:[2,8],type:[0,1,2,6,7,8],typo:8,ubuntu:[7,8],uid:1,ulimit:[1,8],unclear:0,uncommon:8,uncompress:9,undesir:2,unexpect:8,unfix:7,unfortun:[1,4],unicod:[7,8],uninstal:[5,8],unix:5,unless:8,unlik:[6,8],unlist:8,unnecessarili:2,unpap:[0,2,5,8],unpaper_6:5,untap:5,updat:[1,5,8],upgrad:[5,8],upload:9,uppercas:8,url:9,usag:[4,8],use:[0,1,2,3,5,6,7,8,9],used:[0,2,5,6,7,8,9],useful:[0,1,3,8],user:[0,1,2,5,6,7,8,9],userunit:8,uses:[0,1,2,5,6,7,8],using:[0,1,2,5,7,8,9],usr:[1,8],usual:[0,8,9],utf:8,util:8,valid:[4,8],valu:8,vaq0kbwi6e6au80:5,variabl:[8,9],varianc:2,variat:1,variou:6,vboxmanag:5,vector:[0,2,3,6,8,9],venv:5,verbos:[5,8],verbositylevel:5,version:[0,1,2,5,6,7,8,9],via:1,viabl:[5,9],video:[6,9],view:[6,9],viewer:[6,8],virtual:[5,9],virtualbox:5,virus:9,visibl:8,visual:[2,9],vmerror:8,volum:5,vshn:5,vulner:9,vvv:8,wai:[1,8,9],walk:1,want:[0,2,3,8],warn:[0,8],warranti:9,wasn:8,watch:4,watch_src_path:1,watchdog:1,watchman:1,watchmedo:1,watermark:3,wear:9,web:9,websit:9,welcom:6,well:[2,8,9],were:[0,2,8],wget:5,what:7,whatev:5,when:[2,5,6,8,9],whenev:[0,1],where:[1,2,5,8,9],which:[0,1,2,5,6,8,9],white:6,whitespac:8,who:[5,6,8],whoever:9,whole:8,wide:[5,8],wild:9,window:8,wish:[0,1,5],within:[6,8],without:[0,1,2,3,6,8,9],won:8,wonder:5,word:[0,6,8],work:[0,1,2,3,5,6,7,8,9],workaround:[6,8],world:5,worth:9,would:[6,8,9],wrapper:8,writabl:[5,8],write:[1,5,7,8],wrong:8,www:5,x86:[1,5],xml:[8,9],xmp:8,xobject:8,yet:5,you:[0,1,2,3,5,7,8,9],your:[1,2,3,5,6,8,9],yourvm:5,zero:8,zlib1g:5},titles:["Advanced features","Batch processing","Cookbook","Common error messages","OCRmyPDF documentation","Installation","Introduction","Installing additional language packs","Release notes","PDF security issues"],titleterms:{"default":0,"new":8,LTS:5,The:0,Using:9,about:6,actual:2,add:2,addit:7,advanc:0,all:2,alreadi:3,altern:[1,9],api:1,archlinux:5,basic:2,batch:1,candid:8,caveat:1,certif:9,chang:[0,8],color:2,commerci:9,common:3,compat:8,configur:0,contain:[2,9],control:0,convert:2,cookbook:2,correct:2,cpu:9,creat:2,crook:2,debian:5,digit:9,directori:1,diskstat:1,docker:5,document:[2,4],doe:6,don:2,end:6,english:2,error:3,exampl:2,featur:[0,8],file:[2,3],filenam:3,fix:8,folder:1,from:5,front:6,grayscal:2,has:3,head:5,help:2,hocr:0,hot:1,how:9,huge:1,imag:[0,2,5],improv:2,indic:4,input:3,instal:[5,7],introduct:6,issu:[8,9],job:1,jpeg:2,known:[7,8],languag:[2,7],layer:2,limit:[0,6,7,9],maco:5,mai:9,malwar:9,manual:[5,6],messag:3,modifi:2,newer:5,note:8,ocr:[0,2,6],ocrmypdf:[4,6,9],onlin:9,option:0,other:[0,2],output:2,overrid:0,pack:7,page:[2,3],password:9,pdf:[0,2,3,6,9],place:2,process:[1,2,9],produc:2,program:[0,6],protect:9,qualiti:2,redo:2,releas:8,render:0,requir:9,revis:5,rotat:2,run:5,sampl:1,sandwich:0,scan:2,script:1,secur:9,servic:9,shouldn:6,signatur:9,similar:6,size:0,skew:2,skip:0,sourc:5,stabl:8,standard:2,storag:9,support:0,synolog:1,tabl:4,temporari:9,tesseract:0,text:[2,3],than:2,thi:6,time:0,timeout:9,tree:1,ubuntu:5,usag:9,valid:3,variabl:0,watch:1,web:6,what:6,when:0,why:6,window:5,you:6}})









./usr/share/doc/ocrmypdf/html/security.html




   
  

    
    
      
        
          

          
             ocrmypdf
          

          
          

          

          

  
    
    
    
  




          
        


        
          
            
            
              
            
            
              				Introduction



				Release notes



				Installing additional language packs








Usage




				Cookbook



				Advanced features



				Batch processing



				PDF security issues				PDFs may contain malware



				How OCRmyPDF processes PDFs



				Using OCRmyPDF online or as a service				Limiting CPU usage



				Temporary storage requirements



				Timeouts



				Commercial alternatives












				Password protection, digital signatures and certification












				Common error messages









            
          
        

      

    

    

      
      
        
          
          ocrmypdf
        
      


      
      
        
          

















  				Docs »



				PDF security issues



				
        
            
             View page source
          
        
      









  
  



          
           
            
  
PDF security issues¶





OCRmyPDF should only be used on PDFs you trust. It is not designed to protect you against malware.





Recognizing that many users have an interest in handling PDFs and applying OCR to PDFs they did not generate themselves, this article discusses the security implications of PDFs and how users can protect themselves.




The disclaimer applies: this software has no warranties of any kind.





PDFs may contain malware¶




PDF is a rich, complex file format. The official PDF 1.7 specification, ISO 32000:2008, is hundreds of pages long and references several annexes each of which are similar in length. PDFs can contain video, audio, XML, JavaScript and other programming, and forms. In some cases, they can open internet connections to pre-selected URLs. All of these possible attack vectors.




In short, PDFs may contain viruses.




This article describes a high-paranoia method which allows potentially hostile PDFs to be viewed and rasterized safely in a disposable virtual machine. A trusted PDF created in this manner is converted to images and loses all information making it searchable and losing all compression. OCRmyPDF could be used restore searchability.







How OCRmyPDF processes PDFs¶




OCRmyPDF must open and interpret your PDF in order to insert an OCR layer. First, it runs all PDFs through qpdf, a program that repairs PDFs with syntax errors. This is done because, in the author’s experience, a significant number of PDFs in the wild especially those created by scanners are not well-formed files. qpdf makes it more likely that OCRmyPDF will succeed, but offers no security guarantees. qpdf is also used to split the PDF into single page PDFs.




After qpdf, OCRmyPDF examines each page using PyPDF2. This library also has no warranties or guarantees. OCRmyPDF works with qpdf 5.0 and up, but version 7.0 is recommended because of known security vulnerabilities in early versions.




Finally, OCRmyPDF rasterizes each page of the PDF using Ghostscript in -dSAFER mode.




Depending on the options specified, OCRmyPDF may graft the OCR layer into the existing PDF or it may essentially reconstruct (“re-fry”) a visually identical PDF that may be quite different at the binary level. That said, OCRmyPDF is not a tool designed for sanitizing PDFs.







Using OCRmyPDF online or as a service¶




OCRmyPDF should not be deployed as a public-facing service, such as a website where a potential attacker could upload a PDF of their choice for OCR. OCRmyPDF is not designed to be secure against PDF malware. Another concern is PDFs specifically designed to be a denial of service attack: PDFs can contain recursive data structures that sometimes send parsers into infinite loops, and issue complex graphics drawing commands.




Setting aside these concerns, a side effect of OCRmyPDF is it may incidentally sanitize PDFs that contain malware. It runs qpdf to repair the PDF, which could correct malformed PDF structures that are part of an attack. When PDF/A output is selected (the default), the input PDF is partially reconstructed by Ghostscript. When --force-ocr is used, all pages are rasterized and reconverted to PDF, which could remove malware in embedded images. No guarantees.




OCRmyPDF should be relatively safe to use in a trusted intranet, with some considerations:





Limiting CPU usage¶




OCRmyPDF will attempt to use all available CPUs and storage, so executing nice ocrmypdf or limiting the number of jobs with the -j argument may ensure the server remains available. Another option would be run OCRmyPDF jobs inside a Docker container, a virtual machine, or a cloud instance, which can impose its own limits on CPU usage and be terminated “from orbit” if it fails to complete.







Temporary storage requirements¶




OCRmyPDF will use a large amount of temporary storage for its work, proportional to the total number of pixels needed to rasterize the PDF. The raster image of a 8.5×11” color page at 300 DPI takes 25 MB uncompressed; OCRmyPDF saves its intermediates as PNG, but that still means it requires about 9 MB per intermediate based on average compression ratios. Multiple intermediates per page are also required, depending on the command line given. A rule of thumb would be to allow 100 MB of temporary storage per page in a file – meaning that a small cloud servers or small VM partitions should be provisioned with plenty of extra space, if say, a 500 page file might be sent.




To check temporary storage usage on actual files, run ocrmypdf -k ... which will preserve and print the path to temporary storage when the job is done.




To change where temporary files are stored, change the TMPDIR environment variable for ocrmypdf’s environment. (Python’s tempfile.gettempdir() returns the root directory in which temporary files will be stored.) For example, one could redirect TMPDIR to a large RAM disk to avoid wear on HDD/SSD and potentially improve performance. On Amazon Web Services, TMPDIR can be set to empheral storage.







Timeouts¶




To prevent excessively long OCR jobs consider setting --tesseract-timeout and/or --skip-big arguments. --skip-big is particularly helpful if your PDFs include documents such as reports on standard page sizes with large images attached - often large images are not worth OCR’ing anyway.







Commercial alternatives¶




The author also provides professional services that include OCR and building databases around PDFs, and is happy to provide consultation.




Abbyy Cloud OCR is a viable commercial alternative with a web services API.









Password protection, digital signatures and certification¶




Password protected PDFs usually have two passwords, and owner and user password. When the user password is set to empty, PDF readers will open the file automatically and marked it as “(SECURED)”. While not as reliable as a digital signature, this indicates that whoever set the password approved of the file at that time. When the user password is set, the document cannot be viewed without the password.




Either way, OCRmyPDF does not remove passwords from PDFs and exits with an error on encountering them.




qpdf, one of OCRmyPDF’s dependencies, can remove passwords. If the owner and user password are set, a password is required for qpdf. If only the owner password is set, then the password can be stripped, even if one does not have the owner password.




After OCR is applied, password protection is not permitted on PDF/A documents but the file can be converted to regular PDF.




Many programs exist which are capable of inserting an image of someone’s signature. On its own, this offers no security guarantees. It is trivial to remove the signature image and apply it to other files. This practice offers no real security.




Important documents can be digitally signed and certified to attest to their authorship. OCRmyPDF cannot do this. Open source tools such as pdfbox (Java) have this capability as does Adobe Acrobat.










           

           
            
           

          

          
  
    
      
        Next 
      
      
         Previous
      
    

  

  


  
    
        © Copyright 2018, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0..

    




  

  Built with Sphinx using a theme provided by Read the Docs. 



        

      


    

  

  


  

    
      
      
      

  

  
  
    
  

  
  
  
   







./usr/share/doc/ocrmypdf-doc/NEWS.Debian.gz


./usr/share/doc/ocrmypdf-doc/NEWS.Debian



ocrmypdf (6.1.2-1) unstable; urgency=low

  The OCRMYPDF_TESSERACT, OCRMYPDF_QPDF, OCRMYPDF_GS and OCRMYPDF_UNPAPER
  environment variables are no longer respected.  Use the PATH
  environment variable, or other means, to override the external
  programs OCRmyPDF uses.

 -- Sean Whitton <spwhitton@spwhitton.name>  Sat, 31 Mar 2018 09:55:11 -0700















./usr/share/doc/ocrmypdf-doc/changelog.Debian.gz


./usr/share/doc/ocrmypdf-doc/changelog.Debian



ocrmypdf (6.1.2-1ubuntu1) bionic; urgency=medium

  * XFAIL tests failing on big-endian architectures,
    see Debian bug #849094

 -- Graham Inggs <ginggs@ubuntu.com>  Tue, 24 Apr 2018 21:49:47 +0000

ocrmypdf (6.1.2-1) unstable; urgency=low

  * New upstream release (Closes: #888917).
  * Various updates to d/copyright due to project relicensing and source
    tree rearrangement.
    - Additionally update upstream contact e-mail address.
    - Additionally use https for Format: field.
  * Add python3-defusedxml build-dep.
  * Drop python3-pytest-xdist autopkgtest dependency.
  * Drop SETUPTOOLS_SCM_PRETEND_VERSION hack from d/rules.
    Obsoleted by upstream changes.
  * Update override_dh_auto_build for source tree rearrangement.
  * Update d/tests/control for source tree rearrangement.
  * Add README.Debian about the lack of PyMuPDF support.
  * Add debian/NEWS to detail breaking changes in command line interface.
    Breaking changes in the ocrmypdf library are not detailed because
    ocrmypdf is not considered to provide a stable public API.
  * Expand reasoning in first bullet point of 5.5-2 changelog entry.
  * Patch setup.py to remove addopts key under tool:pytest section.
    The '-n' command line option is not supported by recent pytest.

 -- Sean Whitton <spwhitton@spwhitton.name>  Sat, 31 Mar 2018 11:30:50 -0700

ocrmypdf (5.5-2) unstable; urgency=medium

  * Disable test suite at package build time.
    Rely on autopkgtest instead.  The test suite now takes a prohibitively
    long time to run; upstream expects it to be run after OCRmyPDF is
    installed so running it during the build relies on fragile code in
    d/rules; and it requires a number of heavy build dependencies which
    makes it less convenient to build the package, and to backport the
    package to Debian stable.
  * Move test suite dependencies d/control -> d/tests/control.
  * Set PYBUILD_INSTALL_ARGS to pass --force to setup.py.
    This prevents the build from aborting because tools like unpaper, qpdf
    etc. are not installed.  These programs are not actually needed to
    build the package.
  * Demote unpaper Depends -> Recommends.
    Upstream considers it to be optional.
  * Add --locale to help2man call in gen-man-page target.
  * Regenerate manpage.

 -- Sean Whitton <spwhitton@spwhitton.name>  Sat, 27 Jan 2018 12:10:23 -0700

ocrmypdf (5.5-1) unstable; urgency=medium

  * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name>  Sat, 20 Jan 2018 12:22:12 -0700

ocrmypdf (5.4.4-1) unstable; urgency=medium

  * New upstream release.
  * Add new build-dep for test suite: python3-pytest-timeout.
  * Update sed(1) call in override_dh_auto_build for changes to __init__.py.
  * Update d/copyright.
    - Upstream have listed Julien Pfefferkorn in LICENSE.rst but the diff
      between upstream releases shows that he holds copyright on
      hocrtransform.py alone.  Thus, he is not listed under "Files: *".
  * Declare compliance with Debian Policy 4.1.2.

 -- Sean Whitton <spwhitton@spwhitton.name>  Sat, 16 Dec 2017 11:48:57 -0700

ocrmypdf (5.4-1) unstable; urgency=medium

  * New upstream release.
  * Drop Testsuite: field.
    See Lintian tag unnecessary-testsuite-autopkgtest-header.
  * Bump standards version to 4.1.1 (no changes required).

 -- Sean Whitton <spwhitton@spwhitton.name>  Sat, 14 Oct 2017 10:46:45 -0700

ocrmypdf (5.3.2-1) unstable; urgency=medium

  * New upstream release (LP: #1687308).
    - New test suite dependencies: pytest-helpers-namespace; pytest-cov;
      pytest-xdist
  * d/rules:
    - update path to upstream's release notes
    - use $DEB_VERSION_UPSTREAM instead of dpkg-parsechangelog
    - export LC_ALL=C.UTF-8
      The upstream build (and especially test suite) now requires a
      Unicode locale.
      For general information: https://bugs.python.org/issue19846
  * d/copyright:
    - Drop stanza for OCRmyPDF.sh.
      No longer included in upstream's release.
    - Merge stanzas for James R. Barlow & "The OCRmyPDF Authors".
    - Add entries for poster.pdf, overlay.pdf, baiona*.png.
    - Add stanza for pdfa.py.
    - Bump copyright years.
  * Drop patch to test_main.py.
  * Backport upstream commit 82ebd8e to fix a failing test.
  * Bump standards version to 4.1.0 (no changes required).

 -- Sean Whitton <spwhitton@spwhitton.name>  Fri, 01 Sep 2017 13:51:02 -0700

ocrmypdf (4.3.5-3) unstable; urgency=high

  * Backport upstream's workaround for Ghostscript 9.20 "VMerror (-25)"
    (upstream commit e71e8ca) (Closes: #861574).

 -- Sean Whitton <spwhitton@spwhitton.name>  Sun, 30 Apr 2017 16:21:55 -0700

ocrmypdf (4.3.5-2) unstable; urgency=medium

  * Remove restriction on python3-pil build-dep & dep.
    OCRmyPDF works with both pillow 3.4.2 and pillow 4.0.0.  The
    restriction was to avoid python3-pil 4.0.0-1 and 4.0.0-2, which are no
    longer in any Debian suite.

 -- Sean Whitton <spwhitton@spwhitton.name>  Tue, 24 Jan 2017 11:50:32 -0700

ocrmypdf (4.3.5-1) unstable; urgency=medium

  * New upstream release.
  * Tighten python3-pil build-dep & dep to >= 4.0.0-3 (Closes: #851011).

 -- Sean Whitton <spwhitton@spwhitton.name>  Wed, 11 Jan 2017 14:21:08 -0700

# For older changelog entries, run 'apt-get changelog ocrmypdf-doc'















./usr/share/doc/ocrmypdf-doc/copyright


Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: OCRmyPDF
Upstream-Contact: James R. Barlow <barlow.jim@gmail.com>
Source: https://github.com/jbarlow83/OCRmyPDF
Files-Excluded: tests/resources/milk.pdf

Files: *
Copyright:
 (C) 2013-2017 The OCRmyPDF Authors
 (C) 2013-2016, 2015-2017 2016, 2017, 2017-2018, 2018 James R. Barlow
License: GPL-3+

Files: docs tests/resources/*
Copyright: (C) 2013-2018 James R. Barlow
License: CC-BY-SA-4.0

Files: src/ocrmypdf/hocrtransform.py
Copyright: (C) 2010 Jonathan Brinley <jonathanbrinley@gmail.com>
 (C) 2013-14 Julien Pfefferkorn
 (C) 2015-16 James R. Barlow
License: Expat

Files: src/ocrmypdf/pdfa.py
Copyright: (C) 2015 James R. Barlow
 (C) 1986-2017 The authors of GhostScript
License: GPL-3+

Files: src/ocrmypdf/_unicodefun.py
Copyright: (C) 2014 Armin Ronacher
 (C) 2017 James R. Barlow
License: BSD-3-clause

Files: tests/spoof/*
Copyright: (C) 2016, 2017, 2016-2018 James R. Barlow
License: Expat

Files: tests/resources/graph.pdf tests/resources/graph_ocred.pdf
Copyright: Public domain
License: public-domain
 Released into the public domain by author; see:
 <https://en.wikipedia.org/wiki/File:Pandas_text_analysis.png>.

Files: tests/resources/c02-22.pdf
 tests/resources/congress.jpg
 tests/resources/multipage.pdf
 tests/resources/palette.pdf
 tests/resources/jbig2.pdf
 tests/resources/encrypted_algo4.pdf
Copyright: Public domain
License: public-domain
 Copyright on these files has expired.

Files: tests/resources/LinnSequencer.jpg
 tests/resources/linn.pdf
 tests/resources/linn.txt
 tests/resources/ccitt.pdf
 tests/resources/cardinal.pdf
 tests/resources/skew.pdf
 tests/resources/rotated_skew.pdf
 tests/resources/skew-encrypted.pdf
 tests/resources/poster.pdf
Copyright: (C) 1985 Forat Electronics
License: GFDL-1.2+ or CC-BY-SA-3.0

Files: tests/resources/lichtenstein.pdf
Copyright: (C) 2001 Andreas Tille
 (C) 2007 Alessio Damato
License: GFDL-1.2+ or CC-BY-SA-3.0

Files: tests/resources/masks.pdf
Copyright: held by the contributors to the German Wikipedia article "Linux"
 see: https://de.wikipedia.org/w/index.php?title=Linux&action=history
 (masks.pdf generated from Wikipedia article as of 2016-08-24)
License: CC-BY-SA-3.0

Files: tests/resources/epson.pdf
Copyright: held by the contributors to the Wikipedia article "Optical character recognition"
 see: https://en.wikipedia.org/w/index.php?title=Optical_character_recognition&action=history
 (epson.pdf generated from Wikipedia article as of 2016-09-14)
License: CC-BY-SA-3.0

Files: tests/resources/typewriter.png tests/resources/2400dpi.pdf
Copyright: (C) 2005 Ellywa
License: GFDL-1.2+ or CC-BY-SA-1.0 or CC-BY-SA-2.0 or CC-BY-SA-2.5 or CC-BY-SA-3.0

Files: tests/resources/overlay.pdf
Copyright: (C) 2017 Max Anderson
License: Expat

Files: tests/resources/baiona*.png
Copyright: (C) 2014 Euskaldunaa
License: CC-BY-SA-4.0

Files: tests/resources/vector.pdf
Copyright: (C) 2018 Catscratch
License: Expat

Files: src/ocrmypdf/data/sRGB.icc
Copyright:  Kai-Uwe Behrmann <www.behrmann.name>
            Marti Maria <www.littlecms.com>
            Photogamut <www.photogamut.org>
            Graeme Gill <www.argyllcms.com>
            ColorSolutions <www.basICColor.com>
License: Zlib

Files: debian/*
Copyright: (C) 2016 Sean Whitton <spwhitton@spwhitton.name>
License: GPL-3+

License: GPL-3+
 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or (at
 your option) any later version.
 .
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.
 .
 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>
 .
 On Debian systems, the complete text of the GNU General
 Public License version 3 can be found in "/usr/share/common-licenses/GPL-3".

License: Expat
 Permission is hereby granted, free of charge, to any person obtaining
 a copy of this software and associated documentation files (the
 "Software"), to deal in the Software without restriction, including
 without limitation the rights to use, copy, modify, merge, publish,
 distribute, sublicense, and/or sell copies of the Software, and to
 permit persons to whom the Software is furnished to do so, subject to
 the following conditions:
 .
 The above copyright notice and this permission notice shall be
 included in all copies or substantial portions of the Software.
 .
 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

License: GFDL-1.2+
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2 or
 any later version published by the Free Software Foundation; with no
 Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 .
 On Debian systems, the complete text of the GNU Free Documentation
 License version 1.2 can be found in
 "/usr/share/common-licenses/GFDL-1.2".

License: CC-BY-SA-1.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE IS PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
     "Collective Work" means a work, such as a periodical issue,
     anthology or encyclopedia, in which the Work in its entirety in
     unmodified form, along with a number of other contributions,
     constituting separate and independent works in themselves, are
     assembled into a collective whole. A work that constitutes a
     Collective Work will not be considered a Derivative Work (as
     defined below) for the purposes of this License.  "Derivative
     Work" means a work based upon the Work or upon the Work and other
     pre-existing works, such as a translation, musical arrangement,
     dramatization, fictionalization, motion picture version, sound
     recording, art reproduction, abridgment, condensation, or any
     other form in which the Work may be recast, transformed, or
     adapted, except that a work that constitutes a Collective Work
     will not be considered a Derivative Work for the purpose of this
     License.  "Licensor" means the individual or entity that offers
     the Work under the terms of this License.  "Original Author" means
     the individual or entity who created the Work.  "Work" means the
     copyrightable work of authorship offered under the terms of this
     License.  "You" means an individual or entity exercising rights
     under this License who has not previously violated the terms of
     this License with respect to the Work, or who has received express
     permission from the Licensor to exercise rights under this License
     despite a previous violation.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
     to reproduce the Work, to incorporate the Work into one or more
     Collective Works, and to reproduce the Work as incorporated in the
     Collective Works; to create and reproduce Derivative Works; to
     distribute copies or phonorecords of, display publicly, perform
     publicly, and perform publicly by means of a digital audio
     transmission the Work including as incorporated in Collective
     Works; to distribute copies or phonorecords of, display publicly,
     perform publicly, and perform publicly by means of a digital audio
     transmission Derivative Works;
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions. The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
     You may distribute, publicly display, publicly perform, or
     publicly digitally perform the Work only under the terms of this
     License, and You must include a copy of, or the Uniform Resource
     Identifier for, this License with every copy or phonorecord of the
     Work You distribute, publicly display, publicly perform, or
     publicly digitally perform. You may not offer or impose any terms
     on the Work that alter or restrict the terms of this License or
     the recipients' exercise of the rights granted hereunder. You may
     not sublicense the Work. You must keep intact all notices that
     refer to this License and to the disclaimer of warranties. You may
     not distribute, publicly display, publicly perform, or publicly
     digitally perform the Work with any technological measures that
     control access or use of the Work in a manner inconsistent with
     the terms of this License Agreement. The above applies to the Work
     as incorporated in a Collective Work, but this does not require
     the Collective Work apart from the Work itself to be made subject
     to the terms of this License. If You create a Collective Work,
     upon notice from any Licensor You must, to the extent practicable,
     remove from the Collective Work any reference to such Licensor or
     the Original Author, as requested. If You create a Derivative
     Work, upon notice from any Licensor You must, to the extent
     practicable, remove from the Derivative Work any reference to such
     Licensor or the Original Author, as requested.  You may
     distribute, publicly display, publicly perform, or publicly
     digitally perform a Derivative Work only under the terms of this
     License, and You must include a copy of, or the Uniform Resource
     Identifier for, this License with every copy or phonorecord of
     each Derivative Work You distribute, publicly display, publicly
     perform, or publicly digitally perform. You may not offer or
     impose any terms on the Derivative Works that alter or restrict
     the terms of this License or the recipients' exercise of the
     rights granted hereunder, and You must keep intact all notices
     that refer to this License and to the disclaimer of
     warranties. You may not distribute, publicly display, publicly
     perform, or publicly digitally perform the Derivative Work with
     any technological measures that control access or use of the Work
     in a manner inconsistent with the terms of this License
     Agreement. The above applies to the Derivative Work as
     incorporated in a Collective Work, but this does not require the
     Collective Work apart from the Derivative Work itself to be made
     subject to the terms of this License.  If you distribute, publicly
     display, publicly perform, or publicly digitally perform the Work
     or any Derivative Works or Collective Works, You must keep intact
     all copyright notices for the Work and give the Original Author
     credit reasonable to the medium or means You are utilizing by
     conveying the name (or pseudonym if applicable) of the Original
     Author if supplied; the title of the Work if supplied; in the case
     of a Derivative Work, a credit identifying the use of the Work in
     the Derivative Work (e.g., "French translation of the Work by
     Original Author," or "Screenplay based on original Work by
     Original Author"). Such credit may be implemented in any
     reasonable manner; provided, however, that in the case of a
     Derivative Work or Collective Work, at a minimum such credit will
     appear where any other comparable authorship credit appears and in
     a manner at least as prominent as such other comparable authorship
     credit.
 .
 5. Representations, Warranties and Disclaimer
 .
     By offering the Work for public release under this License,
         Licensor represents and warrants that, to the best of
         Licensor's knowledge after reasonable inquiry: Licensor has
         secured all rights in the Work necessary to grant the license
         rights hereunder and to permit the lawful exercise of the
         rights granted hereunder without You having any obligation to
         pay any royalties, compulsory license fees, residuals or any
         other payments; The Work does not infringe the copyright,
         trademark, publicity rights, common law rights or any other
         right of any third party or constitute defamation, invasion of
         privacy or other tortious injury to any third party.  EXCEPT
         AS EXPRESSLY STATED IN THIS LICENSE OR OTHERWISE AGREED IN
         WRITING OR REQUIRED BY APPLICABLE LAW, THE WORK IS LICENSED ON
         AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER
         EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
         WARRANTIES REGARDING THE CONTENTS OR ACCURACY OF THE WORK.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, AND EXCEPT FOR DAMAGES ARISING FROM LIABILITY TO A
 THIRD PARTY RESULTING FROM BREACH OF THE WARRANTIES IN SECTION 5, IN
 NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
 SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
 ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR
 HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
     This License and the rights granted hereunder will terminate
     automatically upon any breach by You of the terms of this
     License. Individuals or entities who have received Derivative
     Works or Collective Works from You under this License, however,
     will not have their licenses terminated provided such individuals
     or entities remain in full compliance with those
     licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
     termination of this License.  Subject to the above terms and
     conditions, the license granted here is perpetual (for the
     duration of the applicable copyright in the Work). Notwithstanding
     the above, Licensor reserves the right to release the Work under
     different license terms or to stop distributing the Work at any
     time; provided, however that any such election will not serve to
     withdraw this License (or any other license that has been, or is
     required to be, granted under the terms of this License), and this
     License will continue in full force and effect unless terminated
     as stated above.
 .
 8. Miscellaneous
 .
     Each time You distribute or publicly digitally perform the Work or
     a Collective Work, the Licensor offers to the recipient a license
     to the Work on the same terms and conditions as the license
     granted to You under this License.  Each time You distribute or
     publicly digitally perform a Derivative Work, Licensor offers to
     the recipient a license to the original Work on the same terms and
     conditions as the license granted to You under this License.  If
     any provision of this License is invalid or unenforceable under
     applicable law, it shall not affect the validity or enforceability
     of the remainder of the terms of this License, and without further
     action by the parties to this agreement, such provision shall be
     reformed to the minimum extent necessary to make such provision
     valid and enforceable.  No term or provision of this License shall
     be deemed waived and no breach consented to unless such waiver or
     consent shall be in writing and signed by the party to be charged
     with such waiver or consent.  This License constitutes the entire
     agreement between the parties with respect to the Work licensed
     here. There are no understandings, agreements or representations
     with respect to the Work not specified here. Licensor shall not be
     bound by any additional provisions that may appear in any
     communication from You. This License may not be modified without
     the mutual written agreement of the Licensor and You.

License: CC-BY-SA-2.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
     "Collective Work" means a work, such as a periodical issue,
     anthology or encyclopedia, in which the Work in its entirety in
     unmodified form, along with a number of other contributions,
     constituting separate and independent works in themselves, are
     assembled into a collective whole. A work that constitutes a
     Collective Work will not be considered a Derivative Work (as
     defined below) for the purposes of this License.  "Derivative
     Work" means a work based upon the Work or upon the Work and other
     pre-existing works, such as a translation, musical arrangement,
     dramatization, fictionalization, motion picture version, sound
     recording, art reproduction, abridgment, condensation, or any
     other form in which the Work may be recast, transformed, or
     adapted, except that a work that constitutes a Collective Work
     will not be considered a Derivative Work for the purpose of this
     License. For the avoidance of doubt, where the Work is a musical
     composition or sound recording, the synchronization of the Work in
     timed-relation with a moving image ("synching") will be considered
     a Derivative Work for the purpose of this License.  "Licensor"
     means the individual or entity that offers the Work under the
     terms of this License.  "Original Author" means the individual or
     entity who created the Work.  "Work" means the copyrightable work
     of authorship offered under the terms of this License.  "You"
     means an individual or entity exercising rights under this License
     who has not previously violated the terms of this License with
     respect to the Work, or who has received express permission from
     the Licensor to exercise rights under this License despite a
     previous violation.  "License Elements" means the following
     high-level license attributes as selected by Licensor and
     indicated in the title of this License: Attribution, ShareAlike.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
     to reproduce the Work, to incorporate the Work into one or more
     Collective Works, and to reproduce the Work as incorporated in the
     Collective Works; to create and reproduce Derivative Works; to
     distribute copies or phonorecords of, display publicly, perform
     publicly, and perform publicly by means of a digital audio
     transmission the Work including as incorporated in Collective
     Works; to distribute copies or phonorecords of, display publicly,
     perform publicly, and perform publicly by means of a digital audio
     transmission Derivative Works.
 .
     For the avoidance of doubt, where the work is a musical
         composition: Performance Royalties Under Blanket
         Licenses. Licensor waives the exclusive right to collect,
         whether individually or via a performance rights society
         (e.g. ASCAP, BMI, SESAC), royalties for the public performance
         or public digital performance (e.g. webcast) of the Work.
         Mechanical Rights and Statutory Royalties. Licensor waives the
         exclusive right to collect, whether individually or via a
         music rights society or designated agent (e.g. Harry Fox
         Agency), royalties for any phonorecord You create from the
         Work ("cover version") and distribute, subject to the
         compulsory license created by 17 USC Section 115 of the US
         Copyright Act (or the equivalent in other jurisdictions).
         Webcasting Rights and Statutory Royalties. For the avoidance
         of doubt, where the Work is a sound recording, Licensor waives
         the exclusive right to collect, whether individually or via a
         performance-rights society (e.g. SoundExchange), royalties for
         the public digital performance (e.g. webcast) of the Work,
         subject to the compulsory license created by 17 USC Section
         114 of the US Copyright Act (or the equivalent in other
         jurisdictions).
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions.The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
     You may distribute, publicly display, publicly perform, or
     publicly digitally perform the Work only under the terms of this
     License, and You must include a copy of, or the Uniform Resource
     Identifier for, this License with every copy or phonorecord of the
     Work You distribute, publicly display, publicly perform, or
     publicly digitally perform. You may not offer or impose any terms
     on the Work that alter or restrict the terms of this License or
     the recipients' exercise of the rights granted hereunder. You may
     not sublicense the Work. You must keep intact all notices that
     refer to this License and to the disclaimer of warranties. You may
     not distribute, publicly display, publicly perform, or publicly
     digitally perform the Work with any technological measures that
     control access or use of the Work in a manner inconsistent with
     the terms of this License Agreement. The above applies to the Work
     as incorporated in a Collective Work, but this does not require
     the Collective Work apart from the Work itself to be made subject
     to the terms of this License. If You create a Collective Work,
     upon notice from any Licensor You must, to the extent practicable,
     remove from the Collective Work any reference to such Licensor or
     the Original Author, as requested. If You create a Derivative
     Work, upon notice from any Licensor You must, to the extent
     practicable, remove from the Derivative Work any reference to such
     Licensor or the Original Author, as requested.  You may
     distribute, publicly display, publicly perform, or publicly
     digitally perform a Derivative Work only under the terms of this
     License, a later version of this License with the same License
     Elements as this License, or a Creative Commons iCommons license
     that contains the same License Elements as this License
     (e.g. Attribution-ShareAlike 2.0 Japan). You must include a copy
     of, or the Uniform Resource Identifier for, this License or other
     license specified in the previous sentence with every copy or
     phonorecord of each Derivative Work You distribute, publicly
     display, publicly perform, or publicly digitally perform. You may
     not offer or impose any terms on the Derivative Works that alter
     or restrict the terms of this License or the recipients' exercise
     of the rights granted hereunder, and You must keep intact all
     notices that refer to this License and to the disclaimer of
     warranties. You may not distribute, publicly display, publicly
     perform, or publicly digitally perform the Derivative Work with
     any technological measures that control access or use of the Work
     in a manner inconsistent with the terms of this License
     Agreement. The above applies to the Derivative Work as
     incorporated in a Collective Work, but this does not require the
     Collective Work apart from the Derivative Work itself to be made
     subject to the terms of this License.  If you distribute, publicly
     display, publicly perform, or publicly digitally perform the Work
     or any Derivative Works or Collective Works, You must keep intact
     all copyright notices for the Work and give the Original Author
     credit reasonable to the medium or means You are utilizing by
     conveying the name (or pseudonym if applicable) of the Original
     Author if supplied; the title of the Work if supplied; to the
     extent reasonably practicable, the Uniform Resource Identifier, if
     any, that Licensor specifies to be associated with the Work,
     unless such URI does not refer to the copyright notice or
     licensing information for the Work; and in the case of a
     Derivative Work, a credit identifying the use of the Work in the
     Derivative Work (e.g., "French translation of the Work by Original
     Author," or "Screenplay based on original Work by Original
     Author"). Such credit may be implemented in any reasonable manner;
     provided, however, that in the case of a Derivative Work or
     Collective Work, at a minimum such credit will appear where any
     other comparable authorship credit appears and in a manner at
     least as prominent as such other comparable authorship credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS
 THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
 CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
 INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
 FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
 LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF
 ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
 THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
 TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
     This License and the rights granted hereunder will terminate
     automatically upon any breach by You of the terms of this
     License. Individuals or entities who have received Derivative
     Works or Collective Works from You under this License, however,
     will not have their licenses terminated provided such individuals
     or entities remain in full compliance with those
     licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
     termination of this License.  Subject to the above terms and
     conditions, the license granted here is perpetual (for the
     duration of the applicable copyright in the Work). Notwithstanding
     the above, Licensor reserves the right to release the Work under
     different license terms or to stop distributing the Work at any
     time; provided, however that any such election will not serve to
     withdraw this License (or any other license that has been, or is
     required to be, granted under the terms of this License), and this
     License will continue in full force and effect unless terminated
     as stated above.
 .
 8. Miscellaneous
 .
     Each time You distribute or publicly digitally perform the Work or
     a Collective Work, the Licensor offers to the recipient a license
     to the Work on the same terms and conditions as the license
     granted to You under this License.  Each time You distribute or
     publicly digitally perform a Derivative Work, Licensor offers to
     the recipient a license to the original Work on the same terms and
     conditions as the license granted to You under this License.  If
     any provision of this License is invalid or unenforceable under
     applicable law, it shall not affect the validity or enforceability
     of the remainder of the terms of this License, and without further
     action by the parties to this agreement, such provision shall be
     reformed to the minimum extent necessary to make such provision
     valid and enforceable.  No term or provision of this License shall
     be deemed waived and no breach consented to unless such waiver or
     consent shall be in writing and signed by the party to be charged
     with such waiver or consent.  This License constitutes the entire
     agreement between the parties with respect to the Work licensed
     here. There are no understandings, agreements or representations
     with respect to the Work not specified here. Licensor shall not be
     bound by any additional provisions that may appear in any
     communication from You. This License may not be modified without
     the mutual written agreement of the Licensor and You.

License: CC-BY-SA-2.5
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
     "Collective Work" means a work, such as a periodical issue,
     anthology or encyclopedia, in which the Work in its entirety in
     unmodified form, along with a number of other contributions,
     constituting separate and independent works in themselves, are
     assembled into a collective whole. A work that constitutes a
     Collective Work will not be considered a Derivative Work (as
     defined below) for the purposes of this License.  "Derivative
     Work" means a work based upon the Work or upon the Work and other
     pre-existing works, such as a translation, musical arrangement,
     dramatization, fictionalization, motion picture version, sound
     recording, art reproduction, abridgment, condensation, or any
     other form in which the Work may be recast, transformed, or
     adapted, except that a work that constitutes a Collective Work
     will not be considered a Derivative Work for the purpose of this
     License. For the avoidance of doubt, where the Work is a musical
     composition or sound recording, the synchronization of the Work in
     timed-relation with a moving image ("synching") will be considered
     a Derivative Work for the purpose of this License.  "Licensor"
     means the individual or entity that offers the Work under the
     terms of this License.  "Original Author" means the individual or
     entity who created the Work.  "Work" means the copyrightable work
     of authorship offered under the terms of this License.  "You"
     means an individual or entity exercising rights under this License
     who has not previously violated the terms of this License with
     respect to the Work, or who has received express permission from
     the Licensor to exercise rights under this License despite a
     previous violation.  "License Elements" means the following
     high-level license attributes as selected by Licensor and
     indicated in the title of this License: Attribution, ShareAlike.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
     to reproduce the Work, to incorporate the Work into one or more
     Collective Works, and to reproduce the Work as incorporated in the
     Collective Works; to create and reproduce Derivative Works; to
     distribute copies or phonorecords of, display publicly, perform
     publicly, and perform publicly by means of a digital audio
     transmission the Work including as incorporated in Collective
     Works; to distribute copies or phonorecords of, display publicly,
     perform publicly, and perform publicly by means of a digital audio
     transmission Derivative Works.
 .
     For the avoidance of doubt, where the work is a musical
         composition: Performance Royalties Under Blanket
         Licenses. Licensor waives the exclusive right to collect,
         whether individually or via a performance rights society
         (e.g. ASCAP, BMI, SESAC), royalties for the public performance
         or public digital performance (e.g. webcast) of the Work.
         Mechanical Rights and Statutory Royalties. Licensor waives the
         exclusive right to collect, whether individually or via a
         music rights society or designated agent (e.g. Harry Fox
         Agency), royalties for any phonorecord You create from the
         Work ("cover version") and distribute, subject to the
         compulsory license created by 17 USC Section 115 of the US
         Copyright Act (or the equivalent in other jurisdictions).
         Webcasting Rights and Statutory Royalties. For the avoidance
         of doubt, where the Work is a sound recording, Licensor waives
         the exclusive right to collect, whether individually or via a
         performance-rights society (e.g. SoundExchange), royalties for
         the public digital performance (e.g. webcast) of the Work,
         subject to the compulsory license created by 17 USC Section
         114 of the US Copyright Act (or the equivalent in other
         jurisdictions).
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions.The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
     You may distribute, publicly display, publicly perform, or
     publicly digitally perform the Work only under the terms of this
     License, and You must include a copy of, or the Uniform Resource
     Identifier for, this License with every copy or phonorecord of the
     Work You distribute, publicly display, publicly perform, or
     publicly digitally perform. You may not offer or impose any terms
     on the Work that alter or restrict the terms of this License or
     the recipients' exercise of the rights granted hereunder. You may
     not sublicense the Work. You must keep intact all notices that
     refer to this License and to the disclaimer of warranties. You may
     not distribute, publicly display, publicly perform, or publicly
     digitally perform the Work with any technological measures that
     control access or use of the Work in a manner inconsistent with
     the terms of this License Agreement. The above applies to the Work
     as incorporated in a Collective Work, but this does not require
     the Collective Work apart from the Work itself to be made subject
     to the terms of this License. If You create a Collective Work,
     upon notice from any Licensor You must, to the extent practicable,
     remove from the Collective Work any credit as required by clause
     4(c), as requested. If You create a Derivative Work, upon notice
     from any Licensor You must, to the extent practicable, remove from
     the Derivative Work any credit as required by clause 4(c), as
     requested.  You may distribute, publicly display, publicly
     perform, or publicly digitally perform a Derivative Work only
     under the terms of this License, a later version of this License
     with the same License Elements as this License, or a Creative
     Commons iCommons license that contains the same License Elements
     as this License (e.g. Attribution-ShareAlike 2.5 Japan). You must
     include a copy of, or the Uniform Resource Identifier for, this
     License or other license specified in the previous sentence with
     every copy or phonorecord of each Derivative Work You distribute,
     publicly display, publicly perform, or publicly digitally
     perform. You may not offer or impose any terms on the Derivative
     Works that alter or restrict the terms of this License or the
     recipients' exercise of the rights granted hereunder, and You must
     keep intact all notices that refer to this License and to the
     disclaimer of warranties. You may not distribute, publicly
     display, publicly perform, or publicly digitally perform the
     Derivative Work with any technological measures that control
     access or use of the Work in a manner inconsistent with the terms
     of this License Agreement. The above applies to the Derivative
     Work as incorporated in a Collective Work, but this does not
     require the Collective Work apart from the Derivative Work itself
     to be made subject to the terms of this License.  If you
     distribute, publicly display, publicly perform, or publicly
     digitally perform the Work or any Derivative Works or Collective
     Works, You must keep intact all copyright notices for the Work and
     provide, reasonable to the medium or means You are utilizing: (i)
     the name of the Original Author (or pseudonym, if applicable) if
     supplied, and/or (ii) if the Original Author and/or Licensor
     designate another party or parties (e.g. a sponsor institute,
     publishing entity, journal) for attribution in Licensor's
     copyright notice, terms of service or by other reasonable means,
     the name of such party or parties; the title of the Work if
     supplied; to the extent reasonably practicable, the Uniform
     Resource Identifier, if any, that Licensor specifies to be
     associated with the Work, unless such URI does not refer to the
     copyright notice or licensing information for the Work; and in the
     case of a Derivative Work, a credit identifying the use of the
     Work in the Derivative Work (e.g., "French translation of the Work
     by Original Author," or "Screenplay based on original Work by
     Original Author"). Such credit may be implemented in any
     reasonable manner; provided, however, that in the case of a
     Derivative Work or Collective Work, at a minimum such credit will
     appear where any other comparable authorship credit appears and in
     a manner at least as prominent as such other comparable authorship
     credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS
 THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
 CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
 INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
 FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
 LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF
 ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
 THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
 TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
     This License and the rights granted hereunder will terminate
     automatically upon any breach by You of the terms of this
     License. Individuals or entities who have received Derivative
     Works or Collective Works from You under this License, however,
     will not have their licenses terminated provided such individuals
     or entities remain in full compliance with those
     licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
     termination of this License.  Subject to the above terms and
     conditions, the license granted here is perpetual (for the
     duration of the applicable copyright in the Work). Notwithstanding
     the above, Licensor reserves the right to release the Work under
     different license terms or to stop distributing the Work at any
     time; provided, however that any such election will not serve to
     withdraw this License (or any other license that has been, or is
     required to be, granted under the terms of this License), and this
     License will continue in full force and effect unless terminated
     as stated above.
 .
 8. Miscellaneous
 .
     Each time You distribute or publicly digitally perform the Work or
     a Collective Work, the Licensor offers to the recipient a license
     to the Work on the same terms and conditions as the license
     granted to You under this License.  Each time You distribute or
     publicly digitally perform a Derivative Work, Licensor offers to
     the recipient a license to the original Work on the same terms and
     conditions as the license granted to You under this License.  If
     any provision of this License is invalid or unenforceable under
     applicable law, it shall not affect the validity or enforceability
     of the remainder of the terms of this License, and without further
     action by the parties to this agreement, such provision shall be
     reformed to the minimum extent necessary to make such provision
     valid and enforceable.  No term or provision of this License shall
     be deemed waived and no breach consented to unless such waiver or
     consent shall be in writing and signed by the party to be charged
     with such waiver or consent.  This License constitutes the entire
     agreement between the parties with respect to the Work licensed
     here. There are no understandings, agreements or representations
     with respect to the Work not specified here. Licensor shall not be
     bound by any additional provisions that may appear in any
     communication from You. This License may not be modified without
     the mutual written agreement of the Licensor and You.

License: CC-BY-SA-3.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
 LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
 THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH
 TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 a. "Adaptation" means a work based upon the Work, or upon the Work and
 other pre-existing works, such as a translation, adaptation,
 derivative work, arrangement of music or other alterations of a
 literary or artistic work, or phonogram or performance and includes
 cinematographic adaptations or any other form in which the Work may be
 recast, transformed, or adapted including in any form recognizably
 derived from the original, except that a work that constitutes a
 Collection will not be considered an Adaptation for the purpose of
 this License. For the avoidance of doubt, where the Work is a musical
 work, performance or phonogram, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered an
 Adaptation for the purpose of this License.
 .
 b. "Collection" means a collection of literary or artistic works, such
 as encyclopedias and anthologies, or performances, phonograms or
 broadcasts, or other works or subject matter other than works listed
 in Section 1(f) below, which, by reason of the selection and
 arrangement of their contents, constitute intellectual creations, in
 which the Work is included in its entirety in unmodified form along
 with one or more other contributions, each constituting separate and
 independent works in themselves, which together are assembled into a
 collective whole. A work that constitutes a Collection will not be
 considered an Adaptation (as defined below) for the purposes of this
 License.
 .
 c. "Creative Commons Compatible License" means a license that is
 listed at http://creativecommons.org/compatiblelicenses that has been
 approved by Creative Commons as being essentially equivalent to this
 License, including, at a minimum, because that license: (i) contains
 terms that have the same purpose, meaning and effect as the License
 Elements of this License; and, (ii) explicitly permits the relicensing
 of adaptations of works made available under that license under this
 License or a Creative Commons jurisdiction license with the same
 License Elements as this License.
 .
 d. "Distribute" means to make available to the public the original and
 copies of the Work or Adaptation, as appropriate, through sale or
 other transfer of ownership.
 .
 e. "License Elements" means the following high-level license
 attributes as selected by Licensor and indicated in the title of this
 License: Attribution, ShareAlike.
 .
 f. "Licensor" means the individual, individuals, entity or entities
 that offer(s) the Work under the terms of this License.
 .
 g. "Original Author" means, in the case of a literary or artistic
 work, the individual, individuals, entity or entities who created the
 Work or if no individual or entity can be identified, the publisher;
 and in addition (i) in the case of a performance the actors, singers,
 musicians, dancers, and other persons who act, sing, deliver, declaim,
 play in, interpret or otherwise perform literary or artistic works or
 expressions of folklore; (ii) in the case of a phonogram the producer
 being the person or legal entity who first fixes the sounds of a
 performance or other sounds; and, (iii) in the case of broadcasts, the
 organization that transmits the broadcast.
 .
 h. "Work" means the literary and/or artistic work offered under the
 terms of this License including without limitation any production in
 the literary, scientific and artistic domain, whatever may be the mode
 or form of its expression including digital form, such as a book,
 pamphlet and other writing; a lecture, address, sermon or other work
 of the same nature; a dramatic or dramatico-musical work; a
 choreographic work or entertainment in dumb show; a musical
 composition with or without words; a cinematographic work to which are
 assimilated works expressed by a process analogous to cinematography;
 a work of drawing, painting, architecture, sculpture, engraving or
 lithography; a photographic work to which are assimilated works
 expressed by a process analogous to photography; a work of applied
 art; an illustration, map, plan, sketch or three-dimensional work
 relative to geography, topography, architecture or science; a
 performance; a broadcast; a phonogram; a compilation of data to the
 extent it is protected as a copyrightable work; or a work performed by
 a variety or circus performer to the extent it is not otherwise
 considered a literary or artistic work.
 .
 i. "You" means an individual or entity exercising rights under this
 License who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from the
 Licensor to exercise rights under this License despite a previous
 violation.
 .
 j. "Publicly Perform" means to perform public recitations of the Work
 and to communicate to the public those public recitations, by any
 means or process, including by wire or wireless means or public
 digital performances; to make available to the public Works in such a
 way that members of the public may access these Works from a place and
 at a place individually chosen by them; to perform the Work to the
 public by any means or process and the communication to the public of
 the performances of the Work, including by public digital performance;
 to broadcast and rebroadcast the Work by any means including signs,
 sounds or images.
 .
 k. "Reproduce" means to make copies of the Work by any means including
 without limitation by sound or visual recordings and the right of
 fixation and reproducing fixations of the Work, including storage of a
 protected performance or phonogram in digital form or other electronic
 medium.
 .
 2. Fair Dealing Rights. Nothing in this License is intended to reduce,
 limit, or restrict any uses free from copyright or rights arising from
 limitations or exceptions that are provided for in connection with the
 copyright protection under copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 a. to Reproduce the Work, to incorporate the Work into one or more
 Collections, and to Reproduce the Work as incorporated in the
 Collections;
 .
 b. to create and Reproduce Adaptations provided that any such
 Adaptation, including any translation in any medium, takes reasonable
 steps to clearly label, demarcate or otherwise identify that changes
 were made to the original Work. For example, a translation could be
 marked "The original work was translated from English to Spanish," or
 a modification could indicate "The original work has been modified.";
 .
 c. to Distribute and Publicly Perform the Work including as
 incorporated in Collections; and,
 .
 d. to Distribute and Publicly Perform Adaptations.
 .
 e. For the avoidance of doubt:
 .
 i. Non-waivable Compulsory License Schemes. In those jurisdictions in
 which the right to collect royalties through any statutory or
 compulsory licensing scheme cannot be waived, the Licensor reserves
 the exclusive right to collect such royalties for any exercise by You
 of the rights granted under this License;
 .
 ii. Waivable Compulsory License Schemes. In those jurisdictions in
 which the right to collect royalties through any statutory or
 compulsory licensing scheme can be waived, the Licensor waives the
 exclusive right to collect such royalties for any exercise by You of
 the rights granted under this License; and,
 .
 iii. Voluntary License Schemes. The Licensor waives the right to
 collect royalties, whether individually or, in the event that the
 Licensor is a member of a collecting society that administers
 voluntary licensing schemes, via that society, from any exercise by
 You of the rights granted under this License.
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. Subject to Section 8(f), all rights not
 expressly granted by Licensor are hereby reserved.
 .
 4. Restrictions. The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 a. You may Distribute or Publicly Perform the Work only under the
 terms of this License. You must include a copy of, or the Uniform
 Resource Identifier (URI) for, this License with every copy of the
 Work You Distribute or Publicly Perform. You may not offer or impose
 any terms on the Work that restrict the terms of this License or the
 ability of the recipient of the Work to exercise the rights granted to
 that recipient under the terms of the License. You may not sublicense
 the Work. You must keep intact all notices that refer to this License
 and to the disclaimer of warranties with every copy of the Work You
 Distribute or Publicly Perform. When You Distribute or Publicly
 Perform the Work, You may not impose any effective technological
 measures on the Work that restrict the ability of a recipient of the
 Work from You to exercise the rights granted to that recipient under
 the terms of the License. This Section 4(a) applies to the Work as
 incorporated in a Collection, but this does not require the Collection
 apart from the Work itself to be made subject to the terms of this
 License. If You create a Collection, upon notice from any Licensor You
 must, to the extent practicable, remove from the Collection any credit
 as required by Section 4(c), as requested. If You create an
 Adaptation, upon notice from any Licensor You must, to the extent
 practicable, remove from the Adaptation any credit as required by
 Section 4(c), as requested.
 .
 b. You may Distribute or Publicly Perform an Adaptation only under the
 terms of: (i) this License; (ii) a later version of this License with
 the same License Elements as this License; (iii) a Creative Commons
 jurisdiction license (either this or a later license version) that
 contains the same License Elements as this License (e.g.,
 Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible
 License. If you license the Adaptation under one of the licenses
 mentioned in (iv), you must comply with the terms of that license. If
 you license the Adaptation under the terms of any of the licenses
 mentioned in (i), (ii) or (iii) (the "Applicable License"), you must
 comply with the terms of the Applicable License generally and the
 following provisions: (I) You must include a copy of, or the URI for,
 the Applicable License with every copy of each Adaptation You
 Distribute or Publicly Perform; (II) You may not offer or impose any
 terms on the Adaptation that restrict the terms of the Applicable
 License or the ability of the recipient of the Adaptation to exercise
 the rights granted to that recipient under the terms of the Applicable
 License; (III) You must keep intact all notices that refer to the
 Applicable License and to the disclaimer of warranties with every copy
 of the Work as included in the Adaptation You Distribute or Publicly
 Perform; (IV) when You Distribute or Publicly Perform the Adaptation,
 You may not impose any effective technological measures on the
 Adaptation that restrict the ability of a recipient of the Adaptation
 from You to exercise the rights granted to that recipient under the
 terms of the Applicable License. This Section 4(b) applies to the
 Adaptation as incorporated in a Collection, but this does not require
 the Collection apart from the Adaptation itself to be made subject to
 the terms of the Applicable License.
 .
 c. If You Distribute, or Publicly Perform the Work or any Adaptations
 or Collections, You must, unless a request has been made pursuant to
 Section 4(a), keep intact all copyright notices for the Work and
 provide, reasonable to the medium or means You are utilizing: (i) the
 name of the Original Author (or pseudonym, if applicable) if supplied,
 and/or if the Original Author and/or Licensor designate another party
 or parties (e.g., a sponsor institute, publishing entity, journal) for
 attribution ("Attribution Parties") in Licensor's copyright notice,
 terms of service or by other reasonable means, the name of such party
 or parties; (ii) the title of the Work if supplied; (iii) to the
 extent reasonably practicable, the URI, if any, that Licensor
 specifies to be associated with the Work, unless such URI does not
 refer to the copyright notice or licensing information for the Work;
 and (iv) , consistent with Ssection 3(b), in the case of an
 Adaptation, a credit identifying the use of the Work in the Adaptation
 (e.g., "French translation of the Work by Original Author," or
 "Screenplay based on original Work by Original Author"). The credit
 required by this Section 4(c) may be implemented in any reasonable
 manner; provided, however, that in the case of a Adaptation or
 Collection, at a minimum such credit will appear, if a credit for all
 contributing authors of the Adaptation or Collection appears, then as
 part of these credits and in a manner at least as prominent as the
 credits for the other contributing authors. For the avoidance of
 doubt, You may only use the credit required by this Section for the
 purpose of attribution in the manner set out above and, by exercising
 Your rights under this License, You may not implicitly or explicitly
 assert or imply any connection with, sponsorship or endorsement by the
 Original Author, Licensor and/or Attribution Parties, as appropriate,
 of You or Your use of the Work, without the separate, express prior
 written permission of the Original Author, Licensor and/or Attribution
 Parties.
 .
 d. Except as otherwise agreed in writing by the Licensor or as may be
 otherwise permitted by applicable law, if You Reproduce, Distribute or
 Publicly Perform the Work either by itself or as part of any
 Adaptations or Collections, You must not distort, mutilate, modify or
 take other derogatory action in relation to the Work which would be
 prejudicial to the Original Author's honor or reputation. Licensor
 agrees that in those jurisdictions (e.g. Japan), in which any exercise
 of the right granted in Section 3(b) of this License (the right to
 make Adaptations) would be deemed to be a distortion, mutilation,
 modification or other derogatory action prejudicial to the Original
 Author's honor and reputation, the Licensor will waive or not assert,
 as appropriate, this Section, to the fullest extent permitted by the
 applicable national law, to enable You to reasonably exercise Your
 right under Section 3(b) of this License (right to make Adaptations)
 but not otherwise.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
 LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
 WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
 STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
 TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
 NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
 OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
 DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
 WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 a. This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Adaptations or
 Collections from You under this License, however, will not have their
 licenses terminated provided such individuals or entities remain in
 full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8
 will survive any termination of this License.
 .
 b. Subject to the above terms and conditions, the license granted here
 is perpetual (for the duration of the applicable copyright in the
 Work). Notwithstanding the above, Licensor reserves the right to
 release the Work under different license terms or to stop distributing
 the Work at any time; provided, however that any such election will
 not serve to withdraw this License (or any other license that has
 been, or is required to be, granted under the terms of this License),
 and this License will continue in full force and effect unless
 terminated as stated above.
 .
 8. Miscellaneous
 .
 a. Each time You Distribute or Publicly Perform the Work or a
 Collection, the Licensor offers to the recipient a license to the Work
 on the same terms and conditions as the license granted to You under
 this License.
 .
 b. Each time You Distribute or Publicly Perform an Adaptation,
 Licensor offers to the recipient a license to the original Work on the
 same terms and conditions as the license granted to You under this
 License.
 .
 c. If any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability of
 the remainder of the terms of this License, and without further action
 by the parties to this agreement, such provision shall be reformed to
 the minimum extent necessary to make such provision valid and
 enforceable.
 .
 d. No term or provision of this License shall be deemed waived and no
 breach consented to unless such waiver or consent shall be in writing
 and signed by the party to be charged with such waiver or consent.
 .
 e. This License constitutes the entire agreement between the parties
 with respect to the Work licensed here. There are no understandings,
 agreements or representations with respect to the Work not specified
 here. Licensor shall not be bound by any additional provisions that
 may appear in any communication from You. This License may not be
 modified without the mutual written agreement of the Licensor and You.
 .
 f. The rights granted under, and the subject matter referenced, in
 this License were drafted utilizing the terminology of the Berne
 Convention for the Protection of Literary and Artistic Works (as
 amended on September 28, 1979), the Rome Convention of 1961, the WIPO
 Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty
 of 1996 and the Universal Copyright Convention (as revised on July 24,
 1971). These rights and subject matter take effect in the relevant
 jurisdiction in which the License terms are sought to be enforced
 according to the corresponding provisions of the implementation of
 those treaty provisions in the applicable national law. If the
 standard suite of rights granted under applicable copyright law
 includes additional rights not granted under this License, such
 additional rights are deemed to be included in the License; this
 License is not intended to restrict the license of any rights under
 applicable law.

License: Zlib
 The zlib/libpng License
 .
 This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.
 .
 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:
 .
    1. The origin of this software must not be misrepresented; you must not
    claim that you wrote the original software. If you use this software
    in a product, an acknowledgment in the product documentation would be
    appreciated but is not required.
 .
    2. Altered source versions must be plainly marked as such, and must not be
    misrepresented as being the original software.
 .
    3. This notice may not be removed or altered from any source
    distribution.
 .
 NO WARRANTY
 .
   BECAUSE THE DATA IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
 FOR THE DATA, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
 OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
 PROVIDE THE DATA "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
 OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
 TO THE QUALITY AND PERFORMANCE OF THE DATA IS WITH YOU.  SHOULD THE
 DATA PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
 REPAIR OR CORRECTION.
 .
  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
 WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
 REDISTRIBUTE THE DATA AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
 INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
 OUT OF THE USE OR INABILITY TO USE THE DATA (INCLUDING BUT NOT LIMITED
 TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
 YOU OR THIRD PARTIES OR A FAILURE OF THE DATA TO OPERATE WITH ANY OTHER
 PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGES.

License: CC-BY-SA-4.0
 By exercising the Licensed Rights (defined below), You accept and agree to be
 bound by the terms and conditions of this Creative Commons
 Attribution-ShareAlike 4.0 International Public License ("Public License"). To
 the extent this Public License may be interpreted as a contract, You are
 granted the Licensed Rights in consideration of Your acceptance of these terms
 and conditions, and the Licensor grants You such rights in consideration of
 benefits the Licensor receives from making the Licensed Material available
 under these terms and conditions.
 .
 Section 1 â�� Definitions.
 .
  a. Adapted Material means material subject to Copyright and Similar Rights
     that is derived from or based upon the Licensed Material and in which the
     Licensed Material is translated, altered, arranged, transformed, or
     otherwise modified in a manner requiring permission under the Copyright and
     Similar Rights held by the Licensor. For purposes of this Public License,
     where the Licensed Material is a musical work, performance, or sound
     recording, Adapted Material is always produced where the Licensed Material
     is synched in timed relation with a moving image.
  b. Adapter's License means the license You apply to Your Copyright and Similar
     Rights in Your contributions to Adapted Material in accordance with the
     terms and conditions of this Public License.
  c. BY-SA Compatible License means a license listed at creativecommons.org/
     compatiblelicenses, approved by Creative Commons as essentially the
     equivalent of this Public License.
  d. Copyright and Similar Rights means copyright and/or similar rights closely
     related to copyright including, without limitation, performance, broadcast,
     sound recording, and Sui Generis Database Rights, without regard to how the
     rights are labeled or categorized. For purposes of this Public License, the
     rights specified in Section 2(b)(1)-(2) are not Copyright and Similar
     Rights.
  e. Effective Technological Measures means those measures that, in the absence
     of proper authority, may not be circumvented under laws fulfilling
     obligations under Article 11 of the WIPO Copyright Treaty adopted on
     December 20, 1996, and/or similar international agreements.
  f. Exceptions and Limitations means fair use, fair dealing, and/or any other
     exception or limitation to Copyright and Similar Rights that applies to
     Your use of the Licensed Material.
  g. License Elements means the license attributes listed in the name of a
     Creative Commons Public License. The License Elements of this Public
     License are Attribution and ShareAlike.
  h. Licensed Material means the artistic or literary work, database, or other
     material to which the Licensor applied this Public License.
  i. Licensed Rights means the rights granted to You subject to the terms and
     conditions of this Public License, which are limited to all Copyright and
     Similar Rights that apply to Your use of the Licensed Material and that the
     Licensor has authority to license.
  j. Licensor means the individual(s) or entity(ies) granting rights under this
     Public License.
  k. Share means to provide material to the public by any means or process that
     requires permission under the Licensed Rights, such as reproduction, public
     display, public performance, distribution, dissemination, communication, or
     importation, and to make material available to the public including in ways
     that members of the public may access the material from a place and at a
     time individually chosen by them.
  l. Sui Generis Database Rights means rights other than copyright resulting
     from Directive 96/9/EC of the European Parliament and of the Council of 11
     March 1996 on the legal protection of databases, as amended and/or
     succeeded, as well as other essentially equivalent rights anywhere in the
     world.
  m. You means the individual or entity exercising the Licensed Rights under
     this Public License. Your has a corresponding meaning.
 .
 Section 2 â�� Scope.
 .
  a. License grant.
      1. Subject to the terms and conditions of this Public License, the
         Licensor hereby grants You a worldwide, royalty-free,
         non-sublicensable, non-exclusive, irrevocable license to exercise the
         Licensed Rights in the Licensed Material to:
          A. reproduce and Share the Licensed Material, in whole or in part; and
          B. produce, reproduce, and Share Adapted Material.
      2. Exceptions and Limitations. For the avoidance of doubt, where
         Exceptions and Limitations apply to Your use, this Public License does
         not apply, and You do not need to comply with its terms and conditions.
      3. Term. The term of this Public License is specified in Section 6(a).
      4. Media and formats; technical modifications allowed. The Licensor
         authorizes You to exercise the Licensed Rights in all media and formats
         whether now known or hereafter created, and to make technical
         modifications necessary to do so. The Licensor waives and/or agrees not
         to assert any right or authority to forbid You from making technical
         modifications necessary to exercise the Licensed Rights, including
         technical modifications necessary to circumvent Effective Technological
         Measures. For purposes of this Public License, simply making
         modifications authorized by this Section 2(a)(4) never produces Adapted
         Material.
      5. Downstream recipients.
          A. Offer from the Licensor â�� Licensed Material. Every recipient of the
             Licensed Material automatically receives an offer from the Licensor
             to exercise the Licensed Rights under the terms and conditions of
             this Public License.
          B. Additional offer from the Licensor â�� Adapted Material. Every
             recipient of Adapted Material from You automatically receives an
             offer from the Licensor to exercise the Licensed Rights in the
             Adapted Material under the conditions of the Adapterâ��s License You
             apply.
          C. No downstream restrictions. You may not offer or impose any
             additional or different terms or conditions on, or apply any
             Effective Technological Measures to, the Licensed Material if doing
             so restricts exercise of the Licensed Rights by any recipient of
             the Licensed Material.
      6. No endorsement. Nothing in this Public License constitutes or may be
         construed as permission to assert or imply that You are, or that Your
         use of the Licensed Material is, connected with, or sponsored,
         endorsed, or granted official status by, the Licensor or others
         designated to receive attribution as provided in Section 3(a)(1)(A)(i).
  b. Other rights.
 .
      1. Moral rights, such as the right of integrity, are not licensed under
         this Public License, nor are publicity, privacy, and/or other similar
         personality rights; however, to the extent possible, the Licensor
         waives and/or agrees not to assert any such rights held by the Licensor
         to the limited extent necessary to allow You to exercise the Licensed
         Rights, but not otherwise.
      2. Patent and trademark rights are not licensed under this Public License.
      3. To the extent possible, the Licensor waives any right to collect
         royalties from You for the exercise of the Licensed Rights, whether
         directly or through a collecting society under any voluntary or
         waivable statutory or compulsory licensing scheme. In all other cases
         the Licensor expressly reserves any right to collect such royalties.
 .
 Section 3 â�� License Conditions.
 .
 Your exercise of the Licensed Rights is expressly made subject to the following
 conditions.
 .
  a. Attribution.
 .
      1. If You Share the Licensed Material (including in modified form), You
         must:
 .
          A. retain the following if it is supplied by the Licensor with the
             Licensed Material:
              i. identification of the creator(s) of the Licensed Material and
                 any others designated to receive attribution, in any reasonable
                 manner requested by the Licensor (including by pseudonym if
                 designated);
             ii. a copyright notice;
             iii. a notice that refers to this Public License;
             iv. a notice that refers to the disclaimer of warranties;
              v. a URI or hyperlink to the Licensed Material to the extent
                 reasonably practicable;
          B. indicate if You modified the Licensed Material and retain an
             indication of any previous modifications; and
          C. indicate the Licensed Material is licensed under this Public
             License, and include the text of, or the URI or hyperlink to, this
             Public License.
      2. You may satisfy the conditions in Section 3(a)(1) in any reasonable
         manner based on the medium, means, and context in which You Share the
         Licensed Material. For example, it may be reasonable to satisfy the
         conditions by providing a URI or hyperlink to a resource that includes
         the required information.
      3. If requested by the Licensor, You must remove any of the information
         required by Section 3(a)(1)(A) to the extent reasonably practicable.
  b. ShareAlike.
 .
     In addition to the conditions in Section 3(a), if You Share Adapted
     Material You produce, the following conditions also apply.
 .
      1. The Adapterâ��s License You apply must be a Creative Commons license with
         the same License Elements, this version or later, or a BY-SA Compatible
         License.
      2. You must include the text of, or the URI or hyperlink to, the Adapter's
         License You apply. You may satisfy this condition in any reasonable
         manner based on the medium, means, and context in which You Share
         Adapted Material.
      3. You may not offer or impose any additional or different terms or
         conditions on, or apply any Effective Technological Measures to,
         Adapted Material that restrict exercise of the rights granted under the
         Adapter's License You apply.
 .
 Section 4 â�� Sui Generis Database Rights.
 .
 Where the Licensed Rights include Sui Generis Database Rights that apply to
 Your use of the Licensed Material:
 .
  a. for the avoidance of doubt, Section 2(a)(1) grants You the right to
     extract, reuse, reproduce, and Share all or a substantial portion of the
     contents of the database;
  b. if You include all or a substantial portion of the database contents in a
     database in which You have Sui Generis Database Rights, then the database
     in which You have Sui Generis Database Rights (but not its individual
     contents) is Adapted Material, including for purposes of Section 3(b); and
  c. You must comply with the conditions in Section 3(a) if You Share all or a
     substantial portion of the contents of the database.
 .
 For the avoidance of doubt, this Section 4 supplements and does not replace
 Your obligations under this Public License where the Licensed Rights include
 other Copyright and Similar Rights.
 .
 Section 5 â�� Disclaimer of Warranties and Limitation of Liability.
 .
  a. Unless otherwise separately undertaken by the Licensor, to the extent
     possible, the Licensor offers the Licensed Material as-is and as-available,
     and makes no representations or warranties of any kind concerning the
     Licensed Material, whether express, implied, statutory, or other. This
     includes, without limitation, warranties of title, merchantability, fitness
     for a particular purpose, non-infringement, absence of latent or other
     defects, accuracy, or the presence or absence of errors, whether or not
     known or discoverable. Where disclaimers of warranties are not allowed in
     full or in part, this disclaimer may not apply to You.
  b. To the extent possible, in no event will the Licensor be liable to You on
     any legal theory (including, without limitation, negligence) or otherwise
     for any direct, special, indirect, incidental, consequential, punitive,
     exemplary, or other losses, costs, expenses, or damages arising out of this
     Public License or use of the Licensed Material, even if the Licensor has
     been advised of the possibility of such losses, costs, expenses, or
     damages. Where a limitation of liability is not allowed in full or in part,
     this limitation may not apply to You.
 .
  c. The disclaimer of warranties and limitation of liability provided above
     shall be interpreted in a manner that, to the extent possible, most closely
     approximates an absolute disclaimer and waiver of all liability.
 .
 Section 6 â�� Term and Termination.
 .
  a. This Public License applies for the term of the Copyright and Similar
     Rights licensed here. However, if You fail to comply with this Public
     License, then Your rights under this Public License terminate
     automatically.
  b. Where Your right to use the Licensed Material has terminated under Section
     6(a), it reinstates:
 .
      1. automatically as of the date the violation is cured, provided it is
         cured within 30 days of Your discovery of the violation; or
      2. upon express reinstatement by the Licensor.
     For the avoidance of doubt, this Section 6(b) does not affect any right the
     Licensor may have to seek remedies for Your violations of this Public
     License.
  c. For the avoidance of doubt, the Licensor may also offer the Licensed
     Material under separate terms or conditions or stop distributing the
     Licensed Material at any time; however, doing so will not terminate this
     Public License.
  d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.
 .
 Section 7 â�� Other Terms and Conditions.
 .
  a. The Licensor shall not be bound by any additional or different terms or
     conditions communicated by You unless expressly agreed.
  b. Any arrangements, understandings, or agreements regarding the Licensed
     Material not stated herein are separate from and independent of the terms
     and conditions of this Public License.
 .
 Section 8 â�� Interpretation.
 .
  a. For the avoidance of doubt, this Public License does not, and shall not be
     interpreted to, reduce, limit, restrict, or impose conditions on any use of
     the Licensed Material that could lawfully be made without permission under
     this Public License.
  b. To the extent possible, if any provision of this Public License is deemed
     unenforceable, it shall be automatically reformed to the minimum extent
     necessary to make it enforceable. If the provision cannot be reformed, it
     shall be severed from this Public License without affecting the
     enforceability of the remaining terms and conditions.
  c. No term or condition of this Public License will be waived and no failure
     to comply consented to unless expressly agreed to by the Licensor.
  d. Nothing in this Public License constitutes or may be interpreted as a
     limitation upon, or waiver of, any privileges and immunities that apply to
     the Licensor or You, including from the legal processes of any jurisdiction
     or authority.

License: BSD-3-clause
 Some rights reserved.
 .
 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are
 met:
 .
     * Redistributions of source code must retain the above copyright
       notice, this list of conditions and the following disclaimer.
 .
     * Redistributions in binary form must reproduce the above
       copyright notice, this list of conditions and the following
       disclaimer in the documentation and/or other materials provided
       with the distribution.
 .
     * The names of the contributors may not be used to endorse or
       promote products derived from this software without specific
       prior written permission.
 .
 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.










./usr/share/doc-base/ocrmypdf


Document: ocrmypdf
Title: OCRmyPDF documentation
Author: James R. Barlow
Abstract: Instructions for using OCRmyPDF
Section: Graphics

Format: HTML
Index: /usr/share/doc/ocrmypdf/html/index.html
Files: /usr/share/doc/ocrmypdf/html/*.html










./usr/share/doc/ocrmypdf/html/_static/css/badge_only.css








./usr/share/doc/ocrmypdf/html/_static/css/theme.css








./usr/share/doc/ocrmypdf/html/_static/doctools.js








./usr/share/doc/ocrmypdf/html/_static/fonts/Inconsolata-Bold.ttf








./usr/share/doc/ocrmypdf/html/_static/fonts/Inconsolata-Regular.ttf








./usr/share/doc/ocrmypdf/html/_static/fonts/Lato-Bold.ttf








./usr/share/doc/ocrmypdf/html/_static/fonts/Lato-Regular.ttf








./usr/share/doc/ocrmypdf/html/_static/fonts/RobotoSlab-Bold.ttf








./usr/share/doc/ocrmypdf/html/_static/fonts/RobotoSlab-Regular.ttf








./usr/share/doc/ocrmypdf/html/_static/fonts/fontawesome-webfont.eot








./usr/share/doc/ocrmypdf/html/_static/fonts/fontawesome-webfont.svg








./usr/share/doc/ocrmypdf/html/_static/fonts/fontawesome-webfont.ttf








./usr/share/doc/ocrmypdf/html/_static/fonts/fontawesome-webfont.woff








./usr/share/doc/ocrmypdf/html/_static/jquery.js








./usr/share/doc/ocrmypdf/html/_static/js/modernizr.min.js








./usr/share/doc/ocrmypdf/html/_static/js/theme.js








./usr/share/doc/ocrmypdf/html/_static/searchtools.js








./usr/share/doc/ocrmypdf/html/_static/underscore.js








