
debian-binary
2.0

control.tar.xz
control.tar

./control

Package: ocrmypdf
Version: 6.1.2-1ubuntu1
Architecture: all
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Installed-Size: 348
Depends: ghostscript (>= 9.18~dfsg~), icc-profiles-free, liblept5, python3-pil, python3-pkg-resources, python3-reportlab, python3-ruffus (<< 2.6.3+dfsh), python3-ruffus (>= 2.6.3+dfsg), qpdf, tesseract-ocr, zlib1g, python3-cffi-backend-api-min (<= 9729), python3-cffi-backend-api-max (>= 9729), python3-defusedxml, python3-img2pdf (>= 0.2.1), python3-pypdf2 (>= 1.26), python3:any (>= 3.3.2-2~)
Recommends: unpaper
Suggests: ocrmypdf-doc, python-watchdog, img2pdf
Section: graphics
Priority: optional
Homepage: https://github.com/jbarlow83/OCRmyPDF
Description: add an OCR text layer to PDF files
 OCRmyPDF generates a searchable PDF/A file from a regular PDF
 containing only images, allowing it to be searched.
 .
 It uses the Tesseract OCR engine and so supports all the languages
 that Tesseract does.
 .
 Some other main features:
 .
 * Places OCR text accurately below the image to ease copy / paste
 * Keeps the exact resolution of the original embedded images
 * When possible, inserts OCR information as a lossless operation
 without rendering vector information
 * Keeps file size about the same
 * If requested deskews and/or cleans the image before performing OCR
 * Validates input and output files
 * Provides debug mode to enable easy verification of the OCR results
 * Processes pages in parallel when more than one CPU core is
 available
 * Battle-tested on thousands of PDFs, a test suite and continuous
 integration.
Original-Maintainer: Sean Whitton <spwhitton@spwhitton.name>

./md5sums

d6e06fd780ea63500e12b32963638cae usr/bin/ocrmypdf
d33722b14536ad9d57af5fd0b7327613 usr/lib/python3/dist-packages/ocrmypdf-6.1.2.egg-info/PKG-INFO
68b329da9893e34099c7d8ad5cb9c940 usr/lib/python3/dist-packages/ocrmypdf-6.1.2.egg-info/dependency_links.txt
8a740baa975abcb9ffc4d5d1bfdefc96 usr/lib/python3/dist-packages/ocrmypdf-6.1.2.egg-info/entry_points.txt
68b329da9893e34099c7d8ad5cb9c940 usr/lib/python3/dist-packages/ocrmypdf-6.1.2.egg-info/not-zip-safe
121b3afb15bec2aa9ce4a746223cf661 usr/lib/python3/dist-packages/ocrmypdf-6.1.2.egg-info/requires.txt
2c6b333333bc69d346c5657fc87ade9d usr/lib/python3/dist-packages/ocrmypdf-6.1.2.egg-info/top_level.txt
944c3a947c52e1218cbdd66d2c0ecd27 usr/lib/python3/dist-packages/ocrmypdf/__init__.py
71a9fb2bee93e2bd7c0446872cebc303 usr/lib/python3/dist-packages/ocrmypdf/__main__.py
38269ed6e38e71692fa7f6a24cbe614b usr/lib/python3/dist-packages/ocrmypdf/_unicodefun.py
763bbe7b92c032b16f6c687e47fb997f usr/lib/python3/dist-packages/ocrmypdf/exceptions.py
9bbb87ac46de9c56f222e772a56d337b usr/lib/python3/dist-packages/ocrmypdf/exec/__init__.py
c7668c770cb2523d5e1397560bb0af0c usr/lib/python3/dist-packages/ocrmypdf/exec/ghostscript.py
37f6ce84351a2a7f079b65bc9caa2270 usr/lib/python3/dist-packages/ocrmypdf/exec/qpdf.py
6122fabc2c34a7ae334c1117b5b294da usr/lib/python3/dist-packages/ocrmypdf/exec/tesseract.py
19aee5b3cef4d70b40f010468d409f56 usr/lib/python3/dist-packages/ocrmypdf/exec/unpaper.py
868d1db93a755515ea8549e35bc003b0 usr/lib/python3/dist-packages/ocrmypdf/helpers.py
1135f635562f37797a6522da91d468ac usr/lib/python3/dist-packages/ocrmypdf/hocrtransform.py
d13868202e34427884cd39f75a2210a6 usr/lib/python3/dist-packages/ocrmypdf/leptonica.py
d14fe017d21294e4ae7448997c38ebb8 usr/lib/python3/dist-packages/ocrmypdf/lib/__init__.py
82931db67c67e89897a91ec1c44b30f1 usr/lib/python3/dist-packages/ocrmypdf/lib/_leptonica.py
85a0d8990fce88a1309340e7b79e672a usr/lib/python3/dist-packages/ocrmypdf/lib/compile_leptonica.py
a227391e7b81bf66b38d585185b4d326 usr/lib/python3/dist-packages/ocrmypdf/pdfa.py
34ed429c368e329217de9fe178bcf5a5 usr/lib/python3/dist-packages/ocrmypdf/pdfinfo.py
11a69d6613308b2d7c823ecba1ee9a2c usr/lib/python3/dist-packages/ocrmypdf/pipeline.py
679264e2c4ea7107b8db1e86f2b32265 usr/share/doc/ocrmypdf/NEWS.Debian.gz
1dfaf0408edc513540edbb40a32ddd37 usr/share/doc/ocrmypdf/README.Debian
175d6650dceb619dbdaf8ed8ce74082f usr/share/doc/ocrmypdf/changelog.Debian.gz
f23f9c41aef2a0ecace04b51994b16b2 usr/share/doc/ocrmypdf/copyright
4cdc8021e79c2f7be2927de05987cd73 usr/share/man/man1/ocrmypdf.1.gz

./postinst

#!/bin/sh
set -e

Automatically added by dh_python3:
if which py3compile >/dev/null 2>&1; then
	py3compile -p ocrmypdf
fi

End automatically added section

./prerm

#!/bin/sh
set -e

Automatically added by dh_python3:
if which py3clean >/dev/null 2>&1; then
	py3clean -p ocrmypdf
else
	dpkg -L ocrmypdf | perl -ne 's,/([^/]*)\.py$,/__pycache__/\1.*, or next; unlink $_ or die $! foreach glob($_)'
	find /usr/lib/python3/dist-packages/ -type d -name __pycache__ -empty -print0 | xargs --null --no-run-if-empty rmdir
fi

End automatically added section

data.tar.xz
data.tar

./usr/bin/ocrmypdf

#!/usr/bin/python3
EASY-INSTALL-ENTRY-SCRIPT: 'ocrmypdf==6.1.2','console_scripts','ocrmypdf'
__requires__ = 'ocrmypdf==6.1.2'
import re
import sys
from pkg_resources import load_entry_point

if __name__ == '__main__':
 sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
 sys.exit(
 load_entry_point('ocrmypdf==6.1.2', 'console_scripts', 'ocrmypdf')()
)

./usr/lib/python3/dist-packages/ocrmypdf/__init__.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import pkg_resources

PROGRAM_NAME = 'ocrmypdf'

Official PEP 396
__version__ = pkg_resources.get_distribution('ocrmypdf').version

VERSION = __version__

./usr/lib/python3/dist-packages/ocrmypdf/__main__.py

#!/usr/bin/env python3
© 2015-17 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from tempfile import mkdtemp
from collections.abc import Sequence
from pathlib import Path
import sys
import os
import re
import warnings
import multiprocessing
import atexit
import textwrap
import logging
import argparse

import PyPDF2 as pypdf
import PIL

import ruffus.ruffus_exceptions as ruffus_exceptions
import ruffus.cmdline as cmdline
import ruffus.proxy_logger as proxy_logger

from .pipeline import JobContext, JobContextManager, \
 cleanup_working_files, build_pipeline
from .pdfa import file_claims_pdfa
from .helpers import is_iterable_notstr, re_symlink, is_file_writable, \
 available_cpu_count
from .exec import tesseract, qpdf, ghostscript
from .lib import fitz
from . import PROGRAM_NAME, VERSION

from .exceptions import ExitCode, ExitCodeException, MissingDependencyError, \
 InputFileError, BadArgsError, OutputFileAccessError
from . import exceptions as ocrmypdf_exceptions
from ._unicodefun import verify_python3_env

warnings.simplefilter('ignore', pypdf.utils.PdfReadWarning)

External dependencies

MINIMUM_TESS_VERSION = '3.04'

HOCR_OK_LANGS = frozenset([
 'eng', 'deu', 'spa', 'ita', 'por'
])

def complain(message):
 print(*textwrap.wrap(message), file=sys.stderr)

Hack to help debugger context find /usr/local/bin
if 'IDE_PROJECT_ROOTS' in os.environ:
 os.environ['PATH'] = '/usr/local/bin:' + os.environ['PATH']

Critical environment tests

verify_python3_env()

if tesseract.version() < MINIMUM_TESS_VERSION:
 complain(
 "Please install tesseract {0} or newer "
 "(currently installed version is {1})".format(
 MINIMUM_TESS_VERSION, tesseract.version()))
 sys.exit(ExitCode.missing_dependency)

Parser

parser = argparse.ArgumentParser(
 prog=PROGRAM_NAME,
 fromfile_prefix_chars='@',
 formatter_class=argparse.RawDescriptionHelpFormatter,
 description="""\
Generates a searchable PDF or PDF/A from a regular PDF.

OCRmyPDF rasterizes each page of the input PDF, optionally corrects page
rotation and performs image processing, runs the Tesseract OCR engine on the
image, and then creates a PDF from the OCR information.
""",
 epilog="""\
OCRmyPDF attempts to keep the output file at about the same size. If a file
contains losslessly compressed images, and output file will be losslessly
compressed as well.

PDF is a page description file that attempts to preserve a layout exactly.
A PDF can contain vector objects (such as text or lines) and raster objects
(images). A page might have multiple images. OCRmyPDF is prepared to deal
with the wide variety of PDFs that exist in the wild.

When a PDF page contains text, OCRmyPDF assumes that the page has already
been OCRed or is a "born digital" page that should not be OCRed. The default
behavior is to exit in this case without producing a file. You can use the
option --skip-text to ignore pages with text, or --force-ocr to rasterize
all objects on the page and produce an image-only PDF as output.

 ocrmypdf --skip-text file_with_some_text_pages.pdf output.pdf

 ocrmypdf --force-ocr word_document.pdf output.pdf

If you are concerned about long-term archiving of PDFs, use the default option
--output-type pdfa which converts the PDF to a standardized PDF/A-2b. This
converts images to sRGB colorspace, removes some features from the PDF such
as Javascript or forms. If you want to minimize the number of changes made to
your PDF, use --output-type pdf.

If OCRmyPDF is given an image file as input, it will attempt to convert the
image to a PDF before processing. For more control over the conversion of
images to PDF, use img2pdf, or other image to PDF software.

For example, this command uses img2pdf to convert all .png files beginning
with the 'page' prefix to a PDF, fitting each image on A4-sized paper, and
sending the result to OCRmyPDF through a pipe.

 img2pdf --pagesize A4 page*.png | ocrmypdf - myfile.pdf

HTML documentation is located at:
 /usr/share/doc/ocrmypdf/html/index.html
after installing the ocrmypdf-doc package.

""")

parser.add_argument(
 'input_file', metavar="input_pdf_or_image",
 help="PDF file containing the images to be OCRed (or '-' to read from "
 "standard input)")
parser.add_argument(
 'output_file', metavar="output_pdf",
 help="Output searchable PDF file (or '-' to write to standard output). "
 "Existing files will be ovewritten. If same as input file, the "
 "input file will be updated only if processing is successful.")
parser.add_argument(
 '-l', '--language', action='append',
 help="Language(s) of the file to be OCRed (see tesseract --list-langs for "
 "all language packs installed in your system). Use -l eng+deu for "
 "multiple languages.")
parser.add_argument(
 '--image-dpi', metavar='DPI', type=int,
 help="For input image instead of PDF, use this DPI instead of file's.")
parser.add_argument(
 '--output-type', choices=['pdfa', 'pdf', 'pdfa-1', 'pdfa-2'],
 default='pdfa',
 help="Choose output type. 'pdfa' creates a PDF/A-2b compliant file for "
 "long term archiving (default, recommended) but may not suitable "
 "for users who want their file altered as little as possible. 'pdfa' "
 "also has problems with full Unicode text. 'pdf' attempts to "
 "preserve file contents as much as possible. 'pdf-a1' creates a "
 "PDF/A1-b file. 'pdf-a2' is equivalent to 'pdfa'."
)

Use null string '\0' as sentinel to indicate the user supplied no argument,
since that is the only invalid character for filepaths on all platforms
bool('\0') is True in Python
parser.add_argument(
 '--sidecar', nargs='?', const='\0', default=None, metavar='FILE',
 help="Generate sidecar text files that contain the same text recognized "
 "by Tesseract. This may be useful for building a OCR text database. "
 "If FILE is omitted, the sidecar file be named {output_file}.txt "
 "If FILE is set to '-', the sidecar is written to stdout (a "
 "convenient way to preview OCR quality). The output file and sidecar "
 "may not both use stdout at the same time.")

parser.add_argument(
 '--version', action='version', version=VERSION,
 help="Print program version and exit")

jobcontrol = parser.add_argument_group(
 "Job control options")
jobcontrol.add_argument(
 '-j', '--jobs', metavar='N', type=int,
 help="Use up to N CPU cores simultaneously (default: use all).")
jobcontrol.add_argument(
 '-q', '--quiet', action='store_true', help="Suppress INFO messages")
jobcontrol.add_argument(
 '-v', '--verbose', const="+", default=[], nargs='?', action="append",
 help="Print more verbose messages for each additional verbose level")

metadata = parser.add_argument_group(
 "Metadata options",
 "Set output PDF/A metadata (default: copy input document's metadata)")
metadata.add_argument(
 '--title', type=str,
 help="Set document title (place multiple words in quotes)")
metadata.add_argument(
 '--author', type=str,
 help="Set document author")
metadata.add_argument(
 '--subject', type=str,
 help="Set document subject description")
metadata.add_argument(
 '--keywords', type=str,
 help="Set document keywords")

preprocessing = parser.add_argument_group(
 "Image preprocessing options",
 "Options to improve the quality of the final PDF and OCR")
preprocessing.add_argument(
 '-r', '--rotate-pages', action='store_true',
 help="Automatically rotate pages based on detected text orientation")
preprocessing.add_argument(
 '--remove-background', action='store_true',
 help="Attempt to remove background from gray or color pages, setting it "
 "to white ")
preprocessing.add_argument(
 '-d', '--deskew', action='store_true',
 help="Deskew each page before performing OCR")
preprocessing.add_argument(
 '-c', '--clean', action='store_true',
 help="Clean pages from scanning artifacts before performing OCR, and send "
 "the cleaned page to OCR, but do not include the cleaned page in "
 "the output")
preprocessing.add_argument(
 '-i', '--clean-final', action='store_true',
 help="Clean page as above, and incorporate the cleaned image in the final "
 "PDF. Might remove desired content.")
preprocessing.add_argument(
 '--oversample', metavar='DPI', type=int, default=0,
 help="Oversample images to at least the specified DPI, to improve OCR "
 "results slightly")

ocrsettings = parser.add_argument_group(
 "OCR options",
 "Control how OCR is applied")
ocrsettings.add_argument(
 '-f', '--force-ocr', action='store_true',
 help="Rasterize any fonts or vector objects on each page, apply OCR, and "
 "save the rastered output (this rewrites the PDF)")
ocrsettings.add_argument(
 '-s', '--skip-text', action='store_true',
 help="Skip OCR on any pages that already contain text, but include the "
 "page in final output; useful for PDFs that contain a mix of "
 "images, text pages, and/or previously OCRed pages")
ocrsettings.add_argument(
'--redo-ocr', action='store_true',
help="removing any existing OCR text, but otherwise preserve mixed PDF "
"pages")

ocrsettings.add_argument(
 '--skip-big', type=float, metavar='MPixels',
 help="Skip OCR on pages larger than the specified amount of megapixels, "
 "but include skipped pages in final output")

advanced = parser.add_argument_group(
 "Advanced",
 "Advanced options to control Tesseract's OCR behavior")
advanced.add_argument(
 '--max-image-mpixels', action='store', type=float, metavar='MPixels',
 help="Set maximum number of pixels to unpack before treating an image as a "
 "decompression bomb",
 default=128.0)
advanced.add_argument(
 '--tesseract-config', action='append', metavar='CFG', default=[],
 help="Additional Tesseract configuration files -- see documentation")
advanced.add_argument(
 '--tesseract-pagesegmode', action='store', type=int, metavar='PSM',
 choices=range(0, 14),
 help="Set Tesseract page segmentation mode (see tesseract --help)")
advanced.add_argument(
 '--tesseract-oem', action='store', type=int, metavar='MODE',
 choices=range(0, 4),
 help=("Set Tesseract 4.0 OCR engine mode: "
 "0 - original Tesseract only; "
 "1 - neural nets LSTM only; "
 "2 - Tesseract + LSTM; "
 "3 - default.")
)
advanced.add_argument(
 '--pdf-renderer',
 choices=['auto', 'tesseract', 'hocr', 'sandwich'], default='auto',
 help="Choose OCR PDF renderer - the default option is to let OCRmyPDF "
 "choose."
 "auto - let OCRmyPDF choose; "
 "sandwich - default renderer for Tesseract 3.05.01 and newer; "
 "hocr - default renderer for older versions of Tesseract; "
 "tesseract - gives better results for non-Latin languages and "
 "Tesseract older than 3.05.01 but has problems with some versions "
 " of Ghostscript; deprecated"
)
advanced.add_argument(
 '--tesseract-timeout', default=180.0, type=float, metavar='SECONDS',
 help='Give up on OCR after the timeout, but copy the preprocessed page '
 'into the final output')
advanced.add_argument(
 '--rotate-pages-threshold', default=14.0, type=float, metavar='CONFIDENCE',
 help="Only rotate pages when confidence is above this value (arbitrary "
 "units reported by tesseract)")
advanced.add_argument(
 '--pdfa-image-compression', choices=['auto', 'jpeg', 'lossless'],
 default='auto',
 help="Specify how to compress images in the output PDF/A. 'auto' lets "
 "OCRmyPDF decide. 'jpeg' changes all grayscale and color images to "
 "JPEG compression. 'lossless' uses PNG-style lossless compression "
 "for all images. Monochrome images are always compressed using a "
 "lossless codec. Compression settings "
 "are applied to all pages, including those for which OCR was "
 "skipped. Not supported for --output-type=pdf ; that setting "
 "preserves the original compression of all images.")
advanced.add_argument(
 '--user-words', metavar='FILE',
 help="Specify the location of the Tesseract user words file. This is a "
 "list of words Tesseract should consider while performing OCR in "
 "addition to its standard language dictionaries. This can improve "
 "OCR quality especially for specialized and technical documents.")
advanced.add_argument(
 '--user-patterns', metavar='FILE',
 help="Specify the location of the Tesseract user patterns file.")
advanced.add_argument(
 '--skip-repair', action='store_true',
 help="Normally OCRmyPDF automatically repairs PDFs using qpdf before "
 "processing. If you have already run qpdf or a similar program "
 "that repairs PDF errors, you can tell OCRmyPDF to skip repair with "
 "this option. This may be helpful in batch processing where all "
 "files are repaired prior to OCR occurs, since repair is single "
 "threaded and time consuming for large files.")

debugging = parser.add_argument_group(
 "Debugging",
 "Arguments to help with troubleshooting and debugging")
debugging.add_argument(
 '-k', '--keep-temporary-files', action='store_true',
 help="Keep temporary files (helpful for debugging)")
debugging.add_argument(
 '-g', '--debug-rendering', action='store_true',
 help="Render each page twice with debug information on second page")
debugging.add_argument(
 '--flowchart', type=str,
 help="Generate the pipeline execution flowchart")

def check_options_languages(options, _log):
 if not options.language:
 options.language = ['eng'] # Enforce English hegemony

 # Support v2.x "eng+deu" language syntax
 if '+' in options.language[0]:
 options.language = options.language[0].split('+')

 languages = set(options.language)
 if not languages.issubset(tesseract.languages()):
 msg = (
 "The installed version of tesseract does not have language "
 "data for the following requested languages: \n")
 for lang in (languages - tesseract.languages()):
 msg += lang + '\n'
 raise MissingDependencyError(msg)

def check_options_output(options, log):
 if options.pdf_renderer == 'auto':
 if tesseract.has_textonly_pdf():
 options.pdf_renderer = 'sandwich'
 else:
 options.pdf_renderer = 'hocr'

 if options.pdf_renderer == 'sandwich' and not tesseract.has_textonly_pdf():
 raise MissingDependencyError(
 "The 'sandwich' renderer requires Tesseract 3.05.01 or newer; "
 "or Tesseract 4.00 alpha newer than February 2017.")

 if options.pdf_renderer == 'tesseract':
 if tesseract.version() < '3.05' and \
 options.output_type.startswith('pdfa'):
 log.warning(
 "For best results use --pdf-renderer=tesseract "
 "--output-type=pdf to disable PDF/A generation via "
 "Ghostscript, which is known to corrupt the OCR text of "
 "some PDFs produced your version of Tesseract.")
 elif tesseract.has_textonly_pdf():
 log.warning(
 "The argument --pdf-renderer=tesseract provides support for "
 "versions of tesseract older than your version. For best "
 "results omit this argument and let OCRmyPDF choose the "
 "best available renderer.")

 if options.debug_rendering and options.pdf_renderer != 'hocr':
 log.info(
 "Ignoring --debug-rendering because it requires --pdf-renderer=hocr")

 lossless_reconstruction = False
 if options.pdf_renderer in ('hocr', 'sandwich'):
 if not any((options.deskew, options.clean_final, options.force_ocr,
 options.remove_background)):
 lossless_reconstruction = True
 options.lossless_reconstruction = lossless_reconstruction

def check_options_sidecar(options, log):
 if options.sidecar == '\0':
 if options.output_file == '-':
 raise argparse.ArgumentError(
 None,
 "--sidecar filename must be specified when output file is "
 "stdout.")
 options.sidecar = options.output_file + '.txt'

def check_options_preprocessing(options, log):
 if any((options.clean, options.clean_final)):
 from .exec import unpaper
 try:
 if unpaper.version() < '6.1':
 raise MissingDependencyError(
 "The installed 'unpaper' is not supported. "
 "Install version 6.1 or newer.")
 except FileNotFoundError:
 raise MissingDependencyError(
 "Install the 'unpaper' program to use --clean, --clean-final.")

 if options.clean and \
 not options.clean_final and \
 options.pdf_renderer == 'tesseract':
 log.info(
 "Tesseract PDF renderer cannot render --clean pages without "
 "also performing --clean-final, so --clean-final is assumed.")

def check_options_ocr_behavior(options, log):
 if options.force_ocr and options.skip_text:
 raise argparse.ArgumentError(
 None,
 "Error: --force-ocr and --skip-text are mutually incompatible.")

 # if options.redo_ocr and (options.skip_text or options.force_ocr):
 # raise argparse.ArgumentError(
 # "Error: --redo-ocr and other OCR options are incompatible.")
 languages = set(options.language)
 if options.pdf_renderer == 'hocr' and \
 not languages.issubset(HOCR_OK_LANGS):
 msg = (
 "The 'hocr' PDF renderer is known to cause problems with one "
 "or more of the languages in your document. ")

 if tesseract.has_textonly_pdf():
 msg += (
 "Use --pdf-renderer auto (the default) to avoid this issue.")
 else:
 msg += (
 "Use --pdf-renderer tesseract --output-type pdf to avoid "
 "this issue")
 log.warning(msg)
 elif ghostscript.version() < '9.20' and \
 not languages.issubset(HOCR_OK_LANGS) \
 and options.output_type != 'pdf':
 msg = (
 "The installed version of Ghostscript does not work correctly "
 "with the OCR languages you specified. Use --output-type pdf or "
 "upgrade to Ghostscript 9.20 or later to avoid this issue.")
 msg += "Found Ghostscript {}".format(ghostscript.version())
 log.warning(msg)

def check_options_advanced(options, log):
 if options.tesseract_oem and not tesseract.v4():
 log.warning(
 "--tesseract-oem requires Tesseract 4.x -- argument ignored")
 if options.pdf_renderer == 'sandwich' and not tesseract.has_textonly_pdf():
 raise MissingDependencyError(
 "--pdf-renderer sandwich requires Tesseract 4.x "
 "commit 3d9fb3b or later")
 if options.pdfa_image_compression != 'auto' and \
 options.output_type.startswith('pdfa'):
 log.warning(
 "--pdfa-image-compression argument has no effect when "
 "--output-type is not 'pdfa', 'pdfa-1', or 'pdfa-2'"
)

def check_options_metadata(options, log):
 import unicodedata
 docinfo = [options.title, options.author, options.keywords,
 options.subject]
 for s in (m for m in docinfo if m):
 for c in s:
 if unicodedata.category(c) == 'Co' or ord(c) >= 0x10000:
 raise ValueError(
 "One of the metadata strings contains "
 "an unsupported Unicode character: '{}' (U+{})".format(
 c, hex(ord(c))[2:].upper()
))

def check_options_pillow(options, log):
 PIL.Image.MAX_IMAGE_PIXELS = int(options.max_image_mpixels * 1000000)
 if PIL.Image.MAX_IMAGE_PIXELS == 0:
 PIL.Image.MAX_IMAGE_PIXELS = None

def check_options(options, log):
 try:
 check_options_languages(options, log)
 check_options_metadata(options, log)
 check_options_output(options, log)
 check_options_sidecar(options, log)
 check_options_preprocessing(options, log)
 check_options_ocr_behavior(options, log)
 check_options_advanced(options, log)
 check_options_pillow(options, log)
 except ValueError as e:
 log.error(e)
 sys.exit(ExitCode.bad_args)
 except argparse.ArgumentError as e:
 log.error(e)
 sys.exit(ExitCode.bad_args)
 except MissingDependencyError as e:
 log.error(e)
 sys.exit(ExitCode.missing_dependency)

Logging

def logging_factory(logger_name, logger_args):
 verbose = logger_args['verbose']
 quiet = logger_args['quiet']

 root_logger = logging.getLogger(logger_name)
 root_logger.setLevel(logging.DEBUG)

 handler = logging.StreamHandler(sys.stderr)
 formatter_ = logging.Formatter("%(levelname)7s - %(message)s")
 handler.setFormatter(formatter_)
 if verbose:
 handler.setLevel(logging.DEBUG)
 elif quiet:
 handler.setLevel(logging.WARNING)
 else:
 handler.setLevel(logging.INFO)
 root_logger.addHandler(handler)
 return root_logger

def cleanup_ruffus_error_message(msg):
 msg = re.sub(r'\s+', r' ', msg)
 msg = re.sub(r"\((.+?)\)", r'\1', msg)
 msg = msg.strip()
 return msg

def do_ruffus_exception(ruffus_five_tuple, options, log):
 """Replace the elaborate ruffus stack trace with a user friendly
 description of the error message that occurred."""
 exit_code = None

 task_name, job_name, exc_name, exc_value, exc_stack = ruffus_five_tuple
 job_name = job_name # unused
 if exc_name == 'builtins.SystemExit':
 match = re.search(r"\.(.+?)\)", exc_value)
 exit_code_name = match.groups()[0]
 exit_code = getattr(ExitCode, exit_code_name, 'other_error')
 elif exc_name == 'ruffus.ruffus_exceptions.MissingInputFileError':
 log.error(cleanup_ruffus_error_message(exc_value))
 exit_code = ExitCode.input_file
 elif exc_name == 'builtins.TypeError':
 # Even though repair_pdf will fail, ruffus will still try
 # to call split_pages with no input files, likely due to a bug
 if task_name == 'split_pages':
 log.error("Input file '{0}' is not a valid PDF".format(
 options.input_file))
 exit_code = ExitCode.input_file
 elif exc_name == 'builtins.KeyboardInterrupt':
 log.error("Interrupted by user")
 exit_code = ExitCode.ctrl_c
 elif exc_name == 'subprocess.CalledProcessError':
 # It's up to the subprocess handler to report something useful
 msg = "Error occurred while running this command:"
 log.error(msg + '\n' + exc_value)
 exit_code = ExitCode.child_process_error
 elif (exc_name == 'PyPDF2.utils.PdfReadError' and \
 'not been decrypted' in exc_value) or \
 (exc_name == 'ocrmypdf.exceptions.EncryptedPdfError'):
 log.error(textwrap.dedent("""\
 Input PDF is encrypted. The encryption must be removed to
 perform OCR.

 For information about this PDF's security use
 qpdf --show-encryption infilename

 You can remove the encryption using
 qpdf --decrypt [--password=[password]] infilename

 """))
 exit_code = ExitCode.encrypted_pdf
 elif exc_name == 'ocrmypdf.exceptions.PdfMergeFailedError':
 log.error(textwrap.dedent("""\
 Failed to merge PDF image layer with OCR layer

 Usually this happens because the input PDF file is mal-formed and
 ocrmypdf cannot automatically correct the problem on its own.

 Try using
 ocrmypdf --pdf-renderer tesseract [..other args..]
 """))
 exit_code = ExitCode.input_file
 elif exc_name.startswith('ocrmypdf.exceptions.'):
 base_exc_name = exc_name.replace('ocrmypdf.exceptions.', '')
 exc_class = getattr(ocrmypdf_exceptions, base_exc_name)
 exit_code = exc_class.exit_code
 elif exc_name == 'PIL.Image.DecompressionBombError':
 msg = cleanup_ruffus_error_message(exc_value)
 msg += ("\nUse the --max-image-mpixels argument to set increase the "
 "maximum number of megapixels to accept.")
 log.error(msg)
 exit_code = ExitCode.input_file

 if exit_code is not None:
 return exit_code

 if not options.verbose:
 log.error(exc_stack)
 return ExitCode.other_error

def traverse_ruffus_exception(e_args, options, log):
 """Walk through a RethrownJobError and find the first exception.

 Ruffus flattens exception to 5 element tuples. Because of a bug
 in <= 2.6.3 it may present either the single:
 (task, job, exc, value, stack)
 or something like:
 [[(task, job, exc, value, stack)]]

 Generally cross-process exception marshalling doesn't work well
 and ruffus doesn't support because BaseException has its own
 implementation of __reduce__ that attempts to reconstruct the
 exception based on e.__init__(e.args).

 Attempting to log the exception directly marshalls it to the logger
 which is probably in another process, so it's better to log only
 data from the exception at this point.

 The exit code will be based on this, even if multiple exceptions occurred
 at the same time."""

 if isinstance(e_args, Sequence) and isinstance(e_args[0], str) and \
 len(e_args) == 5:
 return do_ruffus_exception(e_args, options, log)
 elif is_iterable_notstr(e_args):
 for exc in e_args:
 return traverse_ruffus_exception(exc, options, log)

def check_closed_streams(options):
 """Work around Python issue with multiprocessing forking on closed streams

 https://bugs.python.org/issue28326

 Attempting to a fork/exec a new Python process when any of std{in,out,err}
 are closed or not flushable for some reason may raise an exception.
 Fix this by opening devnull if the handle seems to be closed. Do this
 globally to avoid tracking places all places that fork.

 Seems to be specific to multiprocessing.Process not all Python process
 forkers.

 The error actually occurs when the stream object is not flushable,
 but replacing an open stream object that is not flushable with
 /dev/null is a bad idea since it will create a silent failure. Replacing
 a closed handle with /dev/null seems safe.

 """

 if sys.version_info[0:3] >= (3, 6, 4):
 return True # Issued fixed in Python 3.6.4+

 if sys.stderr is None:
 sys.stderr = open(os.devnull, 'w')

 if sys.stdin is None:
 if options.input_file == '-':
 print("Trying to read from stdin but stdin seems closed",
 file=sys.stderr)
 return False
 sys.stdin = open(os.devnull, 'r')

 if sys.stdout is None:
 if options.output_file == '-':
 # Can't replace stdout if the user is piping
 # If this case can even happen, it must be some kind of weird
 # stream.
 print(textwrap.dedent("""\
 Output was set to stdout '-' but the stream attached to
 stdout does not support the flush() system call. This
 will fail."""), file=sys.stderr)
 return False
 sys.stdout = open(os.devnull, 'w')

 return True

def log_page_orientations(pdfinfo, _log):
 direction = {0: 'n', 90: 'e',
 180: 's', 270: 'w'}
 orientations = []
 for n, page in enumerate(pdfinfo):
 angle = page.rotation or 0
 if angle != 0:
 orientations.append('{0}{1}'.format(
 n + 1,
 direction.get(angle, '')))
 if orientations:
 _log.info('Page orientations detected: ' + ' '.join(orientations))

def preamble(_log):
 _log.debug('ocrmypdf ' + VERSION)
 _log.debug('tesseract ' + tesseract.version())
 _log.debug('qpdf ' + qpdf.version())
 if fitz:
 _log.debug('PyMuPDF ' + fitz.version[0])
 _log.debug('libmupdf ' + fitz.version[1])
 else:
 _log.debug('PyMuPDF not installed')

def check_environ(options, _log):
 old_envvars = (
 'OCRMYPDF_TESSERACT',
 'OCRMYPDF_QPDF',
 'OCRMYPDF_GS',
 'OCRMYPDF_UNPAPER')
 for k in old_envvars:
 if k in os.environ:
 _log.warning(textwrap.dedent("""\
 OCRmyPDF no longer uses the environment variable {}.
 Change PATH to select alternate programs.""".format(k)))

def check_input_file(options, _log, start_input_file):
 if options.input_file == '-':
 # stdin
 _log.info('reading file from standard input')
 with open(start_input_file, 'wb') as stream_buffer:
 from shutil import copyfileobj
 copyfileobj(sys.stdin.buffer, stream_buffer)
 else:
 try:
 re_symlink(options.input_file, start_input_file, _log)
 except FileNotFoundError:
 _log.error("File not found - " + options.input_file)
 raise InputFileError()

def check_requested_output_file(options, _log):
 if options.output_file == '-':
 if sys.stdout.isatty():
 _log.error(textwrap.dedent("""\
 Output was set to stdout '-' but it looks like stdout
 is connected to a terminal. Please redirect stdout to a
 file."""))
 raise BadArgsError()
 elif not is_file_writable(options.output_file):
 _log.error(
 "Output file location (" + options.output_file + ") " +
 "is not a writable file.")
 raise OutputFileAccessError()

def report_output_file_size(options, _log, input_file, output_file):
 try:
 output_size = Path(output_file).stat().st_size
 input_size = Path(input_file).stat().st_size
 except FileNotFoundError:
 return # Outputting to stream or something
 ratio = output_size / input_size
 if ratio < 1.35 or input_size < 25000:
 return # Seems fine

 reasons = []
 if not fitz:
 reasons.append("The optional dependency PyMuPDF is not installed.")
 if options.force_ocr:
 reasons.append("The argument --force-ocr was issued.")

 if reasons:
 explanation = (
 "Possible reasons for this include:\n" + '\n'.join(reasons) + "\n")
 else:
 explanation = (
 "No reason for this increase is known. Please report this issue.")

 _log.warning(textwrap.dedent("""\
 The output file size is {:.2f}× larger than the input file.
 {}
 """.format(ratio, explanation)))

def run_pipeline():
 options = parser.parse_args()
 options.verbose_abbreviated_path = 1

 if not check_closed_streams(options):
 return ExitCode.bad_args

 logger_args = {'verbose': options.verbose, 'quiet': options.quiet}

 _log, _log_mutex = proxy_logger.make_shared_logger_and_proxy(
 logging_factory, __name__, logger_args)
 preamble(_log)
 check_options(options, _log)

 # Complain about qpdf version < 7.0.0
 # Suppress the warning if in the test suite, since there are no PPAs
 # for qpdf 7.0.0 for Ubuntu trusty (i.e. Travis)
 if qpdf.version() < '7.0.0' and not os.environ.get('PYTEST_CURRENT_TEST'):
 complain(
 "You are using qpdf version {0} which has known issues including "
 "security vulnerabilities with certain malformed PDFs. Consider "
 "upgrading to version 7.0.0 or newer.".format(qpdf.version()))

 # Any changes to options will not take effect for options that are already
 # bound to function parameters in the pipeline. (For example
 # options.input_file, options.pdf_renderer are already bound.)
 if not options.jobs:
 options.jobs = available_cpu_count()

 # Performance is improved by setting Tesseract to single threaded. In tests
 # this gives better throughput than letting a smaller number of Tesseract
 # jobs run multithreaded.
 if tesseract.v4():
 os.environ.setdefault('OMP_THREAD_LIMIT', '1')
 check_environ(options, _log)
 if os.environ.get('PYTEST_CURRENT_TEST'):
 os.environ['_OCRMYPDF_TEST_INFILE'] = options.input_file

 try:
 work_folder = mkdtemp(prefix="com.github.ocrmypdf.")
 options.history_file = os.path.join(
 work_folder, 'ruffus_history.sqlite')
 start_input_file = os.path.join(
 work_folder, 'origin')

 check_input_file(options, _log, start_input_file)
 check_requested_output_file(options, _log)

 manager = JobContextManager()
 manager.register('JobContext', JobContext) # pylint: disable=no-member
 manager.start()

 context = manager.JobContext() # pylint: disable=no-member
 context.set_options(options)
 context.set_work_folder(work_folder)

 build_pipeline(options, work_folder, _log, context)
 atexit.register(cleanup_working_files, work_folder, options)
 cmdline.run(options)
 except ruffus_exceptions.RethrownJobError as e:
 if options.verbose:
 _log.debug(str(e)) # stringify exception so logger doesn't have to
 exitcode = traverse_ruffus_exception(e.args, options, _log)
 if exitcode is None:
 _log.error("Unexpected ruffus exception: " + str(e))
 _log.error(repr(e))
 return ExitCode.other_error
 return exitcode
 except ExitCodeException as e:
 return e.exit_code
 except Exception as e:
 _log.error(e)
 return ExitCode.other_error

 if options.flowchart:
 _log.info("Flowchart saved to {}".format(options.flowchart))
 elif options.output_file == '-':
 _log.info("Output sent to stdout")
 elif os.path.samefile(options.output_file, os.devnull):
 pass # Say nothing when sending to dev null
 else:
 if options.output_type.startswith('pdfa'):
 pdfa_info = file_claims_pdfa(options.output_file)
 if pdfa_info['pass']:
 msg = 'Output file is a {} (as expected)'
 _log.info(msg.format(pdfa_info['conformance']))
 else:
 msg = 'Output file is okay but is not PDF/A (seems to be {})'
 _log.warning(msg.format(pdfa_info['conformance']))
 return ExitCode.invalid_output_pdf
 if not qpdf.check(options.output_file, _log):
 _log.warning('Output file: The generated PDF is INVALID')
 return ExitCode.invalid_output_pdf

 report_output_file_size(options, _log, start_input_file,
 options.output_file)

 pdfinfo = context.get_pdfinfo()
 if options.verbose:
 from pprint import pformat
 _log.debug(pformat(pdfinfo))

 log_page_orientations(pdfinfo, _log)

 return ExitCode.ok

if __name__ == '__main__':
 sys.exit(run_pipeline())

./usr/lib/python3/dist-packages/ocrmypdf/_unicodefun.py

Copyright (c) 2014, Armin Ronacher
#
Copyright (c) 2017, James R Barlow
#
Some rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
#
* The names of the contributors may not be used to endorse or
promote products derived from this software without specific
prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import os
import sys
import codecs

def verify_python3_env():
 """Ensures that the environment is good for unicode on Python 3."""
 try:
 import locale
 fs_enc = codecs.lookup(locale.getpreferredencoding()).name
 except Exception:
 fs_enc = 'ascii'
 if fs_enc != 'ascii':
 return

 extra = ''
 if os.name == 'posix':
 import subprocess
 rv = subprocess.Popen(['locale', '-a'], stdout=subprocess.PIPE,
 stderr=subprocess.PIPE).communicate()[0]
 good_locales = set()
 has_c_utf8 = False

 # Make sure we're operating on text here.
 if isinstance(rv, bytes):
 rv = rv.decode('ascii', 'replace')

 for line in rv.splitlines():
 locale = line.strip()
 if locale.lower().endswith(('.utf-8', '.utf8')):
 good_locales.add(locale)
 if locale.lower() in ('c.utf8', 'c.utf-8'):
 has_c_utf8 = True

 extra += '\n\n'
 if not good_locales:
 extra += (
 'Additional information: on this system no suitable UTF-8\n'
 'locales were discovered. This most likely requires resolving\n'
 'by reconfiguring the locale system.'
)
 elif has_c_utf8:
 extra += (
 'This system supports the C.UTF-8 locale which is recommended.\n'
 'You might be able to resolve your issue by exporting the\n'
 'following environment variables:\n\n'
 ' export LC_ALL=C.UTF-8\n'
 ' export LANG=C.UTF-8'
)
 else:
 extra += (
 'This system lists a couple of UTF-8 supporting locales that\n'
 'you can pick from. The following suitable locales were\n'
 'discovered: %s'
) % ', '.join(sorted(good_locales))

 bad_locale = None
 for locale in os.environ.get('LC_ALL'), os.environ.get('LANG'):
 if locale and locale.lower().endswith(('.utf-8', '.utf8')):
 bad_locale = locale
 if locale is not None:
 break
 if bad_locale is not None:
 extra += (
 '\nocrmypdf discovered that you exported a UTF-8 locale\n'
 'but the locale system could not pick up from it because\n'
 'it does not exist. The exported locale is "%s" but it\n'
 'is not supported'
) % bad_locale

 raise RuntimeError('ocrmypdf will abort further execution because Python 3 '
 'was configured to use ASCII as encoding for the '
 'environment.' + extra)

./usr/lib/python3/dist-packages/ocrmypdf/exceptions.py

© 2016 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from enum import IntEnum

class ExitCode(IntEnum):
 ok = 0
 bad_args = 1
 input_file = 2
 missing_dependency = 3
 invalid_output_pdf = 4
 file_access_error = 5
 already_done_ocr = 6
 child_process_error = 7
 encrypted_pdf = 8
 invalid_config = 9
 other_error = 15
 ctrl_c = 130

class ExitCodeException(Exception):
 exit_code = ExitCode.other_error

class BadArgsError(ExitCodeException):
 exit_code = ExitCode.bad_args

class PdfMergeFailedError(ExitCodeException):
 exit_code = ExitCode.input_file

class MissingDependencyError(ExitCodeException):
 exit_code = ExitCode.missing_dependency

class UnsupportedImageFormatError(ExitCodeException):
 exit_code = ExitCode.input_file

class DpiError(ExitCodeException):
 exit_code = ExitCode.input_file

class OutputFileAccessError(ExitCodeException):
 exit_code = ExitCode.file_access_error

class PriorOcrFoundError(ExitCodeException):
 exit_code = ExitCode.already_done_ocr

class InputFileError(ExitCodeException):
 exit_code = ExitCode.input_file

class SubprocessOutputError(ExitCodeException):
 exit_code = ExitCode.child_process_error

class EncryptedPdfError(ExitCodeException):
 exit_code = ExitCode.encrypted_pdf

class TesseractConfigError(ExitCodeException):
 exit_code = ExitCode.invalid_config

./usr/lib/python3/dist-packages/ocrmypdf/exec/__init__.py

© 2016 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Wrappers to manage subprocess calls"""

import os
import re
import sys
from subprocess import run, STDOUT, PIPE, CalledProcessError
from ..exceptions import MissingDependencyError

def get_version(program, *,
 version_arg='--version', regex=r'(\d+(\.\d+)*)'):
 "Get the version of the specified program"
 args_prog = [
 program,
 version_arg
]
 try:
 proc = run(
 args_prog, close_fds=True, universal_newlines=True,
 stdout=PIPE, stderr=STDOUT, check=True)
 output = proc.stdout
 except CalledProcessError as e:
 raise MissingDependencyError(
 "Could not find program '{}' on the PATH".format(
 program)) from e
 try:
 version = re.match(regex, output.strip()).group(1)
 except AttributeError as e:
 raise MissingDependencyError(
 ("The program '{}' did not report its version. "
 "Message was:\n{}").format(program, output)
)

 return version

./usr/lib/python3/dist-packages/ocrmypdf/exec/ghostscript.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from tempfile import NamedTemporaryFile
from subprocess import run, PIPE, STDOUT, CalledProcessError
from shutil import copy
from functools import lru_cache
import re
import sys
from PIL import Image
from . import get_version
from ..exceptions import SubprocessOutputError, MissingDependencyError
from ..helpers import fspath

@lru_cache(maxsize=1)
def version():
 return get_version('gs')

def _gs_error_reported(stream):
 return re.search(r'error', stream, flags=re.IGNORECASE)

def rasterize_pdf(input_file, output_file, xres, yres, raster_device, log,
 pageno=1, page_dpi=None):
 """
 Rasterize one page of a PDF at resolution (xres, yres) in canvas units.

 The image is sized to match the integer pixels dimensions implied by
 (xres, yres) even if those numbers are noninteger. The image's DPI will
 be overridden with the values in page_dpi.

 :param input_file: pathlike
 :param output_file: pathlike
 :param xres: resolution at which to rasterize page
 :param yres:
 :param raster_device:
 :param log:
 :param pageno: page number to rasterize (beginning at page 1)
 :param page_dpi: resolution tuple (x, y) overriding output image DPI
 :return:
 """
 res = xres, yres
 int_res = round(xres), round(yres)
 if not page_dpi:
 page_dpi = res
 with NamedTemporaryFile(delete=True) as tmp:
 args_gs = [
 'gs',
 '-dQUIET',
 '-dSAFER',
 '-dBATCH',
 '-dNOPAUSE',
 '-sDEVICE=%s' % raster_device,
 '-dFirstPage=%i' % pageno,
 '-dLastPage=%i' % pageno,
 '-r{0}x{1}'.format(str(int_res[0]), str(int_res[1])),
 '-o', tmp.name,
 fspath(input_file)
]

 p = run(args_gs, stdout=PIPE, stderr=STDOUT,
 universal_newlines=True)
 if _gs_error_reported(p.stdout):
 log.error(p.stdout)
 else:
 log.debug(p.stdout)

 if p.returncode != 0:
 log.error('Ghostscript rasterizing failed')
 raise SubprocessOutputError()

 # Ghostscript only accepts integers for output resolution
 # if the resolution happens to be fractional, then the discrepancy
 # would change the size of the output page, especially if the DPI
 # is quite low. Resize the image to the expected size

 tmp.seek(0)
 with Image.open(tmp) as im:
 expected_size = round(im.size[0] / int_res[0] * res[0]), \
 round(im.size[1] / int_res[1] * res[1])
 if expected_size != im.size or page_dpi != (xres, yres):
 log.debug(
 "Ghostscript: resize output image {} -> {}".format(
 im.size, expected_size))
 im.resize(expected_size).save(
 fspath(output_file), dpi=page_dpi)
 else:
 copy(tmp.name, fspath(output_file))

def generate_pdfa(pdf_pages, output_file, compression, log,
 threads=1, pdf_version='1.5', pdfa_part='2'):
 compression_args = []
 if compression == 'jpeg':
 compression_args = [
 "-dAutoFilterColorImages=false",
 "-dColorImageFilter=/DCTEncode",
 "-dAutoFilterGrayImages=false",
 "-dGrayImageFilter=/DCTEncode",
]
 elif compression == 'lossless':
 compression_args = [
 "-dAutoFilterColorImages=false",
 "-dColorImageFilter=/FlateEncode",
 "-dAutoFilterGrayImages=false",
 "-dGrayImageFilter=/FlateEncode",
]
 else:
 compression_args = [
 "-dAutoFilterColorImages=true",
 "-dAutoFilterGrayImages=true",
]

 with NamedTemporaryFile(delete=True) as gs_pdf:
 args_gs = [
 "gs",
 "-dQUIET",
 "-dBATCH",
 "-dNOPAUSE",
 "-dCompatibilityLevel=" + str(pdf_version),
 "-dNumRenderingThreads=" + str(threads),
 "-sDEVICE=pdfwrite",
 "-dAutoRotatePages=/None",
 "-sColorConversionStrategy=/RGB",
 "-sProcessColorModel=DeviceRGB"
] + compression_args + [
 "-dJPEGQ=95",
 "-dPDFA=" + pdfa_part,
 "-dPDFACompatibilityPolicy=1",
 "-sOutputFile=" + gs_pdf.name,
]
 args_gs.extend(pdf_pages)
 p = run(args_gs, stdout=PIPE, stderr=STDOUT,
 universal_newlines=True)

 if _gs_error_reported(p.stdout):
 log.error(p.stdout)
 elif 'overprint mode not set' in p.stdout:
 # Unless someone is going to print PDF/A documents on a
 # magical sRGB printer I can't see the removal of overprinting
 # being a problem....
 log.debug(
 "Ghostscript had to remove PDF 'overprinting' from the "
 "input file to complete PDF/A conversion. "
)
 else:
 log.debug(p.stdout)

 if p.returncode == 0:
 # Ghostscript does not change return code when it fails to create
 # PDF/A - check PDF/A status elsewhere
 copy(gs_pdf.name, output_file)
 else:
 log.error('Ghostscript PDF/A rendering failed')
 raise SubprocessOutputError()

./usr/lib/python3/dist-packages/ocrmypdf/exec/qpdf.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from subprocess import CalledProcessError, STDOUT, PIPE, run
from functools import lru_cache
import sys
import os
import re
import resource

from ..exceptions import InputFileError, SubprocessOutputError, \
 MissingDependencyError, EncryptedPdfError
from . import get_version
from ..helpers import re_symlink

@lru_cache(maxsize=1)
def version():
 return get_version('qpdf', regex=r'qpdf version (.+)')

def check(input_file, log=None):
 args_qpdf = [
 'qpdf',
 '--check',
 input_file
]

 if log is None:
 import logging as log

 try:
 run(args_qpdf, stderr=STDOUT, stdout=PIPE, universal_newlines=True,
 check=True)
 except CalledProcessError as e:
 if e.returncode == 2:
 log.error("{0}: not a valid PDF, and could not repair it.".format(
 input_file))
 log.error("Details:")
 log.error(e.output)
 elif e.returncode == 3:
 log.info("qpdf --check returned warnings:")
 log.info(e.output)
 else:
 log.warning(e.output)
 return False
 return True

def _probably_encrypted(e):
 """qpdf can report a false positive "file is encrypted" message for damaged
 files - suppress this"""
 return e.returncode == 2 and \
 'invalid password' in e.output and \
 'file is damaged' not in e.output

def repair(input_file, output_file, log):
 args_qpdf = [
 'qpdf', input_file, output_file
]
 try:
 run(args_qpdf, stderr=STDOUT, stdout=PIPE, universal_newlines=True,
 check=True)
 except CalledProcessError as e:
 if e.returncode == 3 and e.output.find("operation succeeded"):
 log.debug('qpdf found and fixed errors: ' + e.output)
 return

 if _probably_encrypted(e):
 raise EncryptedPdfError() from e
 elif e.returncode == 2:
 log.error("{0}: not a valid PDF, and could not repair it.".format(
 input_file))
 log.error("Details: " + e.output)
 raise InputFileError() from e
 else:
 log.error("{0}: unknown error".format(
 input_file))
 log.error(e.output)
 raise SubprocessOutputError() from e

def get_npages(input_file, log):
 try:
 pages = run(
 ['qpdf', '--show-npages', input_file],
 universal_newlines=True, check=True, stdout=PIPE, stderr=STDOUT)
 except CalledProcessError as e:
 if e.returncode == 2 and e.output.find('No such file'):
 log.error(e.output)
 raise InputFileError() from e
 return int(pages)

def split_pages(input_file, work_folder, npages):
 """Split multipage PDF into individual pages.

 Incredibly enough, this multiple process approach is about 70 times
 faster than using Ghostscript.
 """
 for n in range(int(npages)):
 args_qpdf = [
 'qpdf', input_file,
 '--pages', input_file, '{0}'.format(n + 1), '--',
 os.path.join(work_folder, '{0:06d}.page.pdf'.format(n + 1))
]
 run(args_qpdf, check=True)

def extract_page(input_file, output_file, pageno):
 args_qpdf = [
 'qpdf', input_file,
 '--pages', input_file, '{0}'.format(pageno + 1), '--',
 output_file
]
 run(args_qpdf, check=True)

def _merge_inner(input_files, output_file, min_version=None, log=None):
 """Merge the list of input files (all filenames) into the output file.

 The input files may contain one or more pages.
 """

 # Single page 'merges' should still be attempted to that the same error
 # checking is applied to single page case

 version_arg = ['--min-version={}'.format(min_version)] \
 if min_version else []

 if log is None:
 import logging as log

 args_qpdf = [
 'qpdf'
] + version_arg + [
 input_files[0], '--pages'
] + input_files + ['--', output_file]

 try:
 run(args_qpdf, check=True, stderr=PIPE, universal_newlines=True)
 except CalledProcessError as e:
 if e.returncode == 3 and \
 e.stderr.find("unknown token while reading object") and \
 e.stderr.find("operation succeeded"):
 # Only whitelist the 'unknown token' problem (decimal/string issue)
 # qpdf issue #165
 log.warning('qpdf found and fixed errors: ' + e.stderr)
 return
 raise e from e

def merge(input_files, output_file, min_version=None, log=None, max_files=None):
 """Merge the list of input files (all filenames) into the output file.

 The input files may contain one or more pages.

 """
 # qpdf requires that every file that contributes to the output has a file
 # descriptor that remains open. That means, given our approach of one
 # intermediate PDF per, we can practically hit the number of file
 # descriptors.

 if max_files is None or max_files < 2:
 # Find out how many open file descriptors we can get away with
 ulimits = resource.getrlimit(resource.RLIMIT_NOFILE)
 max_open_files = ulimits[0]
 max_files = max_open_files // 2 # Conservative guess

 # We'll write things alongside the output file
 output_dir = os.path.dirname(output_file)

 import random
 import string

 def randstr():
 return ''.join(random.sample(string.ascii_lowercase, 6))

 # How many files to grab at once, merging all their contents
 step_size = max_files

 workqueue = input_files.copy()
 counter = 1
 next_workqueue = []
 while len(workqueue) > 1 or len(next_workqueue) > 0:
 # Take n files out of the queue
 n = min(step_size, len(workqueue))
 job = workqueue[0:n]
 del workqueue[0:n]
 log.debug('merging ' + repr(job))

 # Merge them into 1 file, which will contain n^depth pages
 merge_file = os.path.join(
 output_dir, "merge-{:06d}-{}.pdf".format(counter, randstr()))
 counter += 1
 _merge_inner(job, merge_file, min_version=min_version, log=log)

 # On the next
 next_workqueue.append(merge_file)
 log.debug('next_workqueue ' + repr(next_workqueue))

 # If we're out of things to do in this queue, move on to the next
 # queue. On the counter-th pass of the workqueue we can chew through
 # (step_size)**N pages, so on most systems the second pass finishes
 # the job.
 if len(workqueue) == 0:
 workqueue = next_workqueue
 next_workqueue = []

 re_symlink(workqueue.pop(), output_file, log)

./usr/lib/python3/dist-packages/ocrmypdf/exec/tesseract.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see .

import sys
import os
import re
import shutil
from functools import lru_cache
from collections import namedtuple
from textwrap import dedent
from subprocess import PIPE, CalledProcessError, \
 TimeoutExpired, check_output, STDOUT
from contextlib import suppress

import PyPDF2 as pypdf

from ..exceptions import MissingDependencyError, TesseractConfigError
from ..helpers import page_number
from . import get_version

OrientationConfidence = namedtuple(
 'OrientationConfidence',
 ('angle', 'confidence'))

HOCR_TEMPLATE = """

"""

@lru_cache(maxsize=1)
def version():
 return get_version('tesseract', regex=r'tesseract\s(.+)')

def v4():
 "Is this Tesseract v4.0?"
 return version() >= '4'

@lru_cache(maxsize=1)
def has_textonly_pdf():
 """Does Tesseract have textonly_pdf capability?

 Available in 3.05.01, and v4.00.00alpha since January 2017. Best to
 parse the parameter list
 """
 args_tess = [
 'tesseract',
 '--print-parameters'
]
 params = ''
 try:
 params = check_output(
 args_tess, universal_newlines=True, stderr=STDOUT)
 except CalledProcessError as e:
 print("Could not --print-parameters from tesseract",
 file=sys.stderr)
 raise MissingDependencyError from e
 if 'textonly_pdf' in params:
 return True
 return False

def psm():
 "If Tesseract 4.0, use argument --psm instead of -psm"
 return '--psm' if v4() else '-psm'

@lru_cache(maxsize=1)
def languages():
 args_tess = [
 'tesseract',
 '--list-langs'
]
 try:
 langs = check_output(
 args_tess, universal_newlines=True, stderr=STDOUT)
 except CalledProcessError as e:
 msg = dedent("""Tesseract failed to report available languages.
 Output from Tesseract:

 """)
 msg += e.output
 print(msg, file=sys.stderr)
 raise MissingDependencyError from e
 return set(lang.strip() for lang in langs.splitlines()[1:])

def tess_base_args(langs, engine_mode):
 args = [
 'tesseract',
]
 if langs:
 args.extend(['-l', '+'.join(langs)])
 if engine_mode is not None and v4():
 args.extend(['--oem', str(engine_mode)])
 return args

def get_orientation(input_file, language: list, engine_mode, timeout: float,
 log):
 args_tesseract = tess_base_args(['osd'], engine_mode) + [
 psm(), '0',
 input_file,
 'stdout'
]

 try:
 stdout = check_output(
 args_tesseract, stderr=STDOUT, timeout=timeout)
 except TimeoutExpired:
 return OrientationConfidence(angle=0, confidence=0.0)
 except CalledProcessError as e:
 tesseract_log_output(log, e.output, input_file)
 if (b'Too few characters. Skipping this page' in e.output or
 b'Image too large' in e.output):
 return OrientationConfidence(0, 0)
 raise e from e
 else:
 osd = {}
 for line in stdout.decode().splitlines():
 line = line.strip()
 parts = line.split(':', maxsplit=2)
 if len(parts) == 2:
 osd[parts[0].strip()] = parts[1].strip()

 angle = int(osd.get('Orientation in degrees', 0))
 if 'Orientation' in osd:
 # Tesseract < 3.04.01
 # reports "Orientation in degrees" as a counterclockwise angle
 # We keep it clockwise
 assert 'Rotate' not in osd
 angle = -angle % 360
 else:
 # Tesseract == 3.04.01, hopefully also Tesseract > 3.04.01
 # reports "Orientation in degrees" as a clockwise angle
 assert 'Rotate' in osd

 oc = OrientationConfidence(
 angle=angle,
 confidence=float(osd.get('Orientation confidence', 0)))
 return oc

def tesseract_log_output(log, stdout, input_file):
 prefix = "{0:4d}: [tesseract] ".format(page_number(input_file))

 try:
 text = stdout.decode()
 except UnicodeDecodeError:
 log.error(prefix + "command line output was not utf-8. " +
 "This usually means Tesseract's language packs do not match "
 "the installed version of Tesseract.")
 text = stdout.decode('utf-8', 'backslashreplace')

 lines = text.splitlines()
 for line in lines:
 if line.startswith("Tesseract Open Source"):
 continue
 elif line.startswith("Warning in pixReadMem"):
 continue
 elif 'diacritics' in line:
 log.warning(prefix + "lots of diacritics - possibly poor OCR")
 elif line.startswith('OSD: Weak margin'):
 log.warning(prefix + "unsure about page orientation")
 elif 'error' in line.lower() or 'exception' in line.lower():
 log.error(prefix + line.strip())
 elif 'warning' in line.lower():
 log.warning(prefix + line.strip())
 elif 'read_params_file' in line.lower():
 log.error(prefix + line.strip())
 else:
 log.info(prefix + line.strip())

def page_timedout(log, input_file):
 prefix = "{0:4d}: [tesseract] ".format(page_number(input_file))
 log.warning(prefix + " took too long to OCR - skipping")

def _generate_null_hocr(output_hocr, output_sidecar, image):
 """Produce a .hocr file that reports no text detected on a page that is
 the same size as the input image."""
 from PIL import Image

 im = Image.open(image)
 w, h = im.size

 with open(output_hocr, 'w', encoding="utf-8") as f:
 f.write(HOCR_TEMPLATE.format(w, h))
 with open(output_sidecar, 'w', encoding='utf-8') as f:
 f.write('[skipped page]')

def generate_hocr(input_file, output_files, language: list, engine_mode,
 tessconfig: list,
 timeout: float, pagesegmode: int, user_words, user_patterns,
 log):

 output_hocr = next(o for o in output_files if o.endswith('.hocr'))
 output_sidecar = next(o for o in output_files if o.endswith('.txt'))
 prefix = os.path.splitext(output_hocr)[0]

 args_tesseract = tess_base_args(language, engine_mode)

 if pagesegmode is not None:
 args_tesseract.extend([psm(), str(pagesegmode)])

 if user_words:
 args_tesseract.extend(['--user-words', user_words])

 if user_patterns:
 args_tesseract.extend(['--user-patterns', user_patterns])

 # Reminder: test suite tesseract spoofers will break after any changes
 # to the number of order parameters here
 # Tesseract 3.04 requires the order here to be "hocr txt" and will fail
 # on "txt hocr"

 args_tesseract.extend([
 input_file,
 prefix,
 'hocr',
 'txt'
] + tessconfig)
 try:
 log.debug(args_tesseract)
 stdout = check_output(
 args_tesseract, stderr=STDOUT,
 timeout=timeout)
 except TimeoutExpired:
 # Generate a HOCR file with no recognized text if tesseract times out
 # Temporary workaround to hocrTransform not being able to function if
 # it does not have a valid hOCR file.
 page_timedout(log, input_file)
 _generate_null_hocr(output_hocr, output_sidecar, input_file)
 except CalledProcessError as e:
 tesseract_log_output(log, e.output, input_file)
 if b'read_params_file: parameter not found' in e.output:
 raise TesseractConfigError() from e
 if b'Image too large' in e.output:
 _generate_null_hocr(output_hocr, output_sidecar, input_file)
 return

 raise e from e
 else:
 tesseract_log_output(log, stdout, input_file)
 # The sidecar text file will get the suffix .txt; rename it to
 # whatever caller wants it named
 if os.path.exists(prefix + '.txt'):
 shutil.move(prefix + '.txt', output_sidecar)

def use_skip_page(text_only, skip_pdf, output_pdf, output_text):
 with open(output_text, 'w') as f:
 f.write('[skipped page]')

 if not text_only:
 with suppress(FileNotFoundError):
 os.remove(output_pdf) # In case it was partially created
 os.symlink(skip_pdf, output_pdf)
 return

 # For text only we must create a blank page with dimensions identical
 # to the skip page because this is equivalent to a page with no text

 pdf_in = pypdf.PdfFileReader(skip_pdf)
 page0 = pdf_in.pages[0]

 with open(output_pdf, 'wb') as out:
 pdf_out = pypdf.PdfFileWriter()
 w, h = page0.mediaBox.getWidth(), page0.mediaBox.getHeight()
 # If skip page has a /Rotate key, replicate the rotation
 rotation = int(page0.get('/Rotate', 0))
 if rotation % 180 == 90:
 w, h = h, w
 pdf_out.addBlankPage(w, h)
 pdf_out.write(out)

def generate_pdf(*, input_image, skip_pdf, output_pdf, output_text,
 language: list, engine_mode, text_only: bool,
 tessconfig: list, timeout: float, pagesegmode: int,
 user_words, user_patterns, log):
 '''Use Tesseract to render a PDF.

 input_image -- image to analyze
 skip_pdf -- if we time out, use this file as output
 output_pdf -- file to generate
 output_text -- OCR text file
 language -- list of languages to consider
 engine_mode -- engine mode argument for tess v4
 text_only -- enable tesseract text only mode?
 tessconfig -- tesseract configuration
 timeout -- timeout (seconds)
 log -- logger object
 '''

 args_tesseract = tess_base_args(language, engine_mode)

 if pagesegmode is not None:
 args_tesseract.extend([psm(), str(pagesegmode)])

 if text_only:
 args_tesseract.extend(['-c', 'textonly_pdf=1'])

 if user_words:
 args_tesseract.extend(['--user-words', user_words])

 if user_patterns:
 args_tesseract.extend(['--user-patterns', user_patterns])

 prefix = os.path.splitext(output_pdf)[0] # Tesseract appends suffixes

 # Reminder: test suite tesseract spoofers might break after any changes
 # to the number of order parameters here

 args_tesseract.extend([
 input_image,
 prefix,
 'pdf',
 'txt'
] + tessconfig)

 try:
 log.debug(args_tesseract)
 stdout = check_output(
 args_tesseract, stderr=STDOUT,
 timeout=timeout)
 if os.path.exists(prefix + '.txt'):
 shutil.move(prefix + '.txt', output_text)
 except TimeoutExpired:
 page_timedout(log, input_image)
 use_skip_page(text_only, skip_pdf, output_pdf, output_text)
 except CalledProcessError as e:
 tesseract_log_output(log, e.output, input_image)
 if b'read_params_file: parameter not found' in e.output:
 raise TesseractConfigError() from e

 if b'Image too large' in e.output:
 use_skip_page(text_only, skip_pdf, output_pdf, output_text)
 return
 raise e from e
 else:
 tesseract_log_output(log, stdout, input_image)

./usr/lib/python3/dist-packages/ocrmypdf/exec/unpaper.py

© 2015 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

unpaper documentation:
https://github.com/Flameeyes/unpaper/blob/master/doc/basic-concepts.md

from subprocess import CalledProcessError, STDOUT, check_output
from tempfile import NamedTemporaryFile
import sys
import os
from functools import lru_cache
from ..exceptions import MissingDependencyError
from . import get_version

try:
 from PIL import Image
except ImportError:
 print("Could not find Python3 imaging library", file=sys.stderr)
 raise

@lru_cache(maxsize=1)
def version():
 return get_version('unpaper')

def run(input_file, output_file, dpi, log, mode_args):
 args_unpaper = [
 'unpaper',
 '-v',
 '--dpi', str(dpi)
] + mode_args

 SUFFIXES = {'1': '.pbm', 'L': '.pgm', 'RGB': '.ppm'}

 im = Image.open(input_file)
 if im.mode not in SUFFIXES.keys():
 log.info("Converting image to other colorspace")
 try:
 if im.mode == 'P' and len(im.getcolors()) == 2:
 im = im.convert(mode='1')
 else:
 im = im.convert(mode='RGB')
 except IOError as e:
 log.error(
 "Could not convert image with type " + im.mode)
 raise MissingDependencyError() from e

 try:
 suffix = SUFFIXES[im.mode]
 except KeyError:
 log.error(
 "Failed to convert image to a supported format.")
 raise MissingDependencyError() from e

 with NamedTemporaryFile(suffix=suffix) as input_pnm, \
 NamedTemporaryFile(suffix=suffix, mode="r+b") as output_pnm:
 im.save(input_pnm, format='PPM')
 im.close()

 os.unlink(output_pnm.name)

 args_unpaper.extend([input_pnm.name, output_pnm.name])
 try:
 stdout = check_output(
 args_unpaper, close_fds=True,
 universal_newlines=True, stderr=STDOUT,
)
 except CalledProcessError as e:
 log.debug(e.output)
 raise e from e
 else:
 log.debug(stdout)
 # unpaper sets dpi to 72
 Image.open(output_pnm.name).save(output_file, dpi=(dpi, dpi))

def deskew(input_file, output_file, dpi, log):
 run(input_file, output_file, dpi, log, [
 '--mask-scan-size', '100', # don't blank out narrow columns
 '--no-border-align', # don't align visible content to borders
 '--no-mask-center', # don't center visible content within page
 '--no-grayfilter', # don't remove light gray areas
 '--no-blackfilter', # don't remove solid black areas
 '--no-noisefilter', # don't remove salt and pepper noise
 '--no-blurfilter' # don't remove blurry objects/debris
])

def clean(input_file, output_file, dpi, log):
 run(input_file, output_file, dpi, log, [
 '--mask-scan-size', '100', # don't blank out narrow columns
 '--no-border-align', # don't align visible content to borders
 '--no-mask-center', # don't center visible content within page
 '--no-grayfilter', # don't remove light gray areas
 '--no-blackfilter', # don't remove solid black areas
 '--no-deskew', # don't deskew
])

./usr/lib/python3/dist-packages/ocrmypdf/helpers.py

© 2016 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from functools import partial
from collections.abc import Iterable
from contextlib import suppress, contextmanager
from pathlib import Path
import sys
import os
import multiprocessing

def re_symlink(input_file, soft_link_name, log=None):
 """
 Helper function: relinks soft symbolic link if necessary
 """

 if log is None:
 prdebug = partial(print, file=sys.stderr)
 else:
 prdebug = log.debug

 # Guard against soft linking to oneself
 if input_file == soft_link_name:
 prdebug("Warning: No symbolic link made. You are using " +
 "the original data directory as the working directory.")
 return

 # Soft link already exists: delete for relink?
 if os.path.lexists(soft_link_name):
 # do not delete or overwrite real (non-soft link) file
 if not os.path.islink(soft_link_name):
 raise FileExistsError(
 "%s exists and is not a link" % soft_link_name)
 try:
 os.unlink(soft_link_name)
 except OSError:
 prdebug("Can't unlink %s" % (soft_link_name))

 if not os.path.exists(input_file):
 raise FileNotFoundError(
 "trying to create a broken symlink to %s" % input_file)

 prdebug("os.symlink(%s, %s)" % (input_file, soft_link_name))

 # Create symbolic link using absolute path
 os.symlink(
 os.path.abspath(input_file),
 soft_link_name
)

def is_iterable_notstr(thing):
 return isinstance(thing, Iterable) and not isinstance(thing, str)

def page_number(input_file):
 "Get one-based page number implied by filename (000002.pdf -> 2)"
 return int(os.path.basename(input_file)[0:6])

def available_cpu_count():
 try:
 return multiprocessing.cpu_count()
 except NotImplementedError:
 pass

 try:
 import psutil
 return psutil.cpu_count()
 except (ImportError, AttributeError):
 pass

 complain(
 "Could not get CPU count. Assuming one (1) CPU."
 "Use -j N to set manually.")
 return 1

def is_file_writable(test_file):
 """Intentionally racy test if target is writable.

 We intend to write to the output file if and only if we succeed and
 can replace it atomically. Before doing the OCR work, make sure
 the location is writable.
 """
 p = Path(test_file)

 if p.is_symlink():
 # Python 3.5 does not accept parameters for Path.resolve() and behaves
 # as if strict=True (throws an exception on failure). Python 3.6
 # defaults to strict=False. This implements strict=False like behavior
 # for Python 3.5.
 if sys.version_info[0:2] <= (3, 5):
 p = Path(os.path.realpath(str(p)))
 else:
 p = p.resolve(strict=False)

 # p.is_file() throws an exception in some cases
 if p.exists() and p.is_file():
 return os.access(
 str(p), os.W_OK,
 effective_ids=(os.access in os.supports_effective_ids))
 else:
 try:
 fp = p.open('wb')
 except OSError:
 return False
 else:
 fp.close()
 with suppress(OSError):
 p.unlink()
 return True

if sys.version_info[0:2] <= (3, 5):
 def universal_open(p, *args, **kwargs):
 "Work around Python 3.5's inability to open(pathlib.Path())"
 try:
 return p.open(*args, **kwargs)
 except AttributeError:
 return open(p, *args, **kwargs)

 def fspath(path):
 import pathlib
 '''https://www.python.org/dev/peps/pep-0519/#os'''
 if isinstance(path, (str, bytes)):
 return path

 # Work from the object's type to match method resolution of other magic
 # methods.
 path_type = type(path)
 try:
 path = path_type.__fspath__(path)
 except AttributeError:
 # Added for Python 3.5 support.
 if isinstance(path, pathlib.Path):
 return str(path)
 elif hasattr(path_type, '__fspath__'):
 raise
 else:
 if isinstance(path, (str, bytes)):
 return path
 else:
 raise TypeError("expected __fspath__() to return str or bytes, "
 "not " + type(path).__name__)

 raise TypeError(
 "expected str, bytes, pathlib.Path or os.PathLike object, not "
 + path_type.__name__)

else:
 universal_open = open
 fspath = os.fspath

./usr/lib/python3/dist-packages/ocrmypdf/hocrtransform.py

#!/usr/bin/env python3
#
Copyright (c) 2010, Jonathan Brinley
Original version from: https://github.com/jbrinley/HocrConverter
#
Copyright (c) 2013-14, Julien Pfefferkorn
Modifications
#
Copyright (c) 2015-16, James R. Barlow
Set text to transparent
#
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from reportlab.pdfgen.canvas import Canvas
from reportlab.lib.units import inch
from xml.etree import ElementTree
from PIL import Image
from collections import namedtuple
from math import atan, sin, cos
import re
import argparse

Rect = namedtuple('Rect', ['x1', 'y1', 'x2', 'y2'])

class HocrTransformError(Exception):
 pass

class HocrTransform():

 """
 A class for converting documents from the hOCR format.
 For details of the hOCR format, see:
 http://kba.cloud/hocr-spec/
 """

 box_pattern = re.compile(r'bbox((\s+\d+){4})')
 baseline_pattern = re.compile(r'''
 baseline \s+
 ([\-\+]?\d*\.?\d*) \s+ # +/- decimal float
 ([\-\+]?\d+) # +/- int''', re.VERBOSE)
 ligatures = str.maketrans({
 'ﬀ': 'ff',
 'ﬃ': 'ffi',
 'ﬄ': 'ffl',
 'ﬁ': 'fi',
 'ﬂ': 'fl',
 })

 def __init__(self, hocrFileName, dpi):
 self.dpi = dpi
 self.hocr = ElementTree.parse(hocrFileName)

 # if the hOCR file has a namespace, ElementTree requires its use to
 # find elements
 matches = re.match(r'({.*})html', self.hocr.getroot().tag)
 self.xmlns = ''
 if matches:
 self.xmlns = matches.group(1)

 # get dimension in pt (not pixel!!!!) of the OCRed image
 self.width, self.height = None, None
 for div in self.hocr.findall(
 ".//%sdiv[@class='ocr_page']" % (self.xmlns)):
 coords = self.element_coordinates(div)
 pt_coords = self.pt_from_pixel(coords)
 self.width = pt_coords.x2 - pt_coords.x1
 self.height = pt_coords.y2 - pt_coords.y1
 # there shouldn't be more than one, and if there is, we don't want
 # it
 break
 if self.width is None or self.height is None:
 raise HocrTransformError("hocr file is missing page dimensions")

 def __str__(self):
 """
 Return the textual content of the HTML body
 """
 if self.hocr is None:
 return ''
 body = self.hocr.find(".//%sbody" % (self.xmlns))
 if body:
 return self._get_element_text(body)
 else:
 return ''

 def _get_element_text(self, element):
 """
 Return the textual content of the element and its children
 """
 text = ''
 if element.text is not None:
 text += element.text
 for child in element.getchildren():
 text += self._get_element_text(child)
 if element.tail is not None:
 text += element.tail
 return text

 @classmethod
 def element_coordinates(cls, element):
 """
 Returns a tuple containing the coordinates of the bounding box around
 an element
 """
 out = (0, 0, 0, 0)
 if 'title' in element.attrib:
 matches = cls.box_pattern.search(element.attrib['title'])
 if matches:
 coords = matches.group(1).split()
 out = Rect._make(int(coords[n]) for n in range(4))
 return out

 @classmethod
 def baseline(cls, element):
 """
 Returns a tuple containing the baseline slope and intercept.
 """
 if 'title' in element.attrib:
 matches = cls.baseline_pattern.search(element.attrib['title'])
 if matches:
 return float(matches.group(1)), int(matches.group(2))
 return (0, 0)

 def pt_from_pixel(self, pxl):
 """
 Returns the quantity in PDF units (pt) given quantity in pixels
 """
 return Rect._make(
 (c / self.dpi * inch) for c in pxl)

 @classmethod
 def replace_unsupported_chars(cls, s):
 """
 Given an input string, returns the corresponding string that:
 - is available in the helvetica facetype
 - does not contain any ligature (to allow easy search in the PDF file)
 """
 return s.translate(cls.ligatures)

 def to_pdf(self, outFileName, imageFileName=None, showBoundingboxes=False,
 fontname="Helvetica", invisibleText=False, interwordSpaces=False):
 """
 Creates a PDF file with an image superimposed on top of the text.
 Text is positioned according to the bounding box of the lines in
 the hOCR file.
 The image need not be identical to the image used to create the hOCR
 file.
 It can have a lower resolution, different color mode, etc.
 """
 # create the PDF file
 # page size in points (1/72 in.)
 pdf = Canvas(
 outFileName, pagesize=(self.width, self.height), pageCompression=1)

 # draw bounding box for each paragraph
 # light blue for bounding box of paragraph
 pdf.setStrokeColorRGB(0, 1, 1)
 # light blue for bounding box of paragraph
 pdf.setFillColorRGB(0, 1, 1)
 pdf.setLineWidth(0)		# no line for bounding box
 for elem in self.hocr.findall(
 ".//%sp[@class='%s']" % (self.xmlns, "ocr_par")):

 elemtxt = self._get_element_text(elem).rstrip()
 if len(elemtxt) == 0:
 continue

 pxl_coords = self.element_coordinates(elem)
 pt = self.pt_from_pixel(pxl_coords)

 # draw the bbox border
 if showBoundingboxes:
 pdf.rect(
 pt.x1, self.height - pt.y2, pt.x2 - pt.x1, pt.y2 - pt.y1,
 fill=1)

 found_lines = False
 for line in self.hocr.findall(
 ".//%sspan[@class='%s']" % (self.xmlns, "ocr_line")):
 found_lines = True
 self._do_line(pdf, line, "ocrx_word", fontname, invisibleText,
 interwordSpaces, showBoundingboxes)

 if not found_lines:
 # Tesseract did not report any lines (just words)
 root = self.hocr.find(".//%sdiv[@class='%s']" % (self.xmlns, "ocr_page"))
 self._do_line(pdf, root, "ocrx_word", fontname, invisibleText,
 interwordSpaces, showBoundingboxes)
 # put the image on the page, scaled to fill the page
 if imageFileName is not None:
 pdf.drawImage(imageFileName, 0, 0,
 width=self.width, height=self.height)

 # finish up the page and save it
 pdf.showPage()
 pdf.save()

 @classmethod
 def polyval(cls, poly, x):
 return x * poly[0] + poly[1]

 def _do_line(self, pdf, line, elemclass, fontname, invisibleText,
 interwordSpaces, showBoundingboxes):
 pxl_line_coords = self.element_coordinates(line)
 line_box = self.pt_from_pixel(pxl_line_coords)
 line_height = line_box.y2 - line_box.y1

 slope, pxl_intercept = self.baseline(line)
 if abs(slope) < 0.005:
 slope = 0.0
 angle = atan(slope)
 cos_a, sin_a = cos(angle), sin(angle)

 text = pdf.beginText()
 intercept = pxl_intercept / self.dpi * inch

 # Don't allow the font to break out of the bounding box. Division by
 # cos_a accounts for extra clearance between the glyph's vertical axis
 # on a sloped baseline and the edge of the bounding box.
 fontsize = (line_height - abs(intercept)) / cos_a
 text.setFont(fontname, fontsize)
 if invisibleText:
 text.setTextRenderMode(3) # Invisible (indicates OCR text)

 # Intercept is normally negative, so this places it above the bottom
 # of the line box
 baseline_y2 = self.height - (line_box.y2 + intercept)

 if showBoundingboxes:
 # draw the baseline in magenta, dashed
 pdf.setDash()
 pdf.setStrokeColorRGB(0.95, 0.65, 0.95)
 pdf.setLineWidth(0.5)
 # negate slope because it is defined as a rise/run in pixel
 # coordinates and page coordinates have the y axis flipped
 pdf.line(line_box.x1,
 baseline_y2,
 line_box.x2,
 self.polyval((-slope, baseline_y2),
 line_box.x2 - line_box.x1))
 # light green for bounding box of word/line
 pdf.setDash(6, 3)
 pdf.setStrokeColorRGB(1, 0, 0)

 text.setTextTransform(
 cos_a, -sin_a, sin_a, cos_a,
 line_box.x1, baseline_y2
)
 pdf.setFillColorRGB(0, 0, 0) # text in black

 elements = line.findall(
 ".//%sspan[@class='%s']" % (self.xmlns, elemclass))
 for elem in elements:
 elemtxt = self._get_element_text(elem).strip()
 elemtxt = self.replace_unsupported_chars(elemtxt)
 if elemtxt == '':
 continue

 pxl_coords = self.element_coordinates(elem)
 box = self.pt_from_pixel(pxl_coords)
 if interwordSpaces:
 # if `--interword-spaces` is true, append a space
 # to the end of each text element to allow simpler PDF viewers
 # such as PDF.js to better recognize words in search and copy
 # and paste. Do not remove space from last word in line, even
 # though it would look better, because it will interfere with
 # naive text extraction. \n does not work either.
 elemtxt += ' '
 box = Rect._make((
 box.x1,
 line_box.y1,
 box.x2 + pdf.stringWidth(' ', fontname, line_height),
 line_box.y2))
 box_width = box.x2 - box.x1
 font_width = pdf.stringWidth(elemtxt, fontname, fontsize)

 # draw the bbox border
 if showBoundingboxes:
 pdf.rect(
 box.x1,
 self.height - line_box.y2,
 box_width,
 line_height,
 fill=0)

 # Adjust relative position of cursor
 # This is equivalent to:
 # text.setTextOrigin(pt.x1, self.height - line_box.y2)
 # but the former generates a full text reposition matrix (Tm) in the
 # content stream while this issues a "offset" (Td) command.
 # .moveCursor() is relative to start of the text line, where the
 # "text line" means whatever reportlab defines it as. Do not use
 # use .getCursor(), since moveCursor() rather unintuitively plans
 # its moves relative to .getStartOfLine().
 # For skewed lines, in the text transform we set up a rotated
 # coordinate system, so we don't have to account for the
 # incremental offset. Surprisingly most PDF viewers can handle this.
 cursor = text.getStartOfLine()
 dx = box.x1 - cursor[0]
 dy = baseline_y2 - cursor[1]
 text.moveCursor(dx, dy)

 text.setHorizScale(100 * box_width / font_width)
 text.textOut(elemtxt)
 pdf.drawText(text)

if __name__ == "__main__":
 parser = argparse.ArgumentParser(description='Convert hocr file to PDF')
 parser.add_argument('-b', '--boundingboxes', action="store_true",
 default=False, help='Show bounding boxes borders')
 parser.add_argument('-r', '--resolution', type=int,
 default=300,
 help='Resolution of the image that was OCRed')
 parser.add_argument('-i', '--image', default=None,
 help='Path to the image to be placed above the text')
 parser.add_argument('--interword-spaces', action='store_true',
 default=False, help='Add spaces between words')
 parser.add_argument('hocrfile', help='Path to the hocr file to be parsed')
 parser.add_argument(
 'outputfile', help='Path to the PDF file to be generated')
 args = parser.parse_args()

 hocr = HocrTransform(args.hocrfile, args.resolution)
 hocr.to_pdf(args.outputfile, args.image, args.boundingboxes, interwordSpaces=args.interword_spaces)

./usr/lib/python3/dist-packages/ocrmypdf/leptonica.py

#!/usr/bin/env python3
-*- coding: utf-8 -*-
#
© 2013-16: jbarlow83 from Github (https://github.com/jbarlow83)
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.
#
Python FFI wrapper for Leptonica library

import argparse
import sys
import os
import logging
from tempfile import TemporaryFile
from ctypes.util import find_library
from .lib._leptonica import ffi
from functools import lru_cache
from enum import Enum
from .helpers import fspath

lept = ffi.dlopen(find_library('lept'))

logger = logging.getLogger(__name__)

def stderr(*objs):
 """Python 2/3 compatible print to stderr.
 """
 print("leptonica.py:", *objs, file=sys.stderr)

class LeptonicaErrorTrap(object):
 """Context manager to trap errors reported by Leptonica.

 Leptonica's error return codes are unreliable to the point of being
 almost useless. It does, however, write errors to stderr provided that is
 not disabled at its compile time. Fortunately this is done using error
 macros so it is very self-consistent.

 This context manager redirects stderr to a temporary file which is then
 read and parsed for error messages. As a side benefit, debug messages
 from Leptonica are also suppressed.

 """
 def __enter__(self):
 from io import UnsupportedOperation
 self.tmpfile = TemporaryFile()

 # Save the old stderr, and redirect stderr to temporary file
 sys.stderr.flush()
 try:
 self.copy_of_stderr = os.dup(sys.stderr.fileno())
 os.dup2(self.tmpfile.fileno(), sys.stderr.fileno(),
 inheritable=False)
 except UnsupportedOperation:
 self.copy_of_stderr = None
 return

 def __exit__(self, exc_type, exc_value, traceback):
 # Restore old stderr
 sys.stderr.flush()
 if self.copy_of_stderr is not None:
 os.dup2(self.copy_of_stderr, sys.stderr.fileno())
 os.close(self.copy_of_stderr)

 # Get data from tmpfile (in with block to ensure it is closed)
 with self.tmpfile as tmpfile:
 tmpfile.seek(0) # Cursor will be at end, so move back to beginning
 leptonica_output = tmpfile.read().decode(errors='replace')

 assert self.tmpfile.closed
 assert not sys.stderr.closed

 # If there are Python errors, let them bubble up
 if exc_type:
 logger.warning(leptonica_output)
 return False

 # If there are Leptonica errors, wrap them in Python excpetions
 if 'Error' in leptonica_output:
 if 'image file not found' in leptonica_output:
 raise FileNotFoundError()
 if 'pixWrite: stream not opened' in leptonica_output:
 raise LeptonicaIOError()
 raise LeptonicaError(leptonica_output)

 return False

class LeptonicaError(Exception):
 pass

class LeptonicaIOError(LeptonicaError):
 pass

class RemoveColormap(Enum):
 to_binary = 0
 to_grayscale = 1
 to_full_color = 2
 based_on_src = 3

class Pix:
 """Wrapper around leptonica's PIX object.

 Leptonica uses referencing counting on PIX objects. Also, many Leptonica
 functions return the original object with an increased reference count
 if the operation had no effect (for example, image skew was found to be 0).
 This has complications for memory management in Python. Whenever Leptonica
 returns a PIX object (new or old), we wrap it in this class, which
 registers it with the FFI garbage collector. pixDestroy() decrements the
 reference count and only destroys when the last reference is removed.

 Leptonica's reference counting is not threadsafe. This class can be used
 in a threadsafe manner if a Python threading.Lock protects the data.

 This class treats Pix objects as immutable. All methods return new
 modified objects. This allows convenient chaining:

 >>> Pix.read('filename.jpg').scale((0.5, 0.5)).deskew().show()

 """

 def __init__(self, pix):
 self._pix = ffi.gc(pix, Pix._pix_destroy)

 def __repr__(self):
 if self._pix:
 s = "<leptonica.Pix image size={0}x{1} depth={2} at 0x{3:x}>"
 return s.format(self._pix.w, self._pix.h, self._pix.d,
 int(ffi.cast("intptr_t", self._pix)))
 else:
 return "<leptonica.Pix image NULL>"

 def _repr_png_(self):
 """iPython display hook

 returns png version of image
 """

 data = ffi.new('l_uint8 **')
 size = ffi.new('size_t *')

 err = lept.pixWriteMemPng(data, size, self._pix, 0)
 if err != 0:
 raise LeptonicaIOError("pixWriteMemPng")

 char_data = ffi.cast('char *', data[0])
 return ffi.buffer(char_data, size[0])[:]

 def __getstate__(self):
 data = ffi.new('l_uint32 **')
 size = ffi.new('size_t *')

 err = lept.pixSerializeToMemory(self._pix, data, size)
 if err != 0:
 raise LeptonicaIOError("pixSerializeToMemory")

 char_data = ffi.cast('char *', data[0])

 # Copy from C bytes to python bytes()
 data_bytes = ffi.buffer(char_data, size[0])[:]

 # Can now free C bytes
 lept.lept_free(char_data)
 return dict(data=data_bytes)

 def __setstate__(self, state):
 cdata_bytes = ffi.new('char[]', state['data'])
 cdata_uint32 = ffi.cast('l_uint32 *', cdata_bytes)

 pix = lept.pixDeserializeFromMemory(
 cdata_uint32, len(state['data']))
 Pix.__init__(self, pix)

 def __eq__(self, other):
 return self.__getstate__() == other.__getstate__()

 @property
 def width(self):
 return self._pix.w

 @property
 def height(self):
 return self._pix.h

 @property
 def depth(self):
 return self._pix.d

 @property
 def size(self):
 return (self._pix.w, self._pix.h)

 @property
 def info(self):
 return {'dpi': (self._pix.xres, self._pix.yres)}

 @property
 def mode(self):
 "Return mode like PIL.Image"
 if self.depth == 1:
 return '1'
 elif self.depth >= 16:
 return 'RGB'
 elif not self._pix.colormap:
 return 'L'
 else:
 return 'P'

 @classmethod
 def read(cls, path):
 """Load an image file into a PIX object.

 Leptonica can load TIFF, PNM (PBM, PGM, PPM), PNG, and JPEG. If
 loading fails then the object will wrap a C null pointer.
 """
 filename = fspath(path)
 with LeptonicaErrorTrap():
 return cls(lept.pixRead(os.fsencode(filename)))

 def write_implied_format(
 self, path, jpeg_quality=0, jpeg_progressive=0):
 """Write pix to the filename, with the extension indicating format.

 jpeg_quality -- quality (iff JPEG; 1 - 100, 0 for default)
 jpeg_progressive -- (iff JPEG; 0 for baseline seq., 1 for progressive)
 """
 filename = fspath(path)
 with LeptonicaErrorTrap():
 lept.pixWriteImpliedFormat(
 os.fsencode(filename),
 self._pix, jpeg_quality, jpeg_progressive)

 def topil(self):
 "Returns a PIL.Image version of this Pix"
 from PIL import Image

 # Leptonica manages data in words, so it implicitly does an endian
 # swap. Tell Pillow about this when it reads the data.
 pix = self
 if sys.byteorder == 'little':
 if self.mode == 'RGB':
 raw_mode = 'XBGR'
 elif self.mode == 'RGBA':
 raw_mode = 'ABGR'
 elif self.mode == '1':
 raw_mode = '1;I'
 pix = Pix(lept.pixEndianByteSwapNew(pix._pix))
 else:
 raw_mode = self.mode
 pix = Pix(lept.pixEndianByteSwapNew(pix._pix))
 else:
 raw_mode = self.mode # no endian swap needed

 size = (pix._pix.w, pix._pix.h)
 bytecount = pix._pix.wpl * 4 * pix._pix.h
 buf = ffi.buffer(pix._pix.data, bytecount)
 stride = pix._pix.wpl * 4

 im = Image.frombytes(self.mode, size, buf, 'raw', raw_mode, stride)

 return im

 def show(self):
 return self.topil().show()

 def deskew(self, reduction_factor=0):
 """Returns the deskewed pix object.

 A clone of the original is returned when the algorithm cannot find a
 skew angle with sufficient confidence.

 reduction_factor -- amount to downsample (0 for default) when searching
 for skew angle
 """
 with LeptonicaErrorTrap():
 return Pix(lept.pixDeskew(self._pix, reduction_factor))

 def scale(self, scale_xy):
 "Returns the pix object rescaled according to the proportions given."
 with LeptonicaErrorTrap():
 return Pix(lept.pixScale(self._pix, scale_xy[0], scale_xy[1]))

 def rotate180(self):
 with LeptonicaErrorTrap():
 return Pix(lept.pixRotate180(ffi.NULL, self._pix))

 def rotate_orth(self, quads):
 "Orthographic rotation, quads: 0-3, number of clockwise rotations"
 with LeptonicaErrorTrap():
 return Pix(lept.pixRotateOrth(self._pix, quads))

 def find_skew(self):
 """Returns a tuple (deskew angle in degrees, confidence value).

 Returns (None, None) if no angle is available.
 """
 with LeptonicaErrorTrap():
 angle = ffi.new('float *', 0.0)
 confidence = ffi.new('float *', 0.0)
 result = lept.pixFindSkew(self._pix, angle, confidence)
 if result == 0:
 return (angle[0], confidence[0])
 else:
 return (None, None)

 def convert_rgb_to_luminance(self):
 with LeptonicaErrorTrap():
 gray_pix = lept.pixConvertRGBToLuminance(self._pix)
 if gray_pix:
 return Pix(gray_pix)
 return None

 def remove_colormap(self, removal_type):
 """Remove a palette

 removal_type - RemovalColormap()
 """

 with LeptonicaErrorTrap():
 return Pix(lept.pixRemoveColormap(self._pix, removal_type))

 def otsu_adaptive_threshold(
 self, tile_size=(300, 300), kernel_size=(4, 4), scorefract=0.1):
 with LeptonicaErrorTrap():
 sx, sy = tile_size
 smoothx, smoothy = kernel_size
 p_pix = ffi.new('PIX **')

 result = lept.pixOtsuAdaptiveThreshold(
 self._pix,
 sx, sy,
 smoothx, smoothy,
 scorefract,
 ffi.NULL,
 p_pix)
 if result == 0:
 return Pix(p_pix[0])
 else:
 return None

 def otsu_threshold_on_background_norm(
 self, mask=None, tile_size=(10, 15), thresh=100, mincount=50,
 bgval=255, kernel_size=(2, 2), scorefract=0.1):
 with LeptonicaErrorTrap():
 sx, sy = tile_size
 smoothx, smoothy = kernel_size
 if mask is None:
 mask = ffi.NULL
 if isinstance(mask, Pix):
 mask = mask._pix

 thresh_pix = lept.pixOtsuThreshOnBackgroundNorm(
 self._pix,
 mask,
 sx, sy,
 thresh, mincount, bgval,
 smoothx, smoothy,
 scorefract,
 ffi.NULL
)
 if thresh_pix == ffi.NULL:
 return None
 return Pix(thresh_pix)

 def crop_to_foreground(
 self, threshold=128, mindist=70, erasedist=30, pagenum=0,
 showmorph=0, display=0, pdfdir=ffi.NULL):
 with LeptonicaErrorTrap():
 cropbox = Box(lept.pixFindPageForeground(
 self._pix,
 threshold,
 mindist,
 erasedist,
 pagenum,
 showmorph,
 display,
 pdfdir))

 print(repr(cropbox))

 cropped_pix = lept.pixClipRectangle(
 self._pix,
 cropbox._box,
 ffi.NULL)

 return Pix(cropped_pix)

 def clean_background_to_white(
 self, mask=None, grayscale=None, gamma=1.0, black=0, white=255):
 with LeptonicaErrorTrap():
 return Pix(lept.pixCleanBackgroundToWhite(
 self._pix,
 mask or ffi.NULL,
 grayscale or ffi.NULL,
 gamma,
 black,
 white))

 def gamma_trc(self, gamma=1.0, minval=0, maxval=255):
 with LeptonicaErrorTrap():
 return Pix(lept.pixGammaTRC(
 ffi.NULL,
 self._pix,
 gamma,
 minval,
 maxval
))

 def background_norm(
 self, mask=None, grayscale=None, tile_size=(10, 15), fg_threshold=60,
 min_count=40, bg_val=200, smooth_kernel=(2, 1)):
 with LeptonicaErrorTrap():
 return Pix(lept.pixBackgroundNorm(
 self._pix,
 mask or ffi.NULL,
 grayscale or ffi.NULL,
 tile_size[0],
 tile_size[1],
 fg_threshold,
 min_count,
 bg_val,
 smooth_kernel[0],
 smooth_kernel[1]
))

 @staticmethod
 @lru_cache(maxsize=1)
 def make_pixel_sum_tab8():
 return lept.makePixelSumTab8()

 @staticmethod
 def correlation_binary(pix1, pix2):
 if get_leptonica_version() < 'leptonica-1.72':
 # Older versions of Leptonica (pre-1.72) have a buggy
 # implementation of pixCorrelationBinary that overflows on larger
 # images. Ubuntu trusty has 1.70. Ubuntu PPA
 # ppa:rebuntu16/avidemux+unofficial has "leptonlib" 1.73.
 pix1_count = ffi.new('l_int32 *')
 pix2_count = ffi.new('l_int32 *')
 pixn_count = ffi.new('l_int32 *')
 tab8 = Pix.make_pixel_sum_tab8()

 lept.pixCountPixels(pix1._pix, pix1_count, tab8)
 lept.pixCountPixels(pix2._pix, pix2_count, tab8)
 pixn = Pix(lept.pixAnd(ffi.NULL, pix1._pix, pix2._pix))
 lept.pixCountPixels(pixn._pix, pixn_count, tab8)

 # Python converts these int32s to larger units as needed
 # to avoid overflow. Overflow happens easily here.
 correlation = (
 (pixn_count[0] * pixn_count[0]) /
 (pix1_count[0] * pix2_count[0])
)
 return correlation
 else:
 correlation = ffi.new('float *', 0.0)
 result = lept.pixCorrelationBinary(pix1._pix, pix2._pix,
 correlation)
 if result != 0:
 raise LeptonicaError("Correlation failed")
 return correlation[0]

 @staticmethod
 def _pix_destroy(pix):
 p_pix = ffi.new('PIX **', pix)
 lept.pixDestroy(p_pix)
 # print('pix destroy ' + repr(pix))

class Box:
 """Wrapper around Leptonica's BOX objects.

 See class Pix for notes about reference counting.
 """

 def __init__(self, box):
 self._box = ffi.gc(box, Box._box_destroy)

 def __repr__(self):
 if self._box:
 return '<leptonica.Box x={0} y={1} w={2} h={3}>'.format(
 self.x, self.y, self.w, self.h)
 return '<leptonica.Box NULL>'

 @property
 def x(self):
 return self._box.x

 @property
 def y(self):
 return self._box.y

 @property
 def w(self):
 return self._box.w

 @property
 def h(self):
 return self._box.h

 @staticmethod
 def _box_destroy(box):
 p_box = ffi.new('BOX **', box)
 lept.boxDestroy(p_box)

@lru_cache(maxsize=1)
def get_leptonica_version():
 """Get Leptonica version string.

 Caveat: Leptonica expects the caller to free this memory. We don't,
 since that would involve binding to libc to access libc.free(),
 a pointless effort to reclaim 100 bytes of memory.
 """
 return ffi.string(lept.getLeptonicaVersion()).decode()

def deskew(infile, outfile, dpi):
 try:
 pix_source = Pix.read(infile)
 except LeptonicaIOError:
 raise LeptonicaIOError("Failed to open file: %s" % infile)

 if dpi < 150:
 reduction_factor = 1 # Don't downsample too much if DPI is already low
 else:
 reduction_factor = 0 # Use default
 pix_deskewed = pix_source.deskew(reduction_factor)

 try:
 pix_deskewed.write_implied_format(outfile)
 except LeptonicaIOError:
 raise LeptonicaIOError("Failed to open destination file: %s" % outfile)

def remove_background(infile, outfile, tile_size=(40, 60), gamma=1.0,
 black_threshold=70, white_threshold=190):
 try:
 pix = Pix.read(infile)
 except LeptonicaIOError:
 raise LeptonicaIOError("Failed to open file: %s" % infile)

 pix = pix.background_norm(tile_size=tile_size).gamma_trc(
 gamma, black_threshold, white_threshold)

 try:
 pix.write_implied_format(outfile)
 except LeptonicaIOError:
 raise LeptonicaIOError("Failed to open destination file: %s" % outfile)

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description="Python wrapper to access Leptonica")

 subparsers = parser.add_subparsers(title='commands',
 description='supported operations')

 parser_deskew = subparsers.add_parser('deskew')
 parser_deskew.add_argument('-r', '--dpi', dest='dpi', action='store',
 type=int, default=300, help='input resolution')
 parser_deskew.add_argument('infile', help='image to deskew')
 parser_deskew.add_argument('outfile', help='deskewed output image')
 parser_deskew.set_defaults(func=deskew)

 args = parser.parse_args()
 args.func(args)

./usr/lib/python3/dist-packages/ocrmypdf/lib/__init__.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Bindings to external libraries"""

import os as _os

try:
 import fitz
except ImportError:
 fitz = None

if _os.environ.get('_OCRMYPDF_NO_FITZ'):
 fitz = None

./usr/lib/python3/dist-packages/ocrmypdf/lib/_leptonica.py

auto-generated file
import _cffi_backend

ffi = _cffi_backend.FFI('ocrmypdf.lib._leptonica',
 _version = 0x2601,
 _types = b'\x00\x00\x0F\x0D\x00\x00\xBB\x03\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\xBE\x03\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\x01\x11\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\x01\x11\x00\x00\xBA\x03\x00\x00\x0F\x03\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\x01\x11\x00\x00\x01\x11\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\x01\x11\x00\x00\x01\x11\x00\x00\x01\x11\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\x01\x11\x00\x00\x01\x11\x00\x00\x01\x11\x00\x00\x0D\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\x01\x11\x00\x00\x01\x11\x00\x00\x01\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\x01\x11\x00\x00\x01\x11\x00\x00\x0D\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\x01\x11\x00\x00\x01\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\x01\x11\x00\x00\x01\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x0D\x01\x00\x00\x02\x03\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\x01\x11\x00\x00\x0D\x01\x00\x00\x0D\x01\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\x01\x11\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\x01\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\x01\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\x08\x11\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x00\xC7\x03\x00\x00\x1C\x01\x00\x00\x00\x0F\x00\x00\xBD\x0D\x00\x00\x00\x0F\x00\x00\x49\x0D\x00\x00\x00\x0F\x00\x00\x02\x0D\x00\x00\x01\x11\x00\x00\x01\x11\x00\x00\x1F\x03\x00\x00\x00\x0F\x00\x00\x02\x0D\x00\x00\x01\x11\x00\x00\x01\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x6E\x11\x00\x00\x6E\x11\x00\x00\x6E\x11\x00\x00\x00\x0F\x00\x00\x02\x0D\x00\x00\x01\x11\x00\x00\x6E\x11\x00\x00\x6E\x11\x00\x00\x00\x0F\x00\x00\x02\x0D\x00\x00\x01\x11\x00\x00\x49\x11\x00\x00\x49\x11\x00\x00\x00\x0F\x00\x00\x02\x0D\x00\x00\x01\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x0D\x01\x00\x00\x07\x01\x00\x00\x49\x11\x00\x00\x00\x0F\x00\x00\x02\x0D\x00\x00\x01\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x6E\x11\x00\x00\x6E\x11\x00\x00\x00\x0F\x00\x00\x02\x0D\x00\x00\x01\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x0D\x01\x00\x00\x01\x03\x00\x00\x9D\x11\x00\x00\x00\x0F\x00\x00\x02\x0D\x00\x00\x01\x11\x00\x00\xC6\x03\x00\x00\x65\x03\x00\x00\x00\x0F\x00\x00\x02\x0D\x00\x00\x08\x11\x00\x00\x01\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x02\x0D\x00\x00\xC4\x03\x00\x00\xA3\x11\x00\x00\x01\x11\x00\x00\x0D\x01\x00\x00\x00\x0F\x00\x00\xCA\x0D\x00\x00\x10\x11\x00\x00\x00\x0F\x00\x00\xCA\x0D\x00\x00\x9D\x11\x00\x00\x00\x0F\x00\x00\xCA\x0D\x00\x00\xCA\x03\x00\x00\x00\x0F\x00\x00\x00\x09\x00\x00\x01\x09\x00\x00\x02\x09\x00\x00\xBE\x03\x00\x00\x02\x01\x00\x00\x0E\x01\x00\x00\x0B\x01\x00\x00\x05\x01\x00\x00\x03\x01\x00\x00\xBC\x03\x00\x00\xC5\x03\x00\x00\x04\x01\x00\x00\xC7\x03\x00\x00\x08\x01\x00\x00\x0C\x01\x00\x00\x06\x01\x00\x00\x00\x01',
 _globals = (b'\x00\x00\xB1\x23boxDestroy',0,b'\x00\x00\x67\x23getLeptonicaVersion',0,b'\x00\x00\xB7\x23lept_free',0,b'\x00\x00\x69\x23makePixelSumTab8',0,b'\x00\x00\x16\x23pixAnd',0,b'\x00\x00\x23\x23pixBackgroundNorm',0,b'\x00\x00\x1B\x23pixCleanBackgroundToWhite',0,b'\x00\x00\x0D\x23pixClipRectangle',0,b'\x00\x00\x8D\x23pixColorFraction',0,b'\x00\x00\x59\x23pixColorMagnitude',0,b'\x00\x00\x0A\x23pixConvertRGBToLuminance',0,b'\x00\x00\x6B\x23pixCorrelationBinary',0,b'\x00\x00\x80\x23pixCountPixels',0,b'\x00\x00\x63\x23pixDeserializeFromMemory',0,b'\x00\x00\x50\x23pixDeskew',0,b'\x00\x00\xB4\x23pixDestroy',0,b'\x00\x00\x0A\x23pixEndianByteSwapNew',0,b'\x00\x00\x00\x23pixFindPageForeground',0,b'\x00\x00\x7B\x23pixFindSkew',0,b'\x00\x00\x2F\x23pixGammaTRC',0,b'\x00\x00\x70\x23pixGetAverageMaskedRGB',0,b'\x00\x00\x36\x23pixGlobalNormRGB',0,b'\x00\x00\x12\x23pixInvert',0,b'\x00\x00\x54\x23pixMaskOverColorPixels',0,b'\x00\x00\x85\x23pixNumSignificantGrayColors',0,b'\x00\x00\x96\x23pixOtsuAdaptiveThreshold',0,b'\x00\x00\x3E\x23pixOtsuThreshOnBackgroundNorm',0,b'\x00\x00\x60\x23pixRead',0,b'\x00\x00\x50\x23pixRemoveColormap',0,b'\x00\x00\x12\x23pixRotate180',0,b'\x00\x00\x50\x23pixRotateOrth',0,b'\x00\x00\x4B\x23pixScale',0,b'\x00\x00\xA0\x23pixSerializeToMemory',0,b'\x00\x00\xA5\x23pixWriteImpliedFormat',0,b'\x00\x00\xAB\x23pixWriteMemPng',0),
 _struct_unions = ((b'\x00\x00\x00\xBA\x00\x00\x00\x02Box',b'\x00\x00\x02\x11x',b'\x00\x00\x02\x11y',b'\x00\x00\x02\x11w',b'\x00\x00\x02\x11h',b'\x00\x00\xC7\x11refcount'),(b'\x00\x00\x00\xBB\x00\x00\x00\x02Pix',b'\x00\x00\xC7\x11w',b'\x00\x00\xC7\x11h',b'\x00\x00\xC7\x11d',b'\x00\x00\xC7\x11spp',b'\x00\x00\xC7\x11wpl',b'\x00\x00\xC7\x11refcount',b'\x00\x00\x02\x11xres',b'\x00\x00\x02\x11yres',b'\x00\x00\x02\x11informat',b'\x00\x00\x02\x11special',b'\x00\x00\xBD\x11text',b'\x00\x00\xC3\x11colormap',b'\x00\x00\xC6\x11data'),(b'\x00\x00\x00\xBC\x00\x00\x00\x02PixColormap',b'\x00\x00\xB8\x11array',b'\x00\x00\x02\x11depth',b'\x00\x00\x02\x11nalloc',b'\x00\x00\x02\x11n')),
 _typenames = (b'\x00\x00\x00\xBABOX',b'\x00\x00\x00\xBBPIX',b'\x00\x00\x00\xBCPIXCMAP',b'\x00\x00\x00\x1Fl_float32',b'\x00\x00\x00\xBFl_float64',b'\x00\x00\x00\xC1l_int16',b'\x00\x00\x00\x02l_int32',b'\x00\x00\x00\xC0l_int64',b'\x00\x00\x00\xC2l_int8',b'\x00\x00\x00\xC9l_uint16',b'\x00\x00\x00\xC7l_uint32',b'\x00\x00\x00\xC8l_uint64',b'\x00\x00\x00\xC5l_uint8'),
)

./usr/lib/python3/dist-packages/ocrmypdf/lib/compile_leptonica.py

#!/usr/bin/env python3
© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from cffi import FFI

ffibuilder = FFI()
ffibuilder.set_source("ocrmypdf.lib._leptonica", None)
ffibuilder.cdef("""
typedef signed char l_int8;
typedef unsigned char l_uint8;
typedef short l_int16;
typedef unsigned short l_uint16;
typedef int l_int32;
typedef unsigned int l_uint32;
typedef float l_float32;
typedef double l_float64;
typedef long long l_int64;
typedef unsigned long long l_uint64;

struct Pix
{
 l_uint32 w; /* width in pixels */
 l_uint32 h; /* height in pixels */
 l_uint32 d; /* depth in bits (bpp) */
 l_uint32 spp; /* number of samples per pixel */
 l_uint32 wpl; /* 32-bit words/line */
 l_uint32 refcount; /* reference count (1 if no clones) */
 l_int32 xres; /* image res (ppi) in x direction */
 /* (use 0 if unknown) */
 l_int32 yres; /* image res (ppi) in y direction */
 /* (use 0 if unknown) */
 l_int32 informat; /* input file format, IFF_* */
 l_int32 special; /* special instructions for I/O, etc */
 char *text; /* text string associated with pix */
 struct PixColormap *colormap; /* colormap (may be null) */
 l_uint32 *data; /* the image data */
};
typedef struct Pix PIX;

struct PixColormap
{
 void *array; /* colormap table (array of RGBA_QUAD) */
 l_int32 depth; /* of pix (1, 2, 4 or 8 bpp) */
 l_int32 nalloc; /* number of color entries allocated */
 l_int32 n; /* number of color entries used */
};
typedef struct PixColormap PIXCMAP;

struct Box
{
 l_int32 x;
 l_int32 y;
 l_int32 w;
 l_int32 h;
 l_uint32 refcount; /* reference count (1 if no clones) */

};
typedef struct Box BOX;

""")

ffibuilder.cdef("""
PIX * pixRead (const char *filename);
PIX * pixScale (PIX *pixs, l_float32 scalex, l_float32 scaley);
l_int32 pixFindSkew (PIX *pixs, l_float32 *pangle, l_float32 *pconf);
l_int32 pixWriteImpliedFormat (const char *filename, PIX *pix, l_int32 quality, l_int32 progressive);
l_int32
pixWriteMemPng(l_uint8 **pdata,
 size_t *psize,
 PIX *pix,
 l_float32 gamma);

void pixDestroy (PIX **ppix);

PIX *
pixEndianByteSwapNew(PIX *pixs);

PIX * pixDeskew (PIX *pixs, l_int32 redsearch);
char * getLeptonicaVersion ();
l_int32 pixCorrelationBinary(PIX *pix1, PIX *pix2, l_float32 *pval);
PIX *pixRotate180(PIX *pixd, PIX *pixs);
PIX *
pixRotateOrth(PIX *pixs,
 l_int32 quads);

l_int32 pixCountPixels (PIX *pix, l_int32 *pcount, l_int32 *tab8);
PIX * pixAnd (PIX *pixd, PIX *pixs1, PIX *pixs2);
l_int32 * makePixelSumTab8 (void);

PIX * pixDeserializeFromMemory (const l_uint32 *data, size_t nbytes);
l_int32 pixSerializeToMemory (PIX *pixs, l_uint32 **pdata, size_t *pnbytes);

PIX * pixConvertRGBToLuminance(PIX *pixs);

PIX * pixRemoveColormap(PIX *pixs, l_int32 type);

l_int32
pixOtsuAdaptiveThreshold(PIX *pixs,
 l_int32 sx,
 l_int32 sy,
 l_int32 smoothx,
 l_int32 smoothy,
 l_float32 scorefract,
 PIX **ppixth,
 PIX **ppixd);

PIX *
pixOtsuThreshOnBackgroundNorm(PIX *pixs,
 PIX *pixim,
 l_int32 sx,
 l_int32 sy,
 l_int32 thresh,
 l_int32 mincount,
 l_int32 bgval,
 l_int32 smoothx,
 l_int32 smoothy,
 l_float32 scorefract,
 l_int32 *pthresh);

PIX *
pixCleanBackgroundToWhite(PIX *pixs,
 PIX *pixim,
 PIX *pixg,
 l_float32 gamma,
 l_int32 blackval,
 l_int32 whiteval);

BOX *
pixFindPageForeground(PIX *pixs,
 l_int32 threshold,
 l_int32 mindist,
 l_int32 erasedist,
 l_int32 pagenum,
 l_int32 showmorph,
 l_int32 display,
 const char *pdfdir);

PIX *
pixClipRectangle(PIX *pixs,
 BOX *box,
 BOX **pboxc);

PIX *
pixBackgroundNorm(PIX *pixs,
 PIX *pixim,
 PIX *pixg,
 l_int32 sx,
 l_int32 sy,
 l_int32 thresh,
 l_int32 mincount,
 l_int32 bgval,
 l_int32 smoothx,
 l_int32 smoothy);

PIX *
pixGammaTRC(PIX *pixd,
 PIX *pixs,
 l_float32 gamma,
 l_int32 minval,
 l_int32 maxval);

l_int32
pixNumSignificantGrayColors(PIX *pixs,
 l_int32 darkthresh,
 l_int32 lightthresh,
 l_float32 minfract,
 l_int32 factor,
 l_int32 *pncolors);

l_int32
pixColorFraction(PIX *pixs,
 l_int32 darkthresh,
 l_int32 lightthresh,
 l_int32 diffthresh,
 l_int32 factor,
 l_float32 *ppixfract,
 l_float32 *pcolorfract);

PIX *
pixColorMagnitude(PIX *pixs,
 l_int32 rwhite,
 l_int32 gwhite,
 l_int32 bwhite,
 l_int32 type);

PIX *
pixMaskOverColorPixels(PIX *pixs,
 l_int32 threshdiff,
 l_int32 mindist);

l_int32
pixGetAverageMaskedRGB(PIX *pixs,
 PIX *pixm,
 l_int32 x,
 l_int32 y,
 l_int32 factor,
 l_int32 type,
 l_float32 *prval,
 l_float32 *pgval,
 l_float32 *pbval);

PIX *
pixGlobalNormRGB(PIX * 	pixd,
 PIX * 	pixs,
 l_int32 	rval,
 l_int32 	gval,
 l_int32 	bval,
 l_int32 	mapval);

PIX *
pixInvert(PIX * pixd,
 PIX * pixs);

void
boxDestroy(BOX **pbox);

void
lept_free(void *ptr);
""")

if __name__ == '__main__':
 ffibuilder.compile(verbose=True)

./usr/lib/python3/dist-packages/ocrmypdf/pdfa.py

© 2015 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

Generate a PDFA_def.ps file for Ghostscript >= 9.14

from string import Template
from binascii import hexlify
import pkg_resources
import PyPDF2 as pypdf

ICC_PROFILE_RELPATH = 'data/sRGB.icc'

SRGB_ICC_PROFILE = pkg_resources.resource_filename(
 'ocrmypdf', ICC_PROFILE_RELPATH)

This is a template written in PostScript which is needed to create PDF/A
files, from the Ghostscript documentation. Lines beginning with % are
comments. Python substitution variables have a '$' prefix.
pdfa_def_template = u"""%!
% This is derived from Ghostscript's template for creating a PDF/A document.
% This is a small PostScript program that includes some necessary information
% to create a PDF/A compliant file.

% Define entries in the document Info dictionary :
/ICCProfile ($icc_profile)
def

[$docinfo
 /DOCINFO pdfmark

% Define an ICC profile :

[/_objdef {icc_PDFA} /type /stream /OBJ pdfmark
[{icc_PDFA}
<<
 /N currentpagedevice /ProcessColorModel known {
 currentpagedevice /ProcessColorModel get dup /DeviceGray eq
 {pop 1} {
 /DeviceRGB eq
 {3}{4} ifelse
 } ifelse
 } {
 (ERROR, unable to determine ProcessColorModel) == flush
 } ifelse
>> /PUT pdfmark
[{icc_PDFA} ICCProfile (r) file /PUT pdfmark

% Define the output intent dictionary :

[/_objdef {OutputIntent_PDFA} /type /dict /OBJ pdfmark
[{OutputIntent_PDFA} <<
 /Type /OutputIntent % Must be so (the standard requires).
 /S /GTS_PDFA1 % Must be so (the standard requires).
 /DestOutputProfile {icc_PDFA} % Must be so (see above).
 /OutputConditionIdentifier ($icc_identifier)
>> /PUT pdfmark
[{Catalog} <</OutputIntents [{OutputIntent_PDFA}]>> /PUT pdfmark
"""

def encode_text_string(s: str) -> str:
 '''Encode text string to hex string for use in a PDF

 From PDF 32000-1:2008 a string object may be included in hexademical form
 if it is enclosed in angle brackets. For general Unicode the string should
 be UTF-16 (big endian) with byte order marks. Many strings including all
 ASCII strings could be encoded as PdfDocEncoding literals provided
 that certain Postscript sequences are escaped. But it's far simpler to
 encode everything as UTF-16.
 '''

 # Sometimes lazy C programmers leave their NULs at the end of strings they
 # insert into PDFs
 # tests/resources/aspect.pdf is one example (created by ImageMagick)
 s = s.replace('\x00', '')

 if s == '':
 return ''

 utf16_bytes = s.encode('utf-16be')
 ascii_hex_bytes = hexlify(b'\xfe\xff' + utf16_bytes)
 ascii_hex_str = ascii_hex_bytes.decode('ascii').lower()
 return ascii_hex_str

def _get_pdfa_def(icc_profile, icc_identifier, pdfmark):
 # Ghostscript <= 9.21 has a bug where null entries in DOCINFO might produce
 # ERROR: VMerror (-25) on closing pdfwrite device.
 # https://bugs.ghostscript.com/show_bug.cgi?id=697684
 # Work around this by only adding keys that have a nontrivial value
 docinfo_keys = ('/Title', '/Author', '/Subject', '/Creator', '/Keywords')
 docinfo_line_template = ' {key} <{value}>'

 def docinfo_gen():
 for key in docinfo_keys:
 if key in pdfmark and pdfmark[key].strip() != '':
 line = docinfo_line_template.format(
 key=key, value=encode_text_string(pdfmark[key]))
 yield line

 docinfo = '\n'.join(docinfo_gen())

 t = Template(pdfa_def_template)
 result = t.substitute(icc_profile=icc_profile,
 icc_identifier=icc_identifier,
 docinfo=docinfo)
 return result

def generate_pdfa_ps(target_filename, pdfmark, icc='sRGB'):
 if icc == 'sRGB':
 icc_profile = SRGB_ICC_PROFILE
 else:
 raise NotImplementedError("Only supporting sRGB")

 ps = _get_pdfa_def(icc_profile, icc, pdfmark)

 # We should have encoded everything to pure ASCII by this point, and
 # to be safe, only allow ASCII in PostScript
 with open(target_filename, 'w', encoding='ascii') as f:
 f.write(ps)

def file_claims_pdfa(filename):
 """Determines if the file claims to be PDF/A compliant

 Checking if a file is a truly compliant PDF/A is a massive undertaking
 that no open source tool does properly. Some commercial tools are
 generally reliable (Acrobat).

 This checks if the XMP metadata contains a PDF/A marker.
 """

 pdf = pypdf.PdfFileReader(filename)
 xmp = pdf.getXmpMetadata()

 try:
 pdfa_nodes = xmp.getNodesInNamespace(
 aboutUri='',
 namespace='http://www.aiim.org/pdfa/ns/id/')
 except AttributeError:
 return {'pass': False, 'output': 'pdf',
 'conformance': 'No XMP metadata'}

 pdfa_dict = {attr.localName: attr.value for attr in pdfa_nodes}
 if not pdfa_dict:
 return {'pass': False, 'output': 'pdf',
 'conformance': 'No XMP metadata'}

 part_conformance = pdfa_dict['part'] + pdfa_dict['conformance']
 valid_part_conforms = {'1A', '1B', '2A', '2B', '2U', '3A', '3B', '3U'}

 conformance = 'PDF/A-{}'.format(
 part_conformance)

 if part_conformance in valid_part_conforms:
 pdfa_dict['pass'] = True
 pdfa_dict['output'] = 'pdfa'
 pdfa_dict['conformance'] = conformance

 return pdfa_dict

./usr/lib/python3/dist-packages/ocrmypdf/pdfinfo.py

#!/usr/bin/env python3
© 2015 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from subprocess import Popen, PIPE
from decimal import Decimal
from math import hypot, isclose
import re
import sys
from collections import namedtuple
from collections.abc import MutableMapping, Mapping
import warnings
from pathlib import Path
from enum import Enum
from contextlib import contextmanager

import PyPDF2 as pypdf
from .lib import fitz
from .helpers import universal_open, fspath

matrix_mult = pypdf.pdf.utils.matrixMultiply

Colorspace = Enum('Colorspace',
 'gray rgb cmyk lab icc index sep devn pattern jpeg2000')

Encoding = Enum('Encoding',
 'ccitt jpeg jpeg2000 jbig2 asciihex ascii85 lzw flate ' + \
 'runlength')

FRIENDLY_COLORSPACE = {
 '/DeviceGray': Colorspace.gray,
 '/CalGray': Colorspace.gray,
 '/DeviceRGB': Colorspace.rgb,
 '/CalRGB': Colorspace.rgb,
 '/DeviceCMYK': Colorspace.cmyk,
 '/Lab': Colorspace.lab,
 '/ICCBased': Colorspace.icc,
 '/Indexed': Colorspace.index,
 '/Separation': Colorspace.sep,
 '/DeviceN': Colorspace.devn,
 '/Pattern': Colorspace.pattern,
 '/G': Colorspace.gray, # Abbreviations permitted in inline images
 '/RGB': Colorspace.rgb,
 '/CMYK': Colorspace.cmyk,
 '/I': Colorspace.index,
}

FRIENDLY_ENCODING = {
 '/CCITTFaxDecode': Encoding.ccitt,
 '/DCTDecode': Encoding.jpeg,
 '/JPXDecode': Encoding.jpeg2000,
 '/JBIG2Decode': Encoding.jbig2,
 '/CCF': Encoding.ccitt, # Abbreviations permitted in inline images
 '/DCT': Encoding.jpeg,
 '/AHx': Encoding.asciihex,
 '/A85': Encoding.ascii85,
 '/LZW': Encoding.lzw,
 '/Fl': Encoding.flate,
 '/RL': Encoding.runlength
}

FRIENDLY_COMP = {
 Colorspace.gray: 1,
 Colorspace.rgb: 3,
 Colorspace.cmyk: 4,
 Colorspace.lab: 3,
 Colorspace.index: 1
}

UNIT_SQUARE = (1.0, 0.0, 0.0, 1.0, 0.0, 0.0)

def _matrix_from_shorthand(shorthand):
 """Convert from PDF matrix shorthand to full matrix

 PDF 1.7 spec defines a shorthand for describing the entries of a matrix
 since the last column is always (0, 0, 1).
 """

 a, b, c, d, e, f = map(float, shorthand)
 return ((a, b, 0),
 (c, d, 0),
 (e, f, 1))

def _shorthand_from_matrix(matrix):
 """Convert from transformation matrix to PDF shorthand."""
 a, b = matrix[0][0], matrix[0][1]
 c, d = matrix[1][0], matrix[1][1]
 e, f = matrix[2][0], matrix[2][1]
 return tuple(map(float, (a, b, c, d, e, f)))

def _is_unit_square(shorthand):
 values = map(float, shorthand)
 pairwise = zip(values, UNIT_SQUARE)
 return all([isclose(a, b, rel_tol=1e-3) for a, b in pairwise])

XobjectSettings = namedtuple('XobjectSettings',
 ['name', 'shorthand', 'stack_depth'])

InlineSettings = namedtuple('InlineSettings',
 ['settings', 'shorthand', 'stack_depth'])

ContentsInfo = namedtuple('ContentsInfo',
 ['xobject_settings', 'inline_images', 'found_text'])

def _normalize_stack(operations):
 """Fix runs of qQ's in the stack

 For some reason PyPDF2 converts runs of qqq, QQ, QQQq, etc. into single
 operations. Break this silliness up and issue each stack operation
 individually so we don't lose count.

 """
 for operands, command in operations:
 if re.match(br'Q*q+$', command): # Zero or more Q, one or more q
 for char in command: # Split into individual bytes
 yield ([], bytes([char])) # Yield individual bytes
 else:
 yield (operands, command)

def _interpret_contents(contentstream, initial_shorthand=UNIT_SQUARE):
 """Interpret the PDF content stream

 The stack represents the state of the PDF graphics stack. We are only
 interested in the current transformation matrix (CTM) so we only track
 this object; a full implementation would need to track many other items.

 The CTM is initialized to the mapping from user space to device space.
 PDF units are 1/72". In a PDF viewer or printer this matrix is initialized
 to the transformation to device space. For example if set to
 (1/72, 0, 0, 1/72, 0, 0) then all units would be calculated in inches.

 Images are always considered to be (0, 0) -> (1, 1). Before drawing an
 image there should be a 'cm' that sets up an image coordinate system
 where drawing from (0, 0) -> (1, 1) will draw on the desired area of the
 page.

 PDF units suit our needs so we initialize ctm to the identity matrix.

 PyPDF2 replaces inline images with a fake "INLINE IMAGE" operator.

 """

 operations = contentstream.operations
 stack = []
 ctm = _matrix_from_shorthand(initial_shorthand)
 xobject_settings = []
 inline_images = []
 found_text = False

 for n, op in enumerate(_normalize_stack(operations)):
 operands, command = op
 if command == b'q':
 stack.append(ctm)
 if len(stack) > 32:
 raise RuntimeError(
 "PDF graphics stack overflow, command %i" % n)
 elif command == b'Q':
 try:
 ctm = stack.pop()
 except IndexError:
 raise RuntimeError(
 "PDF graphics stack underflow, command %i" % n)
 elif command == b'cm':
 ctm = matrix_mult(
 _matrix_from_shorthand(operands), ctm)
 elif command == b'Do':
 image_name = operands[0]
 settings = XobjectSettings(
 name=image_name, shorthand=_shorthand_from_matrix(ctm),
 stack_depth=len(stack))
 xobject_settings.append(settings)
 elif command == b'INLINE IMAGE':
 settings = operands['settings']
 inline = InlineSettings(
 settings=settings, shorthand=_shorthand_from_matrix(ctm),
 stack_depth=len(stack))
 inline_images.append(inline)
 elif command in (b'Tj', b'TJ', b'"', b"'"):
 found_text = True

 return ContentsInfo(
 xobject_settings=xobject_settings,
 inline_images=inline_images,
 found_text=found_text)

def _get_dpi(ctm_shorthand, image_size):
 """Given the transformation matrix and image size, find the image DPI.

 PDFs do not include image resolution information within image data.
 Instead, the PDF page content stream describes the location where the
 image will be rasterized, and the effective resolution is the ratio of the
 pixel size to raster target size.

 Normally a scanned PDF has the paper size set appropriately but this is
 not guaranteed. The most common case is a cropped image will change the
 page size (/CropBox) without altering the page content stream. That means
 it is not sufficient to assume that the image fills the page, even though
 that is the most common case.

 A PDF image may be scaled (always), cropped, translated, rotated in place
 to an arbitrary angle (rarely) and skewed. Only equal area mappings can
 be expressed, that is, it is not necessary to consider distortions where
 the effective DPI varies with position.

 To determine the image scale, transform an offset axis vector v0 (0, 0),
 width-axis vector v0 (1, 0), height-axis vector vh (0, 1) with the matrix,
 which gives the dimensions of the image in PDF units. From there we can
 compare to actual image dimensions. PDF uses
 row vector * matrix_tranposed unlike the traditional
 matrix * column vector.

 The offset, width and height vectors can be combined in a matrix and
 multiplied by the transform matrix. Then we want to calculated
 magnitude(width_vector - offset_vector)
 and
 magnitude(height_vector - offset_vector)

 When the above is worked out algebraically, the effect of translation
 cancels out, and the vector magnitudes become functions of the nonzero
 transformation matrix indices. The results of the derivation are used
 in this code.

 pdfimages -list does calculate the DPI in some way that is not completely
 naive, but it does not get the DPI of rotated images right, so cannot be
 used anymore to validate this. Photoshop works, or using Acrobat to
 rotate the image back to normal.

 It does not matter if the image is partially cropped, or even out of the
 /MediaBox.

 """

 a, b, c, d, _, _ = ctm_shorthand

 # Calculate the width and height of the image in PDF units
 image_drawn_width = hypot(a, b)
 image_drawn_height = hypot(c, d)

 # The scale of the image is pixels per unit of default user space (1/72")
 scale_w = image_size[0] / image_drawn_width
 scale_h = image_size[1] / image_drawn_height

 # DPI = scale * 72
 dpi_w = scale_w * 72.0
 dpi_h = scale_h * 72.0

 return dpi_w, dpi_h

class ImageInfo:
 DPI_PREC = Decimal('1.000')

 def __init__(self, *, name='', pdfimage=None, inline=None,
 shorthand=None):

 self._name = name
 self._shorthand = shorthand
 if inline:
 # Fixme does not work for inline images with non abbreviated
 # fields
 self._origin = 'inline'
 self._width = inline.settings['/W']
 self._height = inline.settings['/H']
 self._bpc = inline.settings.get('/BPC', 8)
 try:
 self._color = FRIENDLY_COLORSPACE[inline.settings['/CS']]
 except Exception:
 self._color = '-'
 self._comp = FRIENDLY_COMP.get(self._color, '?')
 if '/F' in inline.settings:
 filter_ = inline.settings['/F']
 if isinstance(filter_, pypdf.generic.ArrayObject):
 filter_ = filter_[0]
 self._enc = FRIENDLY_ENCODING.get(filter_, 'image')
 else:
 self._enc = 'image'
 elif pdfimage:
 self._origin = 'xobject'
 self._width = pdfimage['/Width']
 self._height = pdfimage['/Height']
 if '/BitsPerComponent' in pdfimage:
 self._bpc = pdfimage['/BitsPerComponent']
 else:
 self._bpc = 8

 # Fixme: this is incorrectly treats explicit masks as stencil masks,
 # but good enough for now. Explicit masks have /ImageMask true but are
 # never called for in content stream, instead are drawn as a /Mask on
 # other images. For our purposes finding out the details of /Mask
 # will seldom matter.
 if '/ImageMask' in pdfimage:
 self._type = 'stencil' if pdfimage['/ImageMask'].value \
 else 'image'
 else:
 self._type = 'image'
 if '/Filter' in pdfimage:
 filter_ = pdfimage['/Filter']
 if isinstance(filter_, pypdf.generic.ArrayObject):
 filter_ = filter_[0]
 self._enc = FRIENDLY_ENCODING.get(filter_, 'image')
 else:
 self._enc = 'image'
 if '/ColorSpace' in pdfimage:
 cs = pdfimage['/ColorSpace']
 if isinstance(cs, pypdf.generic.ArrayObject):
 cs = cs[0]
 self._color = FRIENDLY_COLORSPACE.get(cs, '-')
 else:
 self._color = FRIENDLY_COLORSPACE[Colorspace.jpeg2000] \
 if self._enc == Encoding.jpeg2000 else '?'

 self._comp = FRIENDLY_COMP.get(self._color, '?')

 # Bit of a hack... infer grayscale if component count is uncertain
 # but encoding must be monochrome. This happens if a monochrome image
 # has an ICC profile attached. Better solution would be to examine
 # the ICC profile.
 if self._comp == '?' and self._enc in (Encoding.ccitt, 'jbig2'):
 self._comp = FRIENDLY_COMP[Colorspace.gray]

 @property
 def name(self):
 return self._name

 @property
 def type_(self):
 return self._type

 @property
 def width(self):
 return self._width

 @property
 def height(self):
 return self._height

 @property
 def bpc(self):
 return self._bpc

 @property
 def color(self):
 return self._color

 @property
 def comp(self):
 return self._comp

 @property
 def enc(self):
 return self._enc

 @property
 def xres(self):
 return _get_dpi(self._shorthand, (self._width, self._height))[0]

 @property
 def yres(self):
 return _get_dpi(self._shorthand, (self._width, self._height))[1]

 def __getitem__(self, item):
 warnings.warn("ImageInfo.__getitem__", DeprecationWarning)
 if item in ('name', 'width', 'height', 'bpc', 'color', 'comp', 'enc'):
 return getattr(self, item)
 elif item == 'dpi_w':
 return Decimal(self.xres).quantize(self.DPI_PREC)
 elif item == 'dpi_h':
 return Decimal(self.yres).quantize(self.DPI_PREC)
 elif item == 'dpi':
 return Decimal(self.xres * self.yres).sqrt().quantize(
 self.DPI_PREC)
 else:
 raise KeyError(item)

 def __repr__(self):
 class_locals = {attr: getattr(self, attr, None) for attr in dir(self)
 if not attr.startswith('_')}
 return (
 "<ImageInfo '{name}' {type_} {width}x{height} {color} "
 "{comp} {bpc} {enc} {xres}x{yres}>").format(**class_locals)

def _find_inline_images(contentsinfo):
 "Find inline images in the contentstream"

 for n, inline in enumerate(contentsinfo.inline_images):
 yield ImageInfo(name='inline-%02d' % n, shorthand=inline.shorthand,
 inline=inline)

def _image_xobjects(container):
 """Search for all XObject-based images in the container

 Usually the container is a page, but it could also be a Form XObject
 that contains images. Filter out the Form XObjects which are dealt with
 elsewhere.

 Generate a sequence of tuples (image, xobj container), where container,
 where xobj is the name of the object and image is the object itself,
 since the object does not know its own name.

 """

 if '/Resources' not in container:
 return
 resources = container['/Resources']
 if '/XObject' not in resources:
 return
 for xobj in resources['/XObject']:
 candidate = resources['/XObject'][xobj]
 if candidate['/Subtype'] == '/Image':
 pdfimage = candidate
 yield (pdfimage, xobj)

def _find_regular_images(container, contentsinfo):
 """Find images stored in the container's /Resources /XObject

 Usually the container is a page, but it could also be a Form XObject
 that contains images.

 Generates images with their DPI at time of drawing.

 """

 for pdfimage, xobj in _image_xobjects(container):

 # For each image that is drawn on this, check if we drawing the
 # current image - yes this is O(n^2), but n == 1 almost always
 for draw in contentsinfo.xobject_settings:
 if draw.name != xobj:
 continue

 if draw.stack_depth == 0 and _is_unit_square(draw.shorthand):
 # At least one PDF in the wild (and test suite) draws an image
 # when the graphics stack depth is 0, meaning that the image
 # gets drawn into a square of 1x1 PDF units (or 1/72",
 # or 0.35 mm). The equivalent DPI will be >100,000. Exclude
 # these from our DPI calculation for the page.
 continue

 yield ImageInfo(name=draw.name, pdfimage=pdfimage, shorthand=
 draw.shorthand)

def _find_form_xobject_images(pdf, container, contentsinfo):
 """Find any images that are in Form XObjects in the container

 The container may be a page, or a parent Form XObject.

 """
 if '/Resources' not in container:
 return
 resources = container['/Resources']
 if '/XObject' not in resources:
 return
 for xobj in resources['/XObject']:
 candidate = resources['/XObject'][xobj]
 if candidate['/Subtype'] != '/Form':
 continue

 form_xobject = candidate
 for settings in contentsinfo.xobject_settings:
 if settings.name != xobj:
 continue

 # Find images once for each time this Form XObject is drawn.
 # This could be optimized to cache the multiple drawing events
 # but in practice both Form XObjects and multiple drawing of the
 # same object are both very rare.
 ctm_shorthand = settings.shorthand
 yield from _find_images(
 pdf=pdf, container=form_xobject, shorthand=ctm_shorthand)

def _find_images(*, pdf, container, shorthand=None):
 """Find all individual instances of images drawn in the container

 Usually the container is a page, but it may also be a Form XObject.

 On a typical page images are stored inline or as regular images
 in an XObject.

 Form XObjects may include inline images, XObject images,
 and recursively, other Form XObjects; and also vector drawing commands.

 Every instance of an image being drawn somewhere is flattened and
 treated as a unique image, since if the same image is drawn multiple times
 on one page it may be drawn at differing resolutions, and our objective
 is to find the resolution at which the page can be rastered without
 downsampling.

 """

 if container.get('/Type') == '/Page' and '/Contents' in container:
 # For a /Page the content stream is attached to the page's /Contents
 page = container
 contentstream = pypdf.pdf.ContentStream(page.getContents(), pdf)
 initial_shorthand = shorthand or UNIT_SQUARE
 elif container.get('/Type') == '/XObject' and \
 container['/Subtype'] == '/Form':
 # For a Form XObject that content stream is attached to the XObject
 contentstream = pypdf.pdf.ContentStream(container, pdf)

 # Set the CTM to the state it was when the "Do" operator was
 # encountered that is drawing this instance of the Form XObject
 ctm = _matrix_from_shorthand(shorthand or UNIT_SQUARE)

 # A Form XObject may provide its own matrix to map form space into
 # user space. Get this if one exists
 form_matrix = _matrix_from_shorthand(
 container.get('/Matrix', UNIT_SQUARE))

 # Concatenate form matrix with CTM to ensure CTM is correct for
 # drawing this instance of the XObject
 ctm = matrix_mult(form_matrix, ctm)
 initial_shorthand = _shorthand_from_matrix(ctm)
 else:
 return

 contentsinfo = _interpret_contents(contentstream, initial_shorthand)

 yield from _find_inline_images(contentsinfo)
 yield from _find_regular_images(container, contentsinfo)
 yield from _find_form_xobject_images(pdf, container, contentsinfo)

def _naive_find_text(*, pdf, page):
 if not(page.get('/Type') == '/Page' and '/Contents' in page):
 # Not a page, or has no /Contents => no text
 return False

 # First we check the main content stream
 contentstream = pypdf.pdf.ContentStream(page.getContents(), pdf)
 contentsinfo = _interpret_contents(contentstream, UNIT_SQUARE)
 if contentsinfo.found_text:
 return True

 # Then see if there is a Form XObject with with a content stream
 # that might have text. For full completeness we should recursively
 # search nested Form XObjects, as we do with images. But that is
 # rare.
 if '/Resources' in page:
 resources = page['/Resources']
 if '/XObject' in resources:
 for xobj in resources['/XObject']:
 candidate = resources['/XObject'][xobj]
 if candidate['/Subtype'] != '/Form':
 continue
 form_xobject = candidate
 # Content stream is attached to Form XObject dictionary
 contentstream = pypdf.pdf.ContentStream(form_xobject, pdf)
 sub_contentsinfo = _interpret_contents(
 contentstream, UNIT_SQUARE)
 if sub_contentsinfo.found_text:
 return True
 return False

def _page_has_text(infile, pageno):
 doc = fitz.Document(infile)
 text = doc.getPageText(pageno)
 if text.strip() != '':
 return True
 return False

def _pdf_get_pageinfo(pdf, pageno: int, infile):
 pageinfo = {}
 pageinfo['pageno'] = pageno
 pageinfo['images'] = []

 if isinstance(pdf, Path):
 pdf = pypdf.PdfFileReader(str(pdf))
 elif isinstance(pdf, str):
 pdf = pypdf.PdfFileReader(pdf)

 page = pdf.pages[pageno]

 if fitz:
 pageinfo['has_text'] = _page_has_text(str(infile), pageno)
 else:
 pageinfo['has_text'] = _naive_find_text(pdf=pdf, page=page)

 width_pt = page.mediaBox.getWidth()
 height_pt = page.mediaBox.getHeight()

 userunit = page.get('/UserUnit', Decimal(1.0))
 pageinfo['userunit'] = userunit
 pageinfo['width_inches'] = width_pt * userunit / Decimal(72.0)
 pageinfo['height_inches'] = height_pt * userunit / Decimal(72.0)

 try:
 pageinfo['rotate'] = int(page['/Rotate'])
 except KeyError:
 pageinfo['rotate'] = 0

 userunit_shorthand = (userunit, 0, 0, userunit, 0, 0)
 pageinfo['images'] = [im for im in
 _find_images(pdf=pdf, container=page,
 shorthand=userunit_shorthand)]
 if pageinfo['images']:
 xres = max(image['dpi_w'] for image in pageinfo['images'])
 yres = max(image['dpi_h'] for image in pageinfo['images'])
 pageinfo['xres'], pageinfo['yres'] = xres, yres
 pageinfo['width_pixels'] = \
 int(round(xres * pageinfo['width_inches']))
 pageinfo['height_pixels'] = \
 int(round(yres * pageinfo['height_inches']))

 return pageinfo

def _pdf_get_all_pageinfo(infile):
 with universal_open(infile, 'rb') as f:
 pdf = pypdf.PdfFileReader(f)
 return [PageInfo(pdf, n, infile) for n in range(pdf.numPages)]

class PageInfo:
 def __init__(self, pdf, pageno, infile):
 self._pageno = pageno
 self._infile = infile
 self._pageinfo = _pdf_get_pageinfo(pdf, pageno, infile)

 @property
 def pageno(self):
 return self._pageno

 @property
 def has_text(self):
 return self._pageinfo['has_text']

 @property
 def width_inches(self):
 return self._pageinfo['width_inches']

 @property
 def height_inches(self):
 return self._pageinfo['height_inches']

 @property
 def width_pixels(self):
 return int(round(self.width_inches * self.xres))

 @property
 def height_pixels(self):
 return int(round(self.height_inches * self.yres))

 @property
 def rotation(self):
 return self._pageinfo.get('rotate', None)

 @rotation.setter
 def rotation(self, value):
 if value in (0, 90, 180, 270, 360, -90, -180, -270):
 self._pageinfo['rotate'] = value
 else:
 raise ValueError("rotation must be a cardinal angle")

 @property
 def images(self):
 return self._pageinfo['images']

 @property
 def xres(self):
 return self._pageinfo.get('xres', None)

 @property
 def yres(self):
 return self._pageinfo.get('yres', None)

 @property
 def userunit(self):
 return self._pageinfo.get('userunit', None)

 @property
 def min_version(self):
 if self.userunit is not None:
 return '1.6'
 else:
 return '1.5'

 def __repr__(self):
 return (
 '<PageInfo '
 'pageno={} {}"x{}" rotation={} res={}x{} has_text={}>').format(
 self.pageno, self.width_inches, self.height_inches,
 self.rotation,
 self.xres, self.yres, self.has_text
)

class PdfInfo:
 """Get summary information about a PDF

 """
 def __init__(self, infile):
 self._infile = infile
 self._pages = _pdf_get_all_pageinfo(infile)
 if fitz:
 self._toc = fitz.Document(fspath(infile)).getToC()
 else:
 self._toc = []

 @property
 def pages(self):
 return self._pages

 @property
 def min_version(self):
 # The minimum PDF is the maximum version that any particular page needs
 return max(page.min_version for page in self.pages)

 @property
 def has_userunit(self):
 return any(page.userunit != 1.0 for page in self.pages)

 @property
 def filename(self):
 if not isinstance(self._infile, (str, Path)):
 raise NotImplementedError("can't get filename from stream")
 return self._infile

 @property
 def table_of_contents(self):
 return self._toc

 def __getitem__(self, item):
 return self._pages[item]

 def __len__(self):
 return len(self._pages)

 def __repr__(self):
 return "<PdfInfo('...'), page count={}>".format(len(self))

 # def __getstate__(self):
 # state = {'_infile': self._infile}
 # return state
 #
 # def __setstate__(self, state):
 # self._infile = state['_infile']
 # self._pages = _pdf_get_all_pageinfo(self._infile)

def main():
 import argparse
 parser = argparse.ArgumentParser()
 parser.add_argument('infile')
 args = parser.parse_args()
 info = _pdf_get_all_pageinfo(args.infile)
 from pprint import pprint
 pprint(info)

if __name__ == '__main__':
 main()

./usr/lib/python3/dist-packages/ocrmypdf/pipeline.py

© 2016 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from contextlib import suppress
from shutil import copyfileobj
from pathlib import Path
import sys
import os
import shutil
import re

import img2pdf
import PyPDF2 as pypdf

from PIL import Image
from ruffus import formatter, regex, Pipeline, suffix

from .hocrtransform import HocrTransform
from .pdfinfo import PdfInfo, Encoding, Colorspace
from .pdfa import generate_pdfa_ps
from .helpers import re_symlink, is_iterable_notstr, page_number
from .exec import ghostscript, tesseract, qpdf
from .lib import fitz
from .exceptions import PdfMergeFailedError, UnsupportedImageFormatError, \
 DpiError, PriorOcrFoundError, InputFileError
from . import leptonica
from . import PROGRAM_NAME, VERSION

VECTOR_PAGE_DPI = 400

Pipeline state manager

class JobContext:
 """Holds our context for a particular run of the pipeline

 A multiprocessing manager effectively creates a separate process
 that keeps the master job context object. Other threads access
 job context via multiprocessing proxy objects.

 While this would naturally lend itself @property's it seems to make
 a little more sense to use functions to make it explicitly that the
 invocation requires marshalling data across a process boundary.

 """

 def __init__(self):
 self.pdfinfo = None
 self.options = None
 self.work_folder = None

 def generate_pdfinfo(self, infile):
 self.pdfinfo = PdfInfo(infile)

 def get_pdfinfo(self):
 "What we know about the input PDF"
 return self.pdfinfo

 def set_pdfinfo(self, pdfinfo):
 self.pdfinfo = pdfinfo

 def get_options(self):
 return self.options

 def set_options(self, options):
 self.options = options

 def get_work_folder(self):
 return self.work_folder

 def set_work_folder(self, work_folder):
 self.work_folder = work_folder

from multiprocessing.managers import SyncManager
class JobContextManager(SyncManager):
 pass

def cleanup_working_files(work_folder, options):
 if options.keep_temporary_files:
 print("Temporary working files saved at:\n{0}".format(work_folder),
 file=sys.stderr)
 else:
 with suppress(FileNotFoundError):
 shutil.rmtree(work_folder)

#
The Pipeline
#

def triage_image_file(input_file, output_file, log, options):
 try:
 log.info("Input file is not a PDF, checking if it is an image...")
 im = Image.open(input_file)
 except EnvironmentError as e:
 msg = str(e)

 # Recover the original filename
 realpath = ''
 if os.path.islink(input_file):
 realpath = os.path.realpath(input_file)
 elif os.path.isfile(input_file):
 realpath = '<stdin>'
 msg = msg.replace(input_file, realpath)
 log.error(msg)
 raise UnsupportedImageFormatError() from e
 else:
 log.info("Input file is an image")

 if 'dpi' in im.info:
 if im.info['dpi'] <= (96, 96) and not options.image_dpi:
 log.info("Image size: (%d, %d)" % im.size)
 log.info("Image resolution: (%d, %d)" % im.info['dpi'])
 log.error(
 "Input file is an image, but the resolution (DPI) is "
 "not credible. Estimate the resolution at which the "
 "image was scanned and specify it using --image-dpi.")
 raise DpiError()
 elif not options.image_dpi:
 log.info("Image size: (%d, %d)" % im.size)
 log.error(
 "Input file is an image, but has no resolution (DPI) "
 "in its metadata. Estimate the resolution at which "
 "image was scanned and specify it using --image-dpi.")
 raise DpiError()

 if 'iccprofile' not in im.info:
 if im.mode == 'RGB':
 log.info('Input image has no ICC profile, assuming sRGB')
 elif im.mode == 'CMYK':
 log.info('Input CMYK image has no ICC profile, not usable')
 raise UnsupportedImageFormatError()
 im.close()

 try:
 log.info("Image seems valid. Try converting to PDF...")
 layout_fun = img2pdf.default_layout_fun
 if options.image_dpi:
 layout_fun = img2pdf.get_fixed_dpi_layout_fun(
 (options.image_dpi, options.image_dpi))
 with open(output_file, 'wb') as outf:
 img2pdf.convert(
 input_file,
 layout_fun=layout_fun,
 with_pdfrw=False,
 outputstream=outf)
 log.info("Successfully converted to PDF, processing...")
 except img2pdf.ImageOpenError as e:
 log.error(e)
 raise UnsupportedImageFormatError() from e

def _pdf_guess_version(input_file, search_window=1024):
 """Try to find version signature at start of file.

 Not robust enough to deal with appended files.

 Returns empty string if not found, indicating file is probably not PDF.
 """

 with open(input_file, 'rb') as f:
 signature = f.read(1024)
 m = re.search(br'%PDF-(\d\.\d)', signature)
 if m:
 return m.group(1)
 return ''

def triage(
 input_file,
 output_file,
 log,
 context):

 options = context.get_options()
 try:
 if _pdf_guess_version(input_file):
 if options.image_dpi:
 log.warning("Argument --image-dpi ignored because the "
 "input file is a PDF, not an image.")
 re_symlink(input_file, output_file, log)
 return
 except EnvironmentError as e:
 log.error(e)
 raise InputFileError() from e

 triage_image_file(input_file, output_file, log, options)

def repair_and_parse_pdf(
 input_file,
 output_file,
 log,
 context):
 options = context.get_options()
 if not options.skip_repair:
 log.debug("Beginning qpdf repair...")
 qpdf.repair(input_file, output_file, log)
 log.debug("Repair OK; beginning parse...")
 else:
 re_symlink(input_file, output_file, log)

 pdfinfo = PdfInfo(output_file)

 if pdfinfo.has_userunit and options.output_type == 'pdfa':
 log.error(
 "This input file uses a PDF feature that is not supported "
 "by Ghostscript, so you cannot use --output-type=pdfa for this "
 "file. (Specifically, it uses the PDF-1.6 /UserUnit feature to "
 "support very large or small page sizes, and Ghostscript cannot "
 "output these files.) Use --output-type=pdf instead."
)
 raise InputFileError()

 context.set_pdfinfo(pdfinfo)
 log.debug(pdfinfo)

def get_pageinfo(input_file, context):
 "Get zero-based page info implied by filename, e.g. 000002.pdf -> 1"
 pageno = page_number(input_file) - 1
 pageinfo = context.get_pdfinfo()[pageno]
 return pageinfo

def get_page_dpi(pageinfo, options):
 "Get the DPI when nonsquare DPI is tolerable"
 xres = max(pageinfo.xres or VECTOR_PAGE_DPI, options.oversample or 0)
 yres = max(pageinfo.yres or VECTOR_PAGE_DPI, options.oversample or 0)
 return (float(xres), float(yres))

def get_page_square_dpi(pageinfo, options):
 "Get the DPI when we require xres == yres, scaled to physical units"
 xres = pageinfo.xres or 0
 yres = pageinfo.yres or 0
 userunit = pageinfo.userunit or 1
 return float(max(
 (xres * userunit) or VECTOR_PAGE_DPI,
 (yres * userunit) or VECTOR_PAGE_DPI,
 options.oversample or 0))

def get_canvas_square_dpi(pageinfo, options):
 """Get the DPI when we require xres == yres, in Postscript units"""
 return float(max(
 (pageinfo.xres) or VECTOR_PAGE_DPI,
 (pageinfo.yres) or VECTOR_PAGE_DPI,
 options.oversample or 0))

def is_ocr_required(pageinfo, log, options):
 page = pageinfo.pageno + 1
 ocr_required = True

 if pageinfo.has_text:
 msg = "{0:4d}: page already has text! – {1}"

 if not options.force_ocr and not options.skip_text:
 log.error(msg.format(page,
 "aborting (use --force-ocr to force OCR)"))
 raise PriorOcrFoundError()
 elif options.force_ocr:
 log.info(msg.format(page,
 "rasterizing text and running OCR anyway"))
 ocr_required = True
 elif options.skip_text:
 log.info(msg.format(page,
 "skipping all processing on this page"))
 ocr_required = False
 elif not pageinfo.images and not options.lossless_reconstruction:
 # We found a page with no images and no text. That means it may
 # have vector art that the user wants to OCR. If we determined
 # lossless reconstruction is not possible then we have to rasterize
 # the image. So if OCR is being forced, take that to mean YES, go
 # ahead and rasterize. If not forced, then pretend there's no text
 # on the page at all so we don't lose anything.
 # This could be made smarter by explicitly searching for vector art.
 if options.force_ocr and options.oversample:
 # The user really wants to reprocess this file
 log.info(
 "{0:4d}: page has no images - "
 "rasterizing at {1} DPI because "
 "--force-ocr --oversample was specified".format(
 page, options.oversample))
 elif options.force_ocr:
 # Warn the user they might not want to do this
 log.warning(
 "{0:4d}: page has no images - "
 "all vector content will be "
 "rasterized at {1} DPI, losing some resolution and likely "
 "increasing file size. Use --oversample to adjust the "
 "DPI.".format(page, VECTOR_PAGE_DPI))
 else:
 log.info(
 "{0:4d}: page has no images - "
 "skipping all processing on this page to avoid losing detail. "
 "Use --force-ocr if you wish to perform OCR on pages that "
 "have vector content.".format(page))
 ocr_required = False

 if ocr_required and options.skip_big and pageinfo.images:
 pixel_count = pageinfo.width_pixels * pageinfo.height_pixels
 if pixel_count > (options.skip_big * 1000000):
 ocr_required = False
 log.warning(
 "{0:4d}: page too big, skipping OCR "
 "({1:.1f} MPixels > {2:.1f} MPixels --skip-big)".format(
 page, pixel_count / 1000000, options.skip_big))
 return ocr_required

def pre_split_pages(
 input_files,
 output_files,
 log,
 context):

 options = context.get_options()
 work_folder = context.get_work_folder()

 if is_iterable_notstr(input_files):
 input_file = input_files[0]
 else:
 input_file = input_files

 for oo in output_files:
 with suppress(FileNotFoundError):
 os.unlink(oo)

 # If no files were repaired the input will be empty
 if not input_file:
 log.error("{0}: file not found or invalid argument".format(
 options.input_file))
 raise InputFileError()

 pdfinfo = context.get_pdfinfo()
 npages = len(pdfinfo)

 # Ruffus needs to see a file for any task it generates, so create
 # empty placeholders for every page.
 for n in range(npages):
 page = Path(work_folder) / '{0:06d}.presplit.pdf'.format(n + 1)
 page.touch()

def split_page(
 placeholder_file,
 output_file,
 log,
 context):
 pageno = page_number(placeholder_file) - 1
 input_pdf = context.get_pdfinfo().filename
 qpdf.extract_page(input_pdf, output_file, pageno)

def ocr_or_skip(
 input_files,
 output_files,
 log,
 context):
 options = context.get_options()
 work_folder = context.get_work_folder()
 pdfinfo = context.get_pdfinfo()

 for input_file in input_files:
 pageno = page_number(input_file) - 1
 pageinfo = pdfinfo[pageno]
 alt_suffix = \
 '.ocr.page.pdf' if is_ocr_required(pageinfo, log, options) \
 else '.skip.page.pdf'

 re_symlink(
 input_file,
 os.path.join(
 work_folder,
 os.path.basename(input_file)[0:6] + alt_suffix),
 log)

def rasterize_preview(
 input_file,
 output_file,
 log,
 context):
 pageinfo = get_pageinfo(input_file, context)
 options = context.get_options()
 canvas_dpi = get_canvas_square_dpi(pageinfo, options) / 2
 page_dpi = get_page_square_dpi(pageinfo, options) / 2

 ghostscript.rasterize_pdf(
 input_file, output_file, xres=canvas_dpi, yres=canvas_dpi,
 raster_device='jpeggray', log=log, page_dpi=(page_dpi, page_dpi))

def orient_page(
 infiles,
 output_file,
 log,
 context):

 options = context.get_options()
 page_pdf = next(ii for ii in infiles if ii.endswith('.page.pdf'))

 if not options.rotate_pages:
 re_symlink(page_pdf, output_file, log)
 return
 preview = next(ii for ii in infiles if ii.endswith('.preview.jpg'))

 orient_conf = tesseract.get_orientation(
 preview,
 language=options.language,
 engine_mode=options.tesseract_oem,
 timeout=options.tesseract_timeout,
 log=log)

 direction = {
 0: '⇧',
 90: '⇨',
 180: '⇩',
 270: '⇦'
 }

 apply_correction = False
 description = ''
 if orient_conf.confidence >= options.rotate_pages_threshold:
 if orient_conf.angle != 0:
 apply_correction = True
 description = ' - will rotate'
 else:
 description = ' - rotation appears correct'
 else:
 if orient_conf.angle != 0:
 description = ' - confidence too low to rotate'
 else:
 description = ' - no change'

 log.info(
 '{0:4d}: page is facing {1}, confidence {2:.2f}{3}'.format(
 page_number(preview),
 direction.get(orient_conf.angle, '?'),
 orient_conf.confidence,
 description)
)

 if not apply_correction:
 re_symlink(page_pdf, output_file, log)
 else:
 writer = pypdf.PdfFileWriter()
 reader = pypdf.PdfFileReader(page_pdf)
 page = reader.pages[0]

 # angle is a clockwise angle, so rotating ccw will correct the error
 rotated_page = page.rotateCounterClockwise(orient_conf.angle)
 writer.addPage(rotated_page)
 with open(output_file, 'wb') as out:
 writer.write(out)

 pageno = page_number(page_pdf) - 1
 pdfinfo = context.get_pdfinfo()
 pdfinfo[pageno].rotation = orient_conf.angle
 context.set_pdfinfo(pdfinfo)

def rasterize_with_ghostscript(
 input_file,
 output_file,
 log,
 context):
 options = context.get_options()
 pageinfo = get_pageinfo(input_file, context)

 device = 'png16m' # 24-bit
 if pageinfo.images:
 if all(image.comp == 1 for image in pageinfo.images):
 if all(image.bpc == 1 for image in pageinfo.images):
 device = 'pngmono'
 elif all(image.bpc > 1 and image.color == Colorspace.index
 for image in pageinfo.images):
 device = 'png256'
 elif all(image.bpc > 1 and image.color == Colorspace.gray
 for image in pageinfo.images):
 device = 'pnggray'

 log.debug("Rasterize {0} with {1}".format(
 os.path.basename(input_file), device))

 # Produce the page image with square resolution or else deskew and OCR
 # will not work properly.
 canvas_dpi = get_canvas_square_dpi(pageinfo, options)
 page_dpi = get_page_square_dpi(pageinfo, options)

 ghostscript.rasterize_pdf(
 input_file, output_file, xres=canvas_dpi, yres=canvas_dpi,
 raster_device=device, log=log, page_dpi=(page_dpi, page_dpi))

def preprocess_remove_background(
 input_file,
 output_file,
 log,
 context):
 options = context.get_options()
 if not options.remove_background:
 re_symlink(input_file, output_file, log)
 return

 pageinfo = get_pageinfo(input_file, context)

 if any(image.bpc > 1 for image in pageinfo.images):
 leptonica.remove_background(input_file, output_file)
 else:
 log.info("{0:4d}: background removal skipped on mono page".format(
 pageinfo.pageno))
 re_symlink(input_file, output_file, log)

def preprocess_deskew(
 input_file,
 output_file,
 log,
 context):
 options = context.get_options()
 if not options.deskew:
 re_symlink(input_file, output_file, log)
 return

 pageinfo = get_pageinfo(input_file, context)
 dpi = get_page_square_dpi(pageinfo, options)

 leptonica.deskew(input_file, output_file, dpi)

def preprocess_clean(
 input_file,
 output_file,
 log,
 context):
 options = context.get_options()
 if not options.clean:
 re_symlink(input_file, output_file, log)
 return

 from .exec import unpaper
 pageinfo = get_pageinfo(input_file, context)
 dpi = get_page_square_dpi(pageinfo, options)

 unpaper.clean(input_file, output_file, dpi, log)

def select_ocr_image(
 infiles,
 output_file,
 log,
 context):
 """Select the image we send for OCR. May not be the same as the display
 image depending on preprocessing."""

 # For the moment this is always the .pp-clean.png image
 image = infiles[0]
 re_symlink(image, output_file, log)

def ocr_tesseract_hocr(
 input_file,
 output_files,
 log,
 context):
 options = context.get_options()
 tesseract.generate_hocr(
 input_file=input_file,
 output_files=output_files,
 language=options.language,
 engine_mode=options.tesseract_oem,
 tessconfig=options.tesseract_config,
 timeout=options.tesseract_timeout,
 pagesegmode=options.tesseract_pagesegmode,
 user_words=options.user_words,
 user_patterns=options.user_patterns,
 log=log
)

def select_visible_page_image(
 infiles,
 output_file,
 log,
 context):
 "Selects a whole page image that we can show the user (if necessary)"

 options = context.get_options()
 if options.clean_final:
 image_suffix = '.pp-clean.png'
 elif options.deskew:
 image_suffix = '.pp-deskew.png'
 elif options.remove_background:
 image_suffix = '.pp-background.png'
 else:
 image_suffix = '.page.png'
 image = next(ii for ii in infiles if ii.endswith(image_suffix))

 pageinfo = get_pageinfo(image, context)
 if pageinfo.images and \
 all(im['enc'] == 'jpeg' for im in pageinfo.images):
 log.debug('{:4d}: JPEG input -> JPEG output'.format(
 page_number(image)))
 # If all images were JPEGs originally, produce a JPEG as output
 im = Image.open(image)

 # At this point the image should be a .png, but deskew, unpaper might
 # have removed the DPI information. In this case, fall back to square
 # DPI used to rasterize. When the preview image was rasterized, it
 # was also converted to square resolution, which is what we want to
 # give tesseract, so keep it square.
 fallback_dpi = get_page_square_dpi(pageinfo, options)
 dpi = im.info.get('dpi', (fallback_dpi, fallback_dpi))

 # Pillow requires integer DPI
 dpi = round(dpi[0]), round(dpi[1])
 im.save(output_file, format='JPEG', dpi=dpi)
 else:
 re_symlink(image, output_file, log)

def select_image_layer(
 infiles,
 output_file,
 log,
 context):
 """Selects the image layer for the output page. If possible this is the
 orientation-corrected input page, or an image of the whole page converted
 to PDF."""

 options = context.get_options()
 page_pdf = next(ii for ii in infiles if ii.endswith('.ocr.oriented.pdf'))
 image = next(ii for ii in infiles if ii.endswith('.image'))

 if options.lossless_reconstruction:
 log.debug("{:4d}: page eligible for lossless reconstruction".format(
 page_number(page_pdf)))
 re_symlink(page_pdf, output_file, log)
 else:
 pageinfo = get_pageinfo(image, context)

 # We rasterize a square DPI version of each page because most image
 # processing tools don't support rectangular DPI. Use the square DPI
 # as it accurately describes the image. It would be possible to
 # resample the image at this stage back to non-square DPI to more
 # closely resemble the input, except that the hocr renderer does not
 # understand non-square DPI. The sandwich renderer would be fine.
 dpi = get_page_square_dpi(pageinfo, options)
 layout_fun = img2pdf.get_fixed_dpi_layout_fun((dpi, dpi))

 with open(image, 'rb') as imfile, \
 open(output_file, 'wb') as pdf:
 log.debug('{:4d}: convert'.format(page_number(page_pdf)))
 img2pdf.convert(
 imfile, with_pdfrw=False,
 layout_fun=layout_fun, outputstream=pdf)
 log.debug('{:4d}: convert done'.format(page_number(page_pdf)))

def render_hocr_page(
 infiles,
 output_file,
 log,
 context):
 options = context.get_options()
 hocr = next(ii for ii in infiles if ii.endswith('.hocr'))
 pageinfo = get_pageinfo(hocr, context)
 dpi = get_page_square_dpi(pageinfo, options)

 hocrtransform = HocrTransform(hocr, dpi)
 hocrtransform.to_pdf(output_file, imageFileName=None,
 showBoundingboxes=False, invisibleText=True,
 interwordSpaces=True)

def flatten_groups(groups):
 for obj in groups:
 if is_iterable_notstr(obj):
 yield from obj
 else:
 yield obj

def render_hocr_debug_page(
 infiles,
 output_file,
 log,
 context):
 options = context.get_options()
 hocr = next(ii for ii in flatten_groups(infiles) if ii.endswith('.hocr'))
 image = next(ii for ii in flatten_groups(infiles) if ii.endswith('.image'))

 pageinfo = get_pageinfo(image, context)
 dpi = get_page_square_dpi(pageinfo, options)

 hocrtransform = HocrTransform(hocr, dpi)
 hocrtransform.to_pdf(output_file, imageFileName=None,
 showBoundingboxes=True, invisibleText=False,
 interwordSpaces=True)

def combine_layers(
 infiles,
 output_file,
 log,
 context):
 text = next(ii for ii in flatten_groups(infiles)
 if ii.endswith('.text.pdf'))
 image = next(ii for ii in flatten_groups(infiles)
 if ii.endswith('.image-layer.pdf'))

 pdf_text = pypdf.PdfFileReader(text)
 pdf_image = pypdf.PdfFileReader(image)

 page_text = pdf_text.getPage(0)

 # The text page always will be oriented up by this stage
 # but if lossless_reconstruction, pdf_image may have a rotation applied
 # We have to eliminate the /Rotate tag (because it applies to the whole
 # page) and rotate the image layer to match the text page
 # Also, pdf_image may not have its mediabox nailed to (0, 0), so may need
 # translation
 page_image = pdf_image.getPage(0)
 try:
 # pypdf DictionaryObject.get() does not resolve indirect objects but
 # __getitem__ does
 rotation = page_image['/Rotate']
 except KeyError:
 rotation = 0

 # /Rotate is a clockwise rotation: 90 means page facing "east"
 # The negative of this value is the angle that eliminates that rotation
 rotation = -rotation % 360

 x1 = page_image.mediaBox.getLowerLeft_x()
 x2 = page_image.mediaBox.getUpperRight_x()
 y1 = page_image.mediaBox.getLowerLeft_y()
 y2 = page_image.mediaBox.getUpperRight_y()

 # Rotation occurs about the page's (0, 0). Most pages will have the media
 # box at (0, 0) with all content in the first quadrant but some cropped
 # files may have an offset mediabox. We translate the page so that its
 # bottom left corner after rotation is pinned to (0, 0) with the image
 # in the first quadrant.
 if rotation == 0:
 tx, ty = -x1, -y1
 elif rotation == 90:
 tx, ty = y2, -x1
 elif rotation == 180:
 tx, ty = x2, y2
 elif rotation == 270:
 tx, ty = -y1, x2
 else:
 pass

 if rotation != 0:
 log.info("{0:4d}: rotating image layer {1} degrees".format(
 page_number(image), rotation))

 try:
 page_text.mergeRotatedScaledTranslatedPage(
 page_image, rotation, 1.0, tx, ty, expand=False)
 except (AttributeError, ValueError) as e:
 if 'writeToStream' in str(e) or 'invalid literal' in str(e):
 raise PdfMergeFailedError() from e

 pdf_output = pypdf.PdfFileWriter()
 pdf_output.addPage(page_text)

 # If the input was scaled, re-apply the scaling
 pageinfo = get_pageinfo(text, context)
 if pageinfo.userunit != 1:
 page_text[pypdf.generic.NameObject('/UserUnit')] = pageinfo.userunit
 pdf_output._header = b'%PDF-1.6' # Hack header to correct version

 with open(output_file, "wb") as out:
 pdf_output.write(out)

def ocr_tesseract_and_render_pdf(
 infiles,
 outfiles,
 log,
 context):
 options = context.get_options()
 input_image = next((ii for ii in infiles if ii.endswith('.image')), '')
 input_pdf = next((ii for ii in infiles if ii.endswith('.pdf')))
 output_pdf = next((ii for ii in outfiles if ii.endswith('.pdf')))
 output_text = next((ii for ii in outfiles if ii.endswith('.txt')))

 if not input_image:
 # Skipping this page
 re_symlink(input_pdf, output_pdf, log)
 with open(output_text, 'w') as f:
 f.write('[skipped page]')
 return

 tesseract.generate_pdf(
 input_image=input_image,
 skip_pdf=input_pdf,
 output_pdf=output_pdf,
 output_text=output_text,
 language=options.language,
 engine_mode=options.tesseract_oem,
 text_only=False,
 tessconfig=options.tesseract_config,
 timeout=options.tesseract_timeout,
 pagesegmode=options.tesseract_pagesegmode,
 user_words=options.user_words,
 user_patterns=options.user_patterns,
 log=log)

def ocr_tesseract_textonly_pdf(
 infiles,
 outfiles,
 log,
 context):
 options = context.get_options()
 input_image = next((ii for ii in infiles if ii.endswith('.ocr.png')), '')
 if not input_image:
 raise ValueError("No image rendered?")
 skip_pdf = next((ii for ii in infiles if ii.endswith('.pdf')))

 output_pdf = next((ii for ii in outfiles if ii.endswith('.pdf')))
 output_text = next((ii for ii in outfiles if ii.endswith('.txt')))

 tesseract.generate_pdf(
 input_image=input_image,
 skip_pdf=skip_pdf,
 output_pdf=output_pdf,
 output_text=output_text,
 language=options.language,
 engine_mode=options.tesseract_oem,
 text_only=True,
 tessconfig=options.tesseract_config,
 timeout=options.tesseract_timeout,
 pagesegmode=options.tesseract_pagesegmode,
 user_words=options.user_words,
 user_patterns=options.user_patterns,
 log=log)

def get_pdfmark(base_pdf, options):
 def from_document_info(key):
 # pdf.documentInfo.get() DOES NOT behave as expected for a dict-like
 # object, so call with precautions. TypeError may occur if the PDF
 # is missing the optional document info section.
 try:
 s = base_pdf.documentInfo[key]
 return str(s)
 except (KeyError, TypeError):
 return ''

 pdfmark = {
 '/Title': from_document_info('/Title'),
 '/Author': from_document_info('/Author'),
 '/Keywords': from_document_info('/Keywords'),
 '/Subject': from_document_info('/Subject'),
 }
 if options.title:
 pdfmark['/Title'] = options.title
 if options.author:
 pdfmark['/Author'] = options.author
 if options.keywords:
 pdfmark['/Keywords'] = options.keywords
 if options.subject:
 pdfmark['/Subject'] = options.subject

 if options.pdf_renderer == 'tesseract':
 renderer_tag = 'OCR+PDF'
 elif options.pdf_renderer == 'sandwich':
 renderer_tag = 'OCR-PDF'
 else:
 renderer_tag = 'OCR'

 pdfmark['/Creator'] = '{0} {1} / Tesseract {2} {3}'.format(
 PROGRAM_NAME, VERSION,
 renderer_tag,
 tesseract.version())
 return pdfmark

def generate_postscript_stub(
 input_file,
 output_file,
 log,
 context):
 options = context.get_options()
 pdf = pypdf.PdfFileReader(input_file)
 pdfmark = get_pdfmark(pdf, options)
 generate_pdfa_ps(output_file, pdfmark)

def skip_page(
 input_file,
 output_file,
 log,
 context):
 # The purpose of this step is its filter to forward only the skipped
 # files (.skip.oriented.pdf) while disregarding the processed ones
 # (.ocr.oriented.pdf). Alternative would be for merge_pages to filter
 # pages itself if it gets multiple copies of a page.
 re_symlink(input_file, output_file, log)

def _merge_pages_common(
 input_files_groups,
 output_file,
 log,
 context):
 """Determine ordered list of PDF pages to merge. Returns PDF from which
 metadata should be drawn if present (for qpdf)."""

 input_files = list(f for f in flatten_groups(input_files_groups)
 if not f.endswith('.txt'))
 metadata_file = next(
 (ii for ii in input_files if ii.endswith('.repaired.pdf')), None)
 if metadata_file in input_files:
 input_files.remove(metadata_file)

 def input_file_order(s):
 '''Sort order: All rendered pages followed
 by their debug page, if any, followed by Postscript stub.
 Ghostscript documentation has the Postscript stub at the
 beginning, but it works at the end and also gets document info
 right that way.'''
 if s.endswith('.ps'):
 return 99999999
 key = page_number(s) * 10
 if 'debug' in os.path.basename(s):
 key += 1
 return key

 pdf_pages = sorted(input_files, key=input_file_order)
 log.debug("Final pages: " + "\n".join(pdf_pages))

 return pdf_pages, metadata_file

def merge_pages_ghostscript(
 input_files_groups,
 output_file,
 log,
 context):
 options = context.get_options()
 pdf_pages, _ = _merge_pages_common(
 input_files_groups, output_file, log, context)
 input_pdfinfo = context.get_pdfinfo()
 ghostscript.generate_pdfa(
 pdf_version=input_pdfinfo.min_version,
 pdf_pages=pdf_pages,
 output_file=output_file + '_toc.pdf',
 compression=options.pdfa_image_compression,
 log=log,
 threads=options.jobs or 1,
 pdfa_part=('1' if options.output_type == 'pdfa-1' else '2'))
 if fitz:
 doc = fitz.Document(output_file + '_toc.pdf')
 doc.setToC(input_pdfinfo.table_of_contents)
 doc.save(output_file)
 else:
 os.replace(output_file + '_toc.pdf', output_file)

def merge_pages_qpdf(
 input_files_groups,
 output_file,
 log,
 context):
 options = context.get_options()
 pdf_pages, metadata_file = _merge_pages_common(
 input_files_groups, output_file, log, context)

 reader_metadata = pypdf.PdfFileReader(metadata_file)
 pdfmark = get_pdfmark(reader_metadata, options)
 pdfmark['/Producer'] = 'qpdf ' + qpdf.version()

 first_page = pypdf.PdfFileReader(pdf_pages[0])

 writer = pypdf.PdfFileWriter()
 # copy version from source
 writer._header = b'%PDF-' + _pdf_guess_version(pdf_pages[0])
 writer.appendPagesFromReader(first_page)
 writer.addMetadata(pdfmark)
 writer_file = pdf_pages[0].replace('.pdf', '.metadata.pdf')
 with open(writer_file, 'wb') as f:
 writer.write(f)

 pdf_pages[0] = writer_file

 qpdf.merge(input_files=pdf_pages, output_file=output_file,
 min_version=context.get_pdfinfo().min_version,
 log=log)

def merge_pages_mupdf(
 input_files_groups,
 output_file,
 log,
 context):
 assert fitz

 options = context.get_options()

 pdf_pages, metadata_file = _merge_pages_common(
 input_files_groups, output_file, log, context)

 doc = fitz.Document()

 reader_metadata = pypdf.PdfFileReader(metadata_file)
 pdfmark = get_pdfmark(reader_metadata, options)
 pdfmark['/Producer'] = 'PyMuPDF ' + fitz.version[0]
 pymupdf_metadata = {k[1:].lower() : v for k, v in pdfmark.items()}

 for pdf_page in pdf_pages:
 page = fitz.open(pdf_page)
 doc.insertPDF(page)

 metadata = fitz.open(metadata_file)
 toc = metadata.getToC(simple=False)
 doc.setToC(toc)
 doc.setMetadata(pymupdf_metadata)
 doc.save(output_file, garbage=4, deflate=True)

def merge_sidecars(
 input_files_groups,
 output_file,
 log,
 context):
 pdfinfo = context.get_pdfinfo()

 txt_files = [None] * len(pdfinfo)

 for infile in flatten_groups(input_files_groups):
 if infile.endswith('.txt'):
 idx = page_number(infile) - 1
 txt_files[idx] = infile

 def write_pages(stream):
 for page_num, txt_file in enumerate(txt_files):
 if page_num != 0:
 stream.write('\f') # Form feed between pages
 if txt_file:
 with open(txt_file, 'r', encoding="utf-8") as in_:
 txt = in_.read()
 # Tesseract v4 alpha started adding form feeds in
 # commit aa6eb6b
 # No obvious way to detect what binaries will do this, so
 # for consistency just ignore its form feeds and insert our
 # own
 if txt.endswith('\f'):
 stream.write(txt[:-1])
 else:
 stream.write(txt)
 else:
 stream.write('[OCR skipped on page {}]'.format(
 page_num + 1))

 if output_file == '-':
 write_pages(sys.stdout)
 sys.stdout.flush()
 else:
 with open(output_file, 'w', encoding="utf-8") as out:
 write_pages(out)

def copy_final(
 input_files,
 output_file,
 log,
 context):
 input_file = next((ii for ii in input_files if ii.endswith('.pdf')))

 with open(input_file, 'rb') as input_stream:
 if output_file == '-':
 copyfileobj(input_stream, sys.stdout.buffer)
 sys.stdout.flush()
 else:
 # At this point we overwrite the output_file specified by the user
 # use copyfileobj because then we use open() to create the file and
 # get the appropriate umask, ownership, etc.
 with open(output_file, 'wb') as output_stream:
 copyfileobj(input_stream, output_stream)

def build_pipeline(options, work_folder, log, context):
 main_pipeline = Pipeline.pipelines['main']

 # Triage
 task_triage = main_pipeline.transform(
 task_func=triage,
 input=os.path.join(work_folder, 'origin'),
 filter=formatter('(?i)'),
 output=os.path.join(work_folder, 'origin.pdf'),
 extras=[log, context])

 task_repair_and_parse_pdf = main_pipeline.transform(
 task_func=repair_and_parse_pdf,
 input=task_triage,
 filter=suffix('.pdf'),
 output='.repaired.pdf',
 output_dir=work_folder,
 extras=[log, context])

 # Split (kwargs for split seems to be broken, so pass plain args)
 task_pre_split_pages = main_pipeline.split(
 pre_split_pages,
 task_repair_and_parse_pdf,
 os.path.join(work_folder, '*.presplit.pdf'),
 extras=[log, context])

 task_split_pages = main_pipeline.transform(
 task_func=split_page,
 input=task_pre_split_pages,
 filter=suffix('.presplit.pdf'),
 output='.page.pdf',
 output_dir=work_folder,
 extras=[log, context])

 task_ocr_or_skip = main_pipeline.split(
 ocr_or_skip,
 task_split_pages,
 [os.path.join(work_folder, '*.ocr.page.pdf'),
 os.path.join(work_folder, '*.skip.page.pdf')],
 extras=[log, context])

 # Rasterize preview
 task_rasterize_preview = main_pipeline.transform(
 task_func=rasterize_preview,
 input=task_ocr_or_skip,
 filter=suffix('.page.pdf'),
 output='.preview.jpg',
 output_dir=work_folder,
 extras=[log, context])
 task_rasterize_preview.active_if(options.rotate_pages)

 # Orient
 task_orient_page = main_pipeline.collate(
 task_func=orient_page,
 input=[task_ocr_or_skip, task_rasterize_preview],
 filter=regex(r".*/(\d{6})(\.ocr|\.skip)(?:\.page\.pdf|\.preview\.jpg)"),
 output=os.path.join(work_folder, r'\1\2.oriented.pdf'),
 extras=[log, context])

 # Rasterize actual
 task_rasterize_with_ghostscript = main_pipeline.transform(
 task_func=rasterize_with_ghostscript,
 input=task_orient_page,
 filter=suffix('.ocr.oriented.pdf'),
 output='.page.png',
 output_dir=work_folder,
 extras=[log, context])

 # Preprocessing subpipeline
 task_preprocess_remove_background = main_pipeline.transform(
 task_func=preprocess_remove_background,
 input=task_rasterize_with_ghostscript,
 filter=suffix(".page.png"),
 output=".pp-background.png",
 extras=[log, context])

 task_preprocess_deskew = main_pipeline.transform(
 task_func=preprocess_deskew,
 input=task_preprocess_remove_background,
 filter=suffix(".pp-background.png"),
 output=".pp-deskew.png",
 extras=[log, context])

 task_preprocess_clean = main_pipeline.transform(
 task_func=preprocess_clean,
 input=task_preprocess_deskew,
 filter=suffix(".pp-deskew.png"),
 output=".pp-clean.png",
 extras=[log, context])

 task_select_ocr_image = main_pipeline.collate(
 task_func=select_ocr_image,
 input=[task_preprocess_clean],
 filter=regex(r".*/(\d{6})(?:\.page|\.pp-.*)\.png"),
 output=os.path.join(work_folder, r"\1.ocr.png"),
 extras=[log, context])

 # HOCR OCR
 task_ocr_tesseract_hocr = main_pipeline.transform(
 task_func=ocr_tesseract_hocr,
 input=task_select_ocr_image,
 filter=suffix(".ocr.png"),
 output=[".hocr", ".txt"],
 extras=[log, context])
 task_ocr_tesseract_hocr.graphviz(fillcolor='"#00cc66"')
 task_ocr_tesseract_hocr.active_if(options.pdf_renderer == 'hocr')

 task_select_visible_page_image = main_pipeline.collate(
 task_func=select_visible_page_image,
 input=[task_rasterize_with_ghostscript,
 task_preprocess_remove_background,
 task_preprocess_deskew,
 task_preprocess_clean],
 filter=regex(r".*/(\d{6})(?:\.page|\.pp-.*)\.png"),
 output=os.path.join(work_folder, r'\1.image'),
 extras=[log, context])
 task_select_visible_page_image.graphviz(shape='diamond')

 task_select_image_layer = main_pipeline.collate(
 task_func=select_image_layer,
 input=[task_select_visible_page_image, task_orient_page],
 filter=regex(r".*/(\d{6})(?:\.image|\.ocr\.oriented\.pdf)"),
 output=os.path.join(work_folder, r'\1.image-layer.pdf'),
 extras=[log, context])
 task_select_image_layer.graphviz(
 fillcolor='"#00cc66"', shape='diamond')
 task_select_image_layer.active_if(
 options.pdf_renderer == 'hocr' or options.pdf_renderer == 'sandwich')

 task_render_hocr_page = main_pipeline.transform(
 task_func=render_hocr_page,
 input=task_ocr_tesseract_hocr,
 filter=regex(r".*/(\d{6})(?:\.hocr)"),
 output=os.path.join(work_folder, r'\1.text.pdf'),
 extras=[log, context])
 task_render_hocr_page.graphviz(fillcolor='"#00cc66"')
 task_render_hocr_page.active_if(options.pdf_renderer == 'hocr')

 task_render_hocr_debug_page = main_pipeline.collate(
 task_func=render_hocr_debug_page,
 input=[task_select_visible_page_image, task_ocr_tesseract_hocr],
 filter=regex(r".*/(\d{6})(?:\.image|\.hocr)"),
 output=os.path.join(work_folder, r'\1.debug.pdf'),
 extras=[log, context])
 task_render_hocr_debug_page.graphviz(fillcolor='"#00cc66"')
 task_render_hocr_debug_page.active_if(options.pdf_renderer == 'hocr')
 task_render_hocr_debug_page.active_if(options.debug_rendering)

 # Tesseract OCR + text only PDF
 task_ocr_tesseract_textonly_pdf = main_pipeline.collate(
 task_func=ocr_tesseract_textonly_pdf,
 input=[task_select_ocr_image, task_orient_page],
 filter=regex(r".*/(\d{6})(?:\.ocr.png|\.ocr\.oriented\.pdf)"),
 output=[os.path.join(work_folder, r'\1.text.pdf'),
 os.path.join(work_folder, r'\1.text.txt')],
 extras=[log, context])
 task_ocr_tesseract_textonly_pdf.graphviz(fillcolor='"#ff69b4"')
 task_ocr_tesseract_textonly_pdf.active_if(options.pdf_renderer == 'sandwich')

 task_combine_layers = main_pipeline.collate(
 task_func=combine_layers,
 input=[task_render_hocr_page,
 task_ocr_tesseract_textonly_pdf,
 task_select_image_layer],
 filter=regex(r".*/(\d{6})(?:\.text\.pdf|\.image-layer\.pdf)"),
 output=os.path.join(work_folder, r'\1.rendered.pdf'),
 extras=[log, context])
 task_combine_layers.graphviz(fillcolor='"#00cc66"')
 task_combine_layers.active_if(options.pdf_renderer == 'hocr' or
 options.pdf_renderer == 'sandwich')

 # Tesseract OCR+PDF
 task_ocr_tesseract_and_render_pdf = main_pipeline.collate(
 task_func=ocr_tesseract_and_render_pdf,
 input=[task_select_visible_page_image, task_orient_page],
 filter=regex(r".*/(\d{6})(?:\.image|\.ocr\.oriented\.pdf)"),
 output=[os.path.join(work_folder, r'\1.rendered.pdf'),
 os.path.join(work_folder, r'\1.rendered.txt')],
 extras=[log, context])
 task_ocr_tesseract_and_render_pdf.graphviz(fillcolor='"#66ccff"')
 task_ocr_tesseract_and_render_pdf.active_if(options.pdf_renderer == 'tesseract')

 # PDF/A
 task_generate_postscript_stub = main_pipeline.transform(
 task_func=generate_postscript_stub,
 input=task_repair_and_parse_pdf,
 filter=formatter(r'\.repaired\.pdf'),
 output=os.path.join(work_folder, 'pdfa.ps'),
 extras=[log, context])
 task_generate_postscript_stub.active_if(options.output_type.startswith('pdfa'))

 # Bypass valve
 task_skip_page = main_pipeline.transform(
 task_func=skip_page,
 input=task_orient_page,
 filter=suffix('.skip.oriented.pdf'),
 output='.done.pdf',
 output_dir=work_folder,
 extras=[log, context])

 # Merge pages
 task_merge_pages_ghostscript = main_pipeline.merge(
 task_func=merge_pages_ghostscript,
 input=[task_combine_layers,
 task_render_hocr_debug_page,
 task_skip_page,
 task_ocr_tesseract_and_render_pdf,
 task_generate_postscript_stub],
 output=os.path.join(work_folder, 'merged.pdf'),
 extras=[log, context])
 task_merge_pages_ghostscript.active_if(
 options.output_type.startswith('pdfa'))

 task_merge_pages_qpdf = main_pipeline.merge(
 task_func=merge_pages_qpdf,
 input=[task_combine_layers,
 task_render_hocr_debug_page,
 task_skip_page,
 task_ocr_tesseract_and_render_pdf,
 task_repair_and_parse_pdf],
 output=os.path.join(work_folder, 'merged.pdf'),
 extras=[log, context])
 task_merge_pages_qpdf.active_if(
 options.output_type == 'pdf' and not fitz)

 task_merge_pages_mupdf = main_pipeline.merge(
 task_func=merge_pages_mupdf,
 input=[task_combine_layers,
 task_render_hocr_debug_page,
 task_skip_page,
 task_ocr_tesseract_and_render_pdf,
 task_repair_and_parse_pdf],
 output=os.path.join(work_folder, 'merged.pdf'),
 extras=[log, context])
 task_merge_pages_mupdf.active_if(
 options.output_type == 'pdf' and fitz)

 task_merge_sidecars = main_pipeline.merge(
 task_func=merge_sidecars,
 input=[task_ocr_tesseract_hocr,
 task_ocr_tesseract_and_render_pdf,
 task_ocr_tesseract_textonly_pdf],
 output=options.sidecar,
 extras=[log, context])
 task_merge_sidecars.active_if(options.sidecar)

 # Finalize
 main_pipeline.merge(
 task_func=copy_final,
 input=[task_merge_pages_ghostscript,
 task_merge_pages_mupdf,
 task_merge_pages_qpdf],
 output=options.output_file,
 extras=[log, context])

./usr/lib/python3/dist-packages/ocrmypdf-6.1.2.egg-info/PKG-INFO

Metadata-Version: 2.1
Name: ocrmypdf
Version: 6.1.2
Summary: OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched
Home-page: https://github.com/jbarlow83/OCRmyPDF
Author: James R. Barlow
Author-email: jim@purplerock.ca
License: UNKNOWN
Description: OCRmyPDF
 ========

 .. image:: https://travis-ci.org/jbarlow83/OCRmyPDF.svg?branch=master
 :target: https://travis-ci.org/jbarlow83/OCRmyPDF

 .. image:: https://img.shields.io/pypi/v/ocrmypdf.svg
 :target: https://pypi.org/project/ocrmypdf/

 .. image:: https://img.shields.io/homebrew/v/ocrmypdf.svg
 :alt: homebrew
 :target: http://brewformulas.org/Ocrmypdf

 OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to
 be searched or copy-pasted.

 .. code-block:: bash

 ocrmypdf # it's a scriptable command line program
 -l eng+fra # it supports multiple languages
 --rotate-pages # it can fix pages that are misrotated
 --deskew # it can deskew crooked PDFs!
 --title "My PDF" # it can change output metadata
 --jobs 4 # it uses multiple cores by default
 --output-type pdfa # it produces PDF/A by default
 input_scanned.pdf # takes PDF input (or images)
 output_searchable.pdf # produces validated PDF output

 Main features

 - Generates a searchable
 `PDF/A <https://en.wikipedia.org/?title=PDF/A>`_ file from a regular PDF
 - Places OCR text accurately below the image to ease copy / paste
 - Keeps the exact resolution of the original embedded images
 - When possible, inserts OCR information as a "lossless" operation without rendering vector information
 - Keeps file size about the same
 - If requested deskews and/or cleans the image before performing OCR
 - Validates input and output files
 - Provides debug mode to enable easy verification of the OCR results
 - Processes pages in parallel when more than one CPU core is
 available
 - Uses `Tesseract OCR <https://github.com/tesseract-ocr/tesseract>`_ engine
 - Supports more than `100 languages <https://github.com/tesseract-ocr/tessdata>`_ recognized by Tesseract
 - Battle-tested on thousands of PDFs, a test suite and continuous integration

 For details: please consult the `documentation <https://ocrmypdf.readthedocs.io/en/latest/>`_.

 Motivation

 I searched the web for a free command line tool to OCR PDF files on
 Linux/UNIX: I found many, but none of them were really satisfying.

 - Either they produced PDF files with misplaced text under the image (making copy/paste impossible)
 - Or they did not handle accents and multilingual characters
 - Or they changed the resolution of the embedded images
 - Or they generated ridiculously large PDF files
 - Or they crashed when trying to OCR some of my PDF files
 - Or they did not produce valid PDF files (even though they were readable with my current PDF reader)
 - On top of that none of them produced PDF/A files (format dedicated for long time storage)

 ...so I decided to develop my own tool (using various existing scripts
 as an inspiration).

 Installation

 Linux, UNIX, and macOS are supported. Windows is not directly supported but there is a Docker image available that runs on Windows.

 Users of Debian 9 or later or Ubuntu 16.10 or later may simply

 .. code-block:: bash

 apt-get install ocrmypdf

 and macOS users with Homebrew may simply

 .. code-block:: bash

 brew install ocrmypdf

 For everyone else, `see our documentation <https://ocrmypdf.readthedocs.io/en/latest/installation.html>`_ for installation steps.

 Languages

 OCRmyPDF uses Tesseract for OCR, and relies on its language packs. For Linux users,
 you can often find packages that provide language packs:

 .. code-block:: bash

 # Display a list of all Tesseract language packs
 apt-cache search tesseract-ocr

 # Debian/Ubuntu users
 apt-get install tesseract-ocr-chi-sim # Example: Install Chinese Simplified language back

 You can then pass the ``-l LANG`` argument to OCRmyPDF to give a hint as to what languages it should search for. Multiple
 languages can be requested.

 Documentation and support

 Once ocrmypdf is installed, the built-in help which explains the command syntax and options can be accessed via:

 .. code-block:: bash

 ocrmypdf --help

 Our `documentation is served on Read the Docs <https://ocrmypdf.readthedocs.io/en/latest/index.html>`_.

 If you detect an issue, please:

 - Check whether your issue is already known
 - If no problem report exists on github, please create one here:
 https://github.com/jbarlow83/OCRmyPDF/issues
 - Describe your problem thoroughly
 - Append the console output of the script when running the debug mode
 (``-v 1`` option)
 - If possible provide your input PDF file as well as the content of the
 temporary folder (using a file sharing service like Dropbox)

 Requirements

 Runs on CPython 3.6, and requires external program installations of Ghostscript, Tesseract OCR, QPDF, and Leptonica. ocrmypdf is pure Python, but uses CFFI to portably generate library bindings.

 Python 3.5 is also supported.

 Press & Media

 - `c't 1-2014, page 59 <http://heise.de/-2279695>`_:
 Detailed presentation of OCRmyPDF v1.0 in the leading German IT
 magazine c't
 - `heise Open Source, 09/2014: Texterkennung mit
 OCRmyPDF <http://heise.de/-2356670>`_

 License

 The OCRmyPDF software is licensed under the GNU GPLv3. Certain files are covered by other licenses, as noted in their source files.

 The license for each test file varies, and is noted in tests/resources/README.rst. The documentation is licensed under Creative Commons Attribution-ShareAlike 4.0 (CC-BY-SA 4.0).

 OCRmyPDF versions prior to 6.0 were licensed under the MIT License.

 Disclaimer

 The software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
 CONDITIONS OF ANY KIND, either express or implied.

Keywords: PDF,OCR,optical character recognition,PDF/A,scanning
Platform: UNKNOWN
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Console
Classifier: Intended Audience :: End Users/Desktop
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: System Administrators
Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
Classifier: Operating System :: MacOS :: MacOS X
Classifier: Operating System :: POSIX
Classifier: Operating System :: POSIX :: BSD
Classifier: Operating System :: POSIX :: Linux
Classifier: Topic :: Scientific/Engineering :: Image Recognition
Classifier: Topic :: Text Processing :: Indexing
Classifier: Topic :: Text Processing :: Linguistic
Requires-Python: >= 3.5
Provides-Extra: fitz

./usr/lib/python3/dist-packages/ocrmypdf-6.1.2.egg-info/dependency_links.txt

./usr/lib/python3/dist-packages/ocrmypdf-6.1.2.egg-info/entry_points.txt

[console_scripts]
ocrmypdf = ocrmypdf.__main__:run_pipeline

./usr/lib/python3/dist-packages/ocrmypdf-6.1.2.egg-info/not-zip-safe

./usr/lib/python3/dist-packages/ocrmypdf-6.1.2.egg-info/requires.txt

[fitz]
PyMuPDF>=1.12.5

./usr/lib/python3/dist-packages/ocrmypdf-6.1.2.egg-info/top_level.txt

ocrmypdf

./usr/share/doc/ocrmypdf/NEWS.Debian.gz

./usr/share/doc/ocrmypdf/NEWS.Debian

ocrmypdf (6.1.2-1) unstable; urgency=low

 The OCRMYPDF_TESSERACT, OCRMYPDF_QPDF, OCRMYPDF_GS and OCRMYPDF_UNPAPER
 environment variables are no longer respected. Use the PATH
 environment variable, or other means, to override the external
 programs OCRmyPDF uses.

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 31 Mar 2018 09:55:11 -0700

./usr/share/doc/ocrmypdf/README.Debian

PyMuPDF support
===============

The Debian packaged version of OCRmyPDF does not make use of PyMuPDF
because it has not yet been determined how to package PyMuPDF for
Debian.

When OCRmyPDF produces inferior output due to the lack of PyMuPDF, it
will print a warning.

 -- Sean Whitton <spwhitton@spwhitton.name>, Sat, 31 Mar 2018 09:52:02 -0700

./usr/share/doc/ocrmypdf/changelog.Debian.gz

./usr/share/doc/ocrmypdf/changelog.Debian

ocrmypdf (6.1.2-1ubuntu1) bionic; urgency=medium

 * XFAIL tests failing on big-endian architectures,
 see Debian bug #849094

 -- Graham Inggs <ginggs@ubuntu.com> Tue, 24 Apr 2018 21:49:47 +0000

ocrmypdf (6.1.2-1) unstable; urgency=low

 * New upstream release (Closes: #888917).
 * Various updates to d/copyright due to project relicensing and source
 tree rearrangement.
 - Additionally update upstream contact e-mail address.
 - Additionally use https for Format: field.
 * Add python3-defusedxml build-dep.
 * Drop python3-pytest-xdist autopkgtest dependency.
 * Drop SETUPTOOLS_SCM_PRETEND_VERSION hack from d/rules.
 Obsoleted by upstream changes.
 * Update override_dh_auto_build for source tree rearrangement.
 * Update d/tests/control for source tree rearrangement.
 * Add README.Debian about the lack of PyMuPDF support.
 * Add debian/NEWS to detail breaking changes in command line interface.
 Breaking changes in the ocrmypdf library are not detailed because
 ocrmypdf is not considered to provide a stable public API.
 * Expand reasoning in first bullet point of 5.5-2 changelog entry.
 * Patch setup.py to remove addopts key under tool:pytest section.
 The '-n' command line option is not supported by recent pytest.

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 31 Mar 2018 11:30:50 -0700

ocrmypdf (5.5-2) unstable; urgency=medium

 * Disable test suite at package build time.
 Rely on autopkgtest instead. The test suite now takes a prohibitively
 long time to run; upstream expects it to be run after OCRmyPDF is
 installed so running it during the build relies on fragile code in
 d/rules; and it requires a number of heavy build dependencies which
 makes it less convenient to build the package, and to backport the
 package to Debian stable.
 * Move test suite dependencies d/control -> d/tests/control.
 * Set PYBUILD_INSTALL_ARGS to pass --force to setup.py.
 This prevents the build from aborting because tools like unpaper, qpdf
 etc. are not installed. These programs are not actually needed to
 build the package.
 * Demote unpaper Depends -> Recommends.
 Upstream considers it to be optional.
 * Add --locale to help2man call in gen-man-page target.
 * Regenerate manpage.

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 27 Jan 2018 12:10:23 -0700

ocrmypdf (5.5-1) unstable; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 20 Jan 2018 12:22:12 -0700

ocrmypdf (5.4.4-1) unstable; urgency=medium

 * New upstream release.
 * Add new build-dep for test suite: python3-pytest-timeout.
 * Update sed(1) call in override_dh_auto_build for changes to __init__.py.
 * Update d/copyright.
 - Upstream have listed Julien Pfefferkorn in LICENSE.rst but the diff
 between upstream releases shows that he holds copyright on
 hocrtransform.py alone. Thus, he is not listed under "Files: *".
 * Declare compliance with Debian Policy 4.1.2.

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 16 Dec 2017 11:48:57 -0700

ocrmypdf (5.4-1) unstable; urgency=medium

 * New upstream release.
 * Drop Testsuite: field.
 See Lintian tag unnecessary-testsuite-autopkgtest-header.
 * Bump standards version to 4.1.1 (no changes required).

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 14 Oct 2017 10:46:45 -0700

ocrmypdf (5.3.2-1) unstable; urgency=medium

 * New upstream release (LP: #1687308).
 - New test suite dependencies: pytest-helpers-namespace; pytest-cov;
 pytest-xdist
 * d/rules:
 - update path to upstream's release notes
 - use $DEB_VERSION_UPSTREAM instead of dpkg-parsechangelog
 - export LC_ALL=C.UTF-8
 The upstream build (and especially test suite) now requires a
 Unicode locale.
 For general information: https://bugs.python.org/issue19846
 * d/copyright:
 - Drop stanza for OCRmyPDF.sh.
 No longer included in upstream's release.
 - Merge stanzas for James R. Barlow & "The OCRmyPDF Authors".
 - Add entries for poster.pdf, overlay.pdf, baiona*.png.
 - Add stanza for pdfa.py.
 - Bump copyright years.
 * Drop patch to test_main.py.
 * Backport upstream commit 82ebd8e to fix a failing test.
 * Bump standards version to 4.1.0 (no changes required).

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 01 Sep 2017 13:51:02 -0700

ocrmypdf (4.3.5-3) unstable; urgency=high

 * Backport upstream's workaround for Ghostscript 9.20 "VMerror (-25)"
 (upstream commit e71e8ca) (Closes: #861574).

 -- Sean Whitton <spwhitton@spwhitton.name> Sun, 30 Apr 2017 16:21:55 -0700

ocrmypdf (4.3.5-2) unstable; urgency=medium

 * Remove restriction on python3-pil build-dep & dep.
 OCRmyPDF works with both pillow 3.4.2 and pillow 4.0.0. The
 restriction was to avoid python3-pil 4.0.0-1 and 4.0.0-2, which are no
 longer in any Debian suite.

 -- Sean Whitton <spwhitton@spwhitton.name> Tue, 24 Jan 2017 11:50:32 -0700

ocrmypdf (4.3.5-1) unstable; urgency=medium

 * New upstream release.
 * Tighten python3-pil build-dep & dep to >= 4.0.0-3 (Closes: #851011).

 -- Sean Whitton <spwhitton@spwhitton.name> Wed, 11 Jan 2017 14:21:08 -0700

For older changelog entries, run 'apt-get changelog ocrmypdf'

./usr/share/doc/ocrmypdf/copyright

Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: OCRmyPDF
Upstream-Contact: James R. Barlow <barlow.jim@gmail.com>
Source: https://github.com/jbarlow83/OCRmyPDF
Files-Excluded: tests/resources/milk.pdf

Files: *
Copyright:
 (C) 2013-2017 The OCRmyPDF Authors
 (C) 2013-2016, 2015-2017 2016, 2017, 2017-2018, 2018 James R. Barlow
License: GPL-3+

Files: docs tests/resources/*
Copyright: (C) 2013-2018 James R. Barlow
License: CC-BY-SA-4.0

Files: src/ocrmypdf/hocrtransform.py
Copyright: (C) 2010 Jonathan Brinley <jonathanbrinley@gmail.com>
 (C) 2013-14 Julien Pfefferkorn
 (C) 2015-16 James R. Barlow
License: Expat

Files: src/ocrmypdf/pdfa.py
Copyright: (C) 2015 James R. Barlow
 (C) 1986-2017 The authors of GhostScript
License: GPL-3+

Files: src/ocrmypdf/_unicodefun.py
Copyright: (C) 2014 Armin Ronacher
 (C) 2017 James R. Barlow
License: BSD-3-clause

Files: tests/spoof/*
Copyright: (C) 2016, 2017, 2016-2018 James R. Barlow
License: Expat

Files: tests/resources/graph.pdf tests/resources/graph_ocred.pdf
Copyright: Public domain
License: public-domain
 Released into the public domain by author; see:
 <https://en.wikipedia.org/wiki/File:Pandas_text_analysis.png>.

Files: tests/resources/c02-22.pdf
 tests/resources/congress.jpg
 tests/resources/multipage.pdf
 tests/resources/palette.pdf
 tests/resources/jbig2.pdf
 tests/resources/encrypted_algo4.pdf
Copyright: Public domain
License: public-domain
 Copyright on these files has expired.

Files: tests/resources/LinnSequencer.jpg
 tests/resources/linn.pdf
 tests/resources/linn.txt
 tests/resources/ccitt.pdf
 tests/resources/cardinal.pdf
 tests/resources/skew.pdf
 tests/resources/rotated_skew.pdf
 tests/resources/skew-encrypted.pdf
 tests/resources/poster.pdf
Copyright: (C) 1985 Forat Electronics
License: GFDL-1.2+ or CC-BY-SA-3.0

Files: tests/resources/lichtenstein.pdf
Copyright: (C) 2001 Andreas Tille
 (C) 2007 Alessio Damato
License: GFDL-1.2+ or CC-BY-SA-3.0

Files: tests/resources/masks.pdf
Copyright: held by the contributors to the German Wikipedia article "Linux"
 see: https://de.wikipedia.org/w/index.php?title=Linux&action=history
 (masks.pdf generated from Wikipedia article as of 2016-08-24)
License: CC-BY-SA-3.0

Files: tests/resources/epson.pdf
Copyright: held by the contributors to the Wikipedia article "Optical character recognition"
 see: https://en.wikipedia.org/w/index.php?title=Optical_character_recognition&action=history
 (epson.pdf generated from Wikipedia article as of 2016-09-14)
License: CC-BY-SA-3.0

Files: tests/resources/typewriter.png tests/resources/2400dpi.pdf
Copyright: (C) 2005 Ellywa
License: GFDL-1.2+ or CC-BY-SA-1.0 or CC-BY-SA-2.0 or CC-BY-SA-2.5 or CC-BY-SA-3.0

Files: tests/resources/overlay.pdf
Copyright: (C) 2017 Max Anderson
License: Expat

Files: tests/resources/baiona*.png
Copyright: (C) 2014 Euskaldunaa
License: CC-BY-SA-4.0

Files: tests/resources/vector.pdf
Copyright: (C) 2018 Catscratch
License: Expat

Files: src/ocrmypdf/data/sRGB.icc
Copyright: Kai-Uwe Behrmann <www.behrmann.name>
 Marti Maria <www.littlecms.com>
 Photogamut <www.photogamut.org>
 Graeme Gill <www.argyllcms.com>
 ColorSolutions <www.basICColor.com>
License: Zlib

Files: debian/*
Copyright: (C) 2016 Sean Whitton <spwhitton@spwhitton.name>
License: GPL-3+

License: GPL-3+
 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or (at
 your option) any later version.
 .
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.
 .
 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>
 .
 On Debian systems, the complete text of the GNU General
 Public License version 3 can be found in "/usr/share/common-licenses/GPL-3".

License: Expat
 Permission is hereby granted, free of charge, to any person obtaining
 a copy of this software and associated documentation files (the
 "Software"), to deal in the Software without restriction, including
 without limitation the rights to use, copy, modify, merge, publish,
 distribute, sublicense, and/or sell copies of the Software, and to
 permit persons to whom the Software is furnished to do so, subject to
 the following conditions:
 .
 The above copyright notice and this permission notice shall be
 included in all copies or substantial portions of the Software.
 .
 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

License: GFDL-1.2+
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2 or
 any later version published by the Free Software Foundation; with no
 Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 .
 On Debian systems, the complete text of the GNU Free Documentation
 License version 1.2 can be found in
 "/usr/share/common-licenses/GFDL-1.2".

License: CC-BY-SA-1.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE IS PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. "Licensor" means the individual or entity that offers
 the Work under the terms of this License. "Original Author" means
 the individual or entity who created the Work. "Work" means the
 copyrightable work of authorship offered under the terms of this
 License. "You" means an individual or entity exercising rights
 under this License who has not previously violated the terms of
 this License with respect to the Work, or who has received express
 permission from the Licensor to exercise rights under this License
 despite a previous violation.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works;
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions. The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any reference to such Licensor or
 the Original Author, as requested. If You create a Derivative
 Work, upon notice from any Licensor You must, to the extent
 practicable, remove from the Derivative Work any reference to such
 Licensor or the Original Author, as requested. You may
 distribute, publicly display, publicly perform, or publicly
 digitally perform a Derivative Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of
 each Derivative Work You distribute, publicly display, publicly
 perform, or publicly digitally perform. You may not offer or
 impose any terms on the Derivative Works that alter or restrict
 the terms of this License or the recipients' exercise of the
 rights granted hereunder, and You must keep intact all notices
 that refer to this License and to the disclaimer of
 warranties. You may not distribute, publicly display, publicly
 perform, or publicly digitally perform the Derivative Work with
 any technological measures that control access or use of the Work
 in a manner inconsistent with the terms of this License
 Agreement. The above applies to the Derivative Work as
 incorporated in a Collective Work, but this does not require the
 Collective Work apart from the Derivative Work itself to be made
 subject to the terms of this License. If you distribute, publicly
 display, publicly perform, or publicly digitally perform the Work
 or any Derivative Works or Collective Works, You must keep intact
 all copyright notices for the Work and give the Original Author
 credit reasonable to the medium or means You are utilizing by
 conveying the name (or pseudonym if applicable) of the Original
 Author if supplied; the title of the Work if supplied; in the case
 of a Derivative Work, a credit identifying the use of the Work in
 the Derivative Work (e.g., "French translation of the Work by
 Original Author," or "Screenplay based on original Work by
 Original Author"). Such credit may be implemented in any
 reasonable manner; provided, however, that in the case of a
 Derivative Work or Collective Work, at a minimum such credit will
 appear where any other comparable authorship credit appears and in
 a manner at least as prominent as such other comparable authorship
 credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 By offering the Work for public release under this License,
 Licensor represents and warrants that, to the best of
 Licensor's knowledge after reasonable inquiry: Licensor has
 secured all rights in the Work necessary to grant the license
 rights hereunder and to permit the lawful exercise of the
 rights granted hereunder without You having any obligation to
 pay any royalties, compulsory license fees, residuals or any
 other payments; The Work does not infringe the copyright,
 trademark, publicity rights, common law rights or any other
 right of any third party or constitute defamation, invasion of
 privacy or other tortious injury to any third party. EXCEPT
 AS EXPRESSLY STATED IN THIS LICENSE OR OTHERWISE AGREED IN
 WRITING OR REQUIRED BY APPLICABLE LAW, THE WORK IS LICENSED ON
 AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER
 EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
 WARRANTIES REGARDING THE CONTENTS OR ACCURACY OF THE WORK.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, AND EXCEPT FOR DAMAGES ARISING FROM LIABILITY TO A
 THIRD PARTY RESULTING FROM BREACH OF THE WARRANTIES IN SECTION 5, IN
 NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
 SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
 ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR
 HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: CC-BY-SA-2.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. For the avoidance of doubt, where the Work is a musical
 composition or sound recording, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered
 a Derivative Work for the purpose of this License. "Licensor"
 means the individual or entity that offers the Work under the
 terms of this License. "Original Author" means the individual or
 entity who created the Work. "Work" means the copyrightable work
 of authorship offered under the terms of this License. "You"
 means an individual or entity exercising rights under this License
 who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from
 the Licensor to exercise rights under this License despite a
 previous violation. "License Elements" means the following
 high-level license attributes as selected by Licensor and
 indicated in the title of this License: Attribution, ShareAlike.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works.
 .
 For the avoidance of doubt, where the work is a musical
 composition: Performance Royalties Under Blanket
 Licenses. Licensor waives the exclusive right to collect,
 whether individually or via a performance rights society
 (e.g. ASCAP, BMI, SESAC), royalties for the public performance
 or public digital performance (e.g. webcast) of the Work.
 Mechanical Rights and Statutory Royalties. Licensor waives the
 exclusive right to collect, whether individually or via a
 music rights society or designated agent (e.g. Harry Fox
 Agency), royalties for any phonorecord You create from the
 Work ("cover version") and distribute, subject to the
 compulsory license created by 17 USC Section 115 of the US
 Copyright Act (or the equivalent in other jurisdictions).
 Webcasting Rights and Statutory Royalties. For the avoidance
 of doubt, where the Work is a sound recording, Licensor waives
 the exclusive right to collect, whether individually or via a
 performance-rights society (e.g. SoundExchange), royalties for
 the public digital performance (e.g. webcast) of the Work,
 subject to the compulsory license created by 17 USC Section
 114 of the US Copyright Act (or the equivalent in other
 jurisdictions).
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions.The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any reference to such Licensor or
 the Original Author, as requested. If You create a Derivative
 Work, upon notice from any Licensor You must, to the extent
 practicable, remove from the Derivative Work any reference to such
 Licensor or the Original Author, as requested. You may
 distribute, publicly display, publicly perform, or publicly
 digitally perform a Derivative Work only under the terms of this
 License, a later version of this License with the same License
 Elements as this License, or a Creative Commons iCommons license
 that contains the same License Elements as this License
 (e.g. Attribution-ShareAlike 2.0 Japan). You must include a copy
 of, or the Uniform Resource Identifier for, this License or other
 license specified in the previous sentence with every copy or
 phonorecord of each Derivative Work You distribute, publicly
 display, publicly perform, or publicly digitally perform. You may
 not offer or impose any terms on the Derivative Works that alter
 or restrict the terms of this License or the recipients' exercise
 of the rights granted hereunder, and You must keep intact all
 notices that refer to this License and to the disclaimer of
 warranties. You may not distribute, publicly display, publicly
 perform, or publicly digitally perform the Derivative Work with
 any technological measures that control access or use of the Work
 in a manner inconsistent with the terms of this License
 Agreement. The above applies to the Derivative Work as
 incorporated in a Collective Work, but this does not require the
 Collective Work apart from the Derivative Work itself to be made
 subject to the terms of this License. If you distribute, publicly
 display, publicly perform, or publicly digitally perform the Work
 or any Derivative Works or Collective Works, You must keep intact
 all copyright notices for the Work and give the Original Author
 credit reasonable to the medium or means You are utilizing by
 conveying the name (or pseudonym if applicable) of the Original
 Author if supplied; the title of the Work if supplied; to the
 extent reasonably practicable, the Uniform Resource Identifier, if
 any, that Licensor specifies to be associated with the Work,
 unless such URI does not refer to the copyright notice or
 licensing information for the Work; and in the case of a
 Derivative Work, a credit identifying the use of the Work in the
 Derivative Work (e.g., "French translation of the Work by Original
 Author," or "Screenplay based on original Work by Original
 Author"). Such credit may be implemented in any reasonable manner;
 provided, however, that in the case of a Derivative Work or
 Collective Work, at a minimum such credit will appear where any
 other comparable authorship credit appears and in a manner at
 least as prominent as such other comparable authorship credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS
 THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
 CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
 INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
 FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
 LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF
 ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
 THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
 TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: CC-BY-SA-2.5
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. For the avoidance of doubt, where the Work is a musical
 composition or sound recording, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered
 a Derivative Work for the purpose of this License. "Licensor"
 means the individual or entity that offers the Work under the
 terms of this License. "Original Author" means the individual or
 entity who created the Work. "Work" means the copyrightable work
 of authorship offered under the terms of this License. "You"
 means an individual or entity exercising rights under this License
 who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from
 the Licensor to exercise rights under this License despite a
 previous violation. "License Elements" means the following
 high-level license attributes as selected by Licensor and
 indicated in the title of this License: Attribution, ShareAlike.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works.
 .
 For the avoidance of doubt, where the work is a musical
 composition: Performance Royalties Under Blanket
 Licenses. Licensor waives the exclusive right to collect,
 whether individually or via a performance rights society
 (e.g. ASCAP, BMI, SESAC), royalties for the public performance
 or public digital performance (e.g. webcast) of the Work.
 Mechanical Rights and Statutory Royalties. Licensor waives the
 exclusive right to collect, whether individually or via a
 music rights society or designated agent (e.g. Harry Fox
 Agency), royalties for any phonorecord You create from the
 Work ("cover version") and distribute, subject to the
 compulsory license created by 17 USC Section 115 of the US
 Copyright Act (or the equivalent in other jurisdictions).
 Webcasting Rights and Statutory Royalties. For the avoidance
 of doubt, where the Work is a sound recording, Licensor waives
 the exclusive right to collect, whether individually or via a
 performance-rights society (e.g. SoundExchange), royalties for
 the public digital performance (e.g. webcast) of the Work,
 subject to the compulsory license created by 17 USC Section
 114 of the US Copyright Act (or the equivalent in other
 jurisdictions).
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions.The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any credit as required by clause
 4(c), as requested. If You create a Derivative Work, upon notice
 from any Licensor You must, to the extent practicable, remove from
 the Derivative Work any credit as required by clause 4(c), as
 requested. You may distribute, publicly display, publicly
 perform, or publicly digitally perform a Derivative Work only
 under the terms of this License, a later version of this License
 with the same License Elements as this License, or a Creative
 Commons iCommons license that contains the same License Elements
 as this License (e.g. Attribution-ShareAlike 2.5 Japan). You must
 include a copy of, or the Uniform Resource Identifier for, this
 License or other license specified in the previous sentence with
 every copy or phonorecord of each Derivative Work You distribute,
 publicly display, publicly perform, or publicly digitally
 perform. You may not offer or impose any terms on the Derivative
 Works that alter or restrict the terms of this License or the
 recipients' exercise of the rights granted hereunder, and You must
 keep intact all notices that refer to this License and to the
 disclaimer of warranties. You may not distribute, publicly
 display, publicly perform, or publicly digitally perform the
 Derivative Work with any technological measures that control
 access or use of the Work in a manner inconsistent with the terms
 of this License Agreement. The above applies to the Derivative
 Work as incorporated in a Collective Work, but this does not
 require the Collective Work apart from the Derivative Work itself
 to be made subject to the terms of this License. If you
 distribute, publicly display, publicly perform, or publicly
 digitally perform the Work or any Derivative Works or Collective
 Works, You must keep intact all copyright notices for the Work and
 provide, reasonable to the medium or means You are utilizing: (i)
 the name of the Original Author (or pseudonym, if applicable) if
 supplied, and/or (ii) if the Original Author and/or Licensor
 designate another party or parties (e.g. a sponsor institute,
 publishing entity, journal) for attribution in Licensor's
 copyright notice, terms of service or by other reasonable means,
 the name of such party or parties; the title of the Work if
 supplied; to the extent reasonably practicable, the Uniform
 Resource Identifier, if any, that Licensor specifies to be
 associated with the Work, unless such URI does not refer to the
 copyright notice or licensing information for the Work; and in the
 case of a Derivative Work, a credit identifying the use of the
 Work in the Derivative Work (e.g., "French translation of the Work
 by Original Author," or "Screenplay based on original Work by
 Original Author"). Such credit may be implemented in any
 reasonable manner; provided, however, that in the case of a
 Derivative Work or Collective Work, at a minimum such credit will
 appear where any other comparable authorship credit appears and in
 a manner at least as prominent as such other comparable authorship
 credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS
 THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
 CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
 INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
 FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
 LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF
 ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
 THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
 TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: CC-BY-SA-3.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
 LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
 THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH
 TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 a. "Adaptation" means a work based upon the Work, or upon the Work and
 other pre-existing works, such as a translation, adaptation,
 derivative work, arrangement of music or other alterations of a
 literary or artistic work, or phonogram or performance and includes
 cinematographic adaptations or any other form in which the Work may be
 recast, transformed, or adapted including in any form recognizably
 derived from the original, except that a work that constitutes a
 Collection will not be considered an Adaptation for the purpose of
 this License. For the avoidance of doubt, where the Work is a musical
 work, performance or phonogram, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered an
 Adaptation for the purpose of this License.
 .
 b. "Collection" means a collection of literary or artistic works, such
 as encyclopedias and anthologies, or performances, phonograms or
 broadcasts, or other works or subject matter other than works listed
 in Section 1(f) below, which, by reason of the selection and
 arrangement of their contents, constitute intellectual creations, in
 which the Work is included in its entirety in unmodified form along
 with one or more other contributions, each constituting separate and
 independent works in themselves, which together are assembled into a
 collective whole. A work that constitutes a Collection will not be
 considered an Adaptation (as defined below) for the purposes of this
 License.
 .
 c. "Creative Commons Compatible License" means a license that is
 listed at http://creativecommons.org/compatiblelicenses that has been
 approved by Creative Commons as being essentially equivalent to this
 License, including, at a minimum, because that license: (i) contains
 terms that have the same purpose, meaning and effect as the License
 Elements of this License; and, (ii) explicitly permits the relicensing
 of adaptations of works made available under that license under this
 License or a Creative Commons jurisdiction license with the same
 License Elements as this License.
 .
 d. "Distribute" means to make available to the public the original and
 copies of the Work or Adaptation, as appropriate, through sale or
 other transfer of ownership.
 .
 e. "License Elements" means the following high-level license
 attributes as selected by Licensor and indicated in the title of this
 License: Attribution, ShareAlike.
 .
 f. "Licensor" means the individual, individuals, entity or entities
 that offer(s) the Work under the terms of this License.
 .
 g. "Original Author" means, in the case of a literary or artistic
 work, the individual, individuals, entity or entities who created the
 Work or if no individual or entity can be identified, the publisher;
 and in addition (i) in the case of a performance the actors, singers,
 musicians, dancers, and other persons who act, sing, deliver, declaim,
 play in, interpret or otherwise perform literary or artistic works or
 expressions of folklore; (ii) in the case of a phonogram the producer
 being the person or legal entity who first fixes the sounds of a
 performance or other sounds; and, (iii) in the case of broadcasts, the
 organization that transmits the broadcast.
 .
 h. "Work" means the literary and/or artistic work offered under the
 terms of this License including without limitation any production in
 the literary, scientific and artistic domain, whatever may be the mode
 or form of its expression including digital form, such as a book,
 pamphlet and other writing; a lecture, address, sermon or other work
 of the same nature; a dramatic or dramatico-musical work; a
 choreographic work or entertainment in dumb show; a musical
 composition with or without words; a cinematographic work to which are
 assimilated works expressed by a process analogous to cinematography;
 a work of drawing, painting, architecture, sculpture, engraving or
 lithography; a photographic work to which are assimilated works
 expressed by a process analogous to photography; a work of applied
 art; an illustration, map, plan, sketch or three-dimensional work
 relative to geography, topography, architecture or science; a
 performance; a broadcast; a phonogram; a compilation of data to the
 extent it is protected as a copyrightable work; or a work performed by
 a variety or circus performer to the extent it is not otherwise
 considered a literary or artistic work.
 .
 i. "You" means an individual or entity exercising rights under this
 License who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from the
 Licensor to exercise rights under this License despite a previous
 violation.
 .
 j. "Publicly Perform" means to perform public recitations of the Work
 and to communicate to the public those public recitations, by any
 means or process, including by wire or wireless means or public
 digital performances; to make available to the public Works in such a
 way that members of the public may access these Works from a place and
 at a place individually chosen by them; to perform the Work to the
 public by any means or process and the communication to the public of
 the performances of the Work, including by public digital performance;
 to broadcast and rebroadcast the Work by any means including signs,
 sounds or images.
 .
 k. "Reproduce" means to make copies of the Work by any means including
 without limitation by sound or visual recordings and the right of
 fixation and reproducing fixations of the Work, including storage of a
 protected performance or phonogram in digital form or other electronic
 medium.
 .
 2. Fair Dealing Rights. Nothing in this License is intended to reduce,
 limit, or restrict any uses free from copyright or rights arising from
 limitations or exceptions that are provided for in connection with the
 copyright protection under copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 a. to Reproduce the Work, to incorporate the Work into one or more
 Collections, and to Reproduce the Work as incorporated in the
 Collections;
 .
 b. to create and Reproduce Adaptations provided that any such
 Adaptation, including any translation in any medium, takes reasonable
 steps to clearly label, demarcate or otherwise identify that changes
 were made to the original Work. For example, a translation could be
 marked "The original work was translated from English to Spanish," or
 a modification could indicate "The original work has been modified.";
 .
 c. to Distribute and Publicly Perform the Work including as
 incorporated in Collections; and,
 .
 d. to Distribute and Publicly Perform Adaptations.
 .
 e. For the avoidance of doubt:
 .
 i. Non-waivable Compulsory License Schemes. In those jurisdictions in
 which the right to collect royalties through any statutory or
 compulsory licensing scheme cannot be waived, the Licensor reserves
 the exclusive right to collect such royalties for any exercise by You
 of the rights granted under this License;
 .
 ii. Waivable Compulsory License Schemes. In those jurisdictions in
 which the right to collect royalties through any statutory or
 compulsory licensing scheme can be waived, the Licensor waives the
 exclusive right to collect such royalties for any exercise by You of
 the rights granted under this License; and,
 .
 iii. Voluntary License Schemes. The Licensor waives the right to
 collect royalties, whether individually or, in the event that the
 Licensor is a member of a collecting society that administers
 voluntary licensing schemes, via that society, from any exercise by
 You of the rights granted under this License.
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. Subject to Section 8(f), all rights not
 expressly granted by Licensor are hereby reserved.
 .
 4. Restrictions. The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 a. You may Distribute or Publicly Perform the Work only under the
 terms of this License. You must include a copy of, or the Uniform
 Resource Identifier (URI) for, this License with every copy of the
 Work You Distribute or Publicly Perform. You may not offer or impose
 any terms on the Work that restrict the terms of this License or the
 ability of the recipient of the Work to exercise the rights granted to
 that recipient under the terms of the License. You may not sublicense
 the Work. You must keep intact all notices that refer to this License
 and to the disclaimer of warranties with every copy of the Work You
 Distribute or Publicly Perform. When You Distribute or Publicly
 Perform the Work, You may not impose any effective technological
 measures on the Work that restrict the ability of a recipient of the
 Work from You to exercise the rights granted to that recipient under
 the terms of the License. This Section 4(a) applies to the Work as
 incorporated in a Collection, but this does not require the Collection
 apart from the Work itself to be made subject to the terms of this
 License. If You create a Collection, upon notice from any Licensor You
 must, to the extent practicable, remove from the Collection any credit
 as required by Section 4(c), as requested. If You create an
 Adaptation, upon notice from any Licensor You must, to the extent
 practicable, remove from the Adaptation any credit as required by
 Section 4(c), as requested.
 .
 b. You may Distribute or Publicly Perform an Adaptation only under the
 terms of: (i) this License; (ii) a later version of this License with
 the same License Elements as this License; (iii) a Creative Commons
 jurisdiction license (either this or a later license version) that
 contains the same License Elements as this License (e.g.,
 Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible
 License. If you license the Adaptation under one of the licenses
 mentioned in (iv), you must comply with the terms of that license. If
 you license the Adaptation under the terms of any of the licenses
 mentioned in (i), (ii) or (iii) (the "Applicable License"), you must
 comply with the terms of the Applicable License generally and the
 following provisions: (I) You must include a copy of, or the URI for,
 the Applicable License with every copy of each Adaptation You
 Distribute or Publicly Perform; (II) You may not offer or impose any
 terms on the Adaptation that restrict the terms of the Applicable
 License or the ability of the recipient of the Adaptation to exercise
 the rights granted to that recipient under the terms of the Applicable
 License; (III) You must keep intact all notices that refer to the
 Applicable License and to the disclaimer of warranties with every copy
 of the Work as included in the Adaptation You Distribute or Publicly
 Perform; (IV) when You Distribute or Publicly Perform the Adaptation,
 You may not impose any effective technological measures on the
 Adaptation that restrict the ability of a recipient of the Adaptation
 from You to exercise the rights granted to that recipient under the
 terms of the Applicable License. This Section 4(b) applies to the
 Adaptation as incorporated in a Collection, but this does not require
 the Collection apart from the Adaptation itself to be made subject to
 the terms of the Applicable License.
 .
 c. If You Distribute, or Publicly Perform the Work or any Adaptations
 or Collections, You must, unless a request has been made pursuant to
 Section 4(a), keep intact all copyright notices for the Work and
 provide, reasonable to the medium or means You are utilizing: (i) the
 name of the Original Author (or pseudonym, if applicable) if supplied,
 and/or if the Original Author and/or Licensor designate another party
 or parties (e.g., a sponsor institute, publishing entity, journal) for
 attribution ("Attribution Parties") in Licensor's copyright notice,
 terms of service or by other reasonable means, the name of such party
 or parties; (ii) the title of the Work if supplied; (iii) to the
 extent reasonably practicable, the URI, if any, that Licensor
 specifies to be associated with the Work, unless such URI does not
 refer to the copyright notice or licensing information for the Work;
 and (iv) , consistent with Ssection 3(b), in the case of an
 Adaptation, a credit identifying the use of the Work in the Adaptation
 (e.g., "French translation of the Work by Original Author," or
 "Screenplay based on original Work by Original Author"). The credit
 required by this Section 4(c) may be implemented in any reasonable
 manner; provided, however, that in the case of a Adaptation or
 Collection, at a minimum such credit will appear, if a credit for all
 contributing authors of the Adaptation or Collection appears, then as
 part of these credits and in a manner at least as prominent as the
 credits for the other contributing authors. For the avoidance of
 doubt, You may only use the credit required by this Section for the
 purpose of attribution in the manner set out above and, by exercising
 Your rights under this License, You may not implicitly or explicitly
 assert or imply any connection with, sponsorship or endorsement by the
 Original Author, Licensor and/or Attribution Parties, as appropriate,
 of You or Your use of the Work, without the separate, express prior
 written permission of the Original Author, Licensor and/or Attribution
 Parties.
 .
 d. Except as otherwise agreed in writing by the Licensor or as may be
 otherwise permitted by applicable law, if You Reproduce, Distribute or
 Publicly Perform the Work either by itself or as part of any
 Adaptations or Collections, You must not distort, mutilate, modify or
 take other derogatory action in relation to the Work which would be
 prejudicial to the Original Author's honor or reputation. Licensor
 agrees that in those jurisdictions (e.g. Japan), in which any exercise
 of the right granted in Section 3(b) of this License (the right to
 make Adaptations) would be deemed to be a distortion, mutilation,
 modification or other derogatory action prejudicial to the Original
 Author's honor and reputation, the Licensor will waive or not assert,
 as appropriate, this Section, to the fullest extent permitted by the
 applicable national law, to enable You to reasonably exercise Your
 right under Section 3(b) of this License (right to make Adaptations)
 but not otherwise.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
 LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
 WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
 STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
 TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
 NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
 OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
 DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
 WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 a. This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Adaptations or
 Collections from You under this License, however, will not have their
 licenses terminated provided such individuals or entities remain in
 full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8
 will survive any termination of this License.
 .
 b. Subject to the above terms and conditions, the license granted here
 is perpetual (for the duration of the applicable copyright in the
 Work). Notwithstanding the above, Licensor reserves the right to
 release the Work under different license terms or to stop distributing
 the Work at any time; provided, however that any such election will
 not serve to withdraw this License (or any other license that has
 been, or is required to be, granted under the terms of this License),
 and this License will continue in full force and effect unless
 terminated as stated above.
 .
 8. Miscellaneous
 .
 a. Each time You Distribute or Publicly Perform the Work or a
 Collection, the Licensor offers to the recipient a license to the Work
 on the same terms and conditions as the license granted to You under
 this License.
 .
 b. Each time You Distribute or Publicly Perform an Adaptation,
 Licensor offers to the recipient a license to the original Work on the
 same terms and conditions as the license granted to You under this
 License.
 .
 c. If any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability of
 the remainder of the terms of this License, and without further action
 by the parties to this agreement, such provision shall be reformed to
 the minimum extent necessary to make such provision valid and
 enforceable.
 .
 d. No term or provision of this License shall be deemed waived and no
 breach consented to unless such waiver or consent shall be in writing
 and signed by the party to be charged with such waiver or consent.
 .
 e. This License constitutes the entire agreement between the parties
 with respect to the Work licensed here. There are no understandings,
 agreements or representations with respect to the Work not specified
 here. Licensor shall not be bound by any additional provisions that
 may appear in any communication from You. This License may not be
 modified without the mutual written agreement of the Licensor and You.
 .
 f. The rights granted under, and the subject matter referenced, in
 this License were drafted utilizing the terminology of the Berne
 Convention for the Protection of Literary and Artistic Works (as
 amended on September 28, 1979), the Rome Convention of 1961, the WIPO
 Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty
 of 1996 and the Universal Copyright Convention (as revised on July 24,
 1971). These rights and subject matter take effect in the relevant
 jurisdiction in which the License terms are sought to be enforced
 according to the corresponding provisions of the implementation of
 those treaty provisions in the applicable national law. If the
 standard suite of rights granted under applicable copyright law
 includes additional rights not granted under this License, such
 additional rights are deemed to be included in the License; this
 License is not intended to restrict the license of any rights under
 applicable law.

License: Zlib
 The zlib/libpng License
 .
 This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.
 .
 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:
 .
 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
 .
 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
 .
 3. This notice may not be removed or altered from any source
 distribution.
 .
 NO WARRANTY
 .
 BECAUSE THE DATA IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
 FOR THE DATA, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
 OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
 PROVIDE THE DATA "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
 OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
 TO THE QUALITY AND PERFORMANCE OF THE DATA IS WITH YOU. SHOULD THE
 DATA PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
 REPAIR OR CORRECTION.
 .
 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
 WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
 REDISTRIBUTE THE DATA AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
 INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
 OUT OF THE USE OR INABILITY TO USE THE DATA (INCLUDING BUT NOT LIMITED
 TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
 YOU OR THIRD PARTIES OR A FAILURE OF THE DATA TO OPERATE WITH ANY OTHER
 PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGES.

License: CC-BY-SA-4.0
 By exercising the Licensed Rights (defined below), You accept and agree to be
 bound by the terms and conditions of this Creative Commons
 Attribution-ShareAlike 4.0 International Public License ("Public License"). To
 the extent this Public License may be interpreted as a contract, You are
 granted the Licensed Rights in consideration of Your acceptance of these terms
 and conditions, and the Licensor grants You such rights in consideration of
 benefits the Licensor receives from making the Licensed Material available
 under these terms and conditions.
 .
 Section 1 â�� Definitions.
 .
 a. Adapted Material means material subject to Copyright and Similar Rights
 that is derived from or based upon the Licensed Material and in which the
 Licensed Material is translated, altered, arranged, transformed, or
 otherwise modified in a manner requiring permission under the Copyright and
 Similar Rights held by the Licensor. For purposes of this Public License,
 where the Licensed Material is a musical work, performance, or sound
 recording, Adapted Material is always produced where the Licensed Material
 is synched in timed relation with a moving image.
 b. Adapter's License means the license You apply to Your Copyright and Similar
 Rights in Your contributions to Adapted Material in accordance with the
 terms and conditions of this Public License.
 c. BY-SA Compatible License means a license listed at creativecommons.org/
 compatiblelicenses, approved by Creative Commons as essentially the
 equivalent of this Public License.
 d. Copyright and Similar Rights means copyright and/or similar rights closely
 related to copyright including, without limitation, performance, broadcast,
 sound recording, and Sui Generis Database Rights, without regard to how the
 rights are labeled or categorized. For purposes of this Public License, the
 rights specified in Section 2(b)(1)-(2) are not Copyright and Similar
 Rights.
 e. Effective Technological Measures means those measures that, in the absence
 of proper authority, may not be circumvented under laws fulfilling
 obligations under Article 11 of the WIPO Copyright Treaty adopted on
 December 20, 1996, and/or similar international agreements.
 f. Exceptions and Limitations means fair use, fair dealing, and/or any other
 exception or limitation to Copyright and Similar Rights that applies to
 Your use of the Licensed Material.
 g. License Elements means the license attributes listed in the name of a
 Creative Commons Public License. The License Elements of this Public
 License are Attribution and ShareAlike.
 h. Licensed Material means the artistic or literary work, database, or other
 material to which the Licensor applied this Public License.
 i. Licensed Rights means the rights granted to You subject to the terms and
 conditions of this Public License, which are limited to all Copyright and
 Similar Rights that apply to Your use of the Licensed Material and that the
 Licensor has authority to license.
 j. Licensor means the individual(s) or entity(ies) granting rights under this
 Public License.
 k. Share means to provide material to the public by any means or process that
 requires permission under the Licensed Rights, such as reproduction, public
 display, public performance, distribution, dissemination, communication, or
 importation, and to make material available to the public including in ways
 that members of the public may access the material from a place and at a
 time individually chosen by them.
 l. Sui Generis Database Rights means rights other than copyright resulting
 from Directive 96/9/EC of the European Parliament and of the Council of 11
 March 1996 on the legal protection of databases, as amended and/or
 succeeded, as well as other essentially equivalent rights anywhere in the
 world.
 m. You means the individual or entity exercising the Licensed Rights under
 this Public License. Your has a corresponding meaning.
 .
 Section 2 â�� Scope.
 .
 a. License grant.
 1. Subject to the terms and conditions of this Public License, the
 Licensor hereby grants You a worldwide, royalty-free,
 non-sublicensable, non-exclusive, irrevocable license to exercise the
 Licensed Rights in the Licensed Material to:
 A. reproduce and Share the Licensed Material, in whole or in part; and
 B. produce, reproduce, and Share Adapted Material.
 2. Exceptions and Limitations. For the avoidance of doubt, where
 Exceptions and Limitations apply to Your use, this Public License does
 not apply, and You do not need to comply with its terms and conditions.
 3. Term. The term of this Public License is specified in Section 6(a).
 4. Media and formats; technical modifications allowed. The Licensor
 authorizes You to exercise the Licensed Rights in all media and formats
 whether now known or hereafter created, and to make technical
 modifications necessary to do so. The Licensor waives and/or agrees not
 to assert any right or authority to forbid You from making technical
 modifications necessary to exercise the Licensed Rights, including
 technical modifications necessary to circumvent Effective Technological
 Measures. For purposes of this Public License, simply making
 modifications authorized by this Section 2(a)(4) never produces Adapted
 Material.
 5. Downstream recipients.
 A. Offer from the Licensor â�� Licensed Material. Every recipient of the
 Licensed Material automatically receives an offer from the Licensor
 to exercise the Licensed Rights under the terms and conditions of
 this Public License.
 B. Additional offer from the Licensor â�� Adapted Material. Every
 recipient of Adapted Material from You automatically receives an
 offer from the Licensor to exercise the Licensed Rights in the
 Adapted Material under the conditions of the Adapterâ��s License You
 apply.
 C. No downstream restrictions. You may not offer or impose any
 additional or different terms or conditions on, or apply any
 Effective Technological Measures to, the Licensed Material if doing
 so restricts exercise of the Licensed Rights by any recipient of
 the Licensed Material.
 6. No endorsement. Nothing in this Public License constitutes or may be
 construed as permission to assert or imply that You are, or that Your
 use of the Licensed Material is, connected with, or sponsored,
 endorsed, or granted official status by, the Licensor or others
 designated to receive attribution as provided in Section 3(a)(1)(A)(i).
 b. Other rights.
 .
 1. Moral rights, such as the right of integrity, are not licensed under
 this Public License, nor are publicity, privacy, and/or other similar
 personality rights; however, to the extent possible, the Licensor
 waives and/or agrees not to assert any such rights held by the Licensor
 to the limited extent necessary to allow You to exercise the Licensed
 Rights, but not otherwise.
 2. Patent and trademark rights are not licensed under this Public License.
 3. To the extent possible, the Licensor waives any right to collect
 royalties from You for the exercise of the Licensed Rights, whether
 directly or through a collecting society under any voluntary or
 waivable statutory or compulsory licensing scheme. In all other cases
 the Licensor expressly reserves any right to collect such royalties.
 .
 Section 3 â�� License Conditions.
 .
 Your exercise of the Licensed Rights is expressly made subject to the following
 conditions.
 .
 a. Attribution.
 .
 1. If You Share the Licensed Material (including in modified form), You
 must:
 .
 A. retain the following if it is supplied by the Licensor with the
 Licensed Material:
 i. identification of the creator(s) of the Licensed Material and
 any others designated to receive attribution, in any reasonable
 manner requested by the Licensor (including by pseudonym if
 designated);
 ii. a copyright notice;
 iii. a notice that refers to this Public License;
 iv. a notice that refers to the disclaimer of warranties;
 v. a URI or hyperlink to the Licensed Material to the extent
 reasonably practicable;
 B. indicate if You modified the Licensed Material and retain an
 indication of any previous modifications; and
 C. indicate the Licensed Material is licensed under this Public
 License, and include the text of, or the URI or hyperlink to, this
 Public License.
 2. You may satisfy the conditions in Section 3(a)(1) in any reasonable
 manner based on the medium, means, and context in which You Share the
 Licensed Material. For example, it may be reasonable to satisfy the
 conditions by providing a URI or hyperlink to a resource that includes
 the required information.
 3. If requested by the Licensor, You must remove any of the information
 required by Section 3(a)(1)(A) to the extent reasonably practicable.
 b. ShareAlike.
 .
 In addition to the conditions in Section 3(a), if You Share Adapted
 Material You produce, the following conditions also apply.
 .
 1. The Adapterâ��s License You apply must be a Creative Commons license with
 the same License Elements, this version or later, or a BY-SA Compatible
 License.
 2. You must include the text of, or the URI or hyperlink to, the Adapter's
 License You apply. You may satisfy this condition in any reasonable
 manner based on the medium, means, and context in which You Share
 Adapted Material.
 3. You may not offer or impose any additional or different terms or
 conditions on, or apply any Effective Technological Measures to,
 Adapted Material that restrict exercise of the rights granted under the
 Adapter's License You apply.
 .
 Section 4 â�� Sui Generis Database Rights.
 .
 Where the Licensed Rights include Sui Generis Database Rights that apply to
 Your use of the Licensed Material:
 .
 a. for the avoidance of doubt, Section 2(a)(1) grants You the right to
 extract, reuse, reproduce, and Share all or a substantial portion of the
 contents of the database;
 b. if You include all or a substantial portion of the database contents in a
 database in which You have Sui Generis Database Rights, then the database
 in which You have Sui Generis Database Rights (but not its individual
 contents) is Adapted Material, including for purposes of Section 3(b); and
 c. You must comply with the conditions in Section 3(a) if You Share all or a
 substantial portion of the contents of the database.
 .
 For the avoidance of doubt, this Section 4 supplements and does not replace
 Your obligations under this Public License where the Licensed Rights include
 other Copyright and Similar Rights.
 .
 Section 5 â�� Disclaimer of Warranties and Limitation of Liability.
 .
 a. Unless otherwise separately undertaken by the Licensor, to the extent
 possible, the Licensor offers the Licensed Material as-is and as-available,
 and makes no representations or warranties of any kind concerning the
 Licensed Material, whether express, implied, statutory, or other. This
 includes, without limitation, warranties of title, merchantability, fitness
 for a particular purpose, non-infringement, absence of latent or other
 defects, accuracy, or the presence or absence of errors, whether or not
 known or discoverable. Where disclaimers of warranties are not allowed in
 full or in part, this disclaimer may not apply to You.
 b. To the extent possible, in no event will the Licensor be liable to You on
 any legal theory (including, without limitation, negligence) or otherwise
 for any direct, special, indirect, incidental, consequential, punitive,
 exemplary, or other losses, costs, expenses, or damages arising out of this
 Public License or use of the Licensed Material, even if the Licensor has
 been advised of the possibility of such losses, costs, expenses, or
 damages. Where a limitation of liability is not allowed in full or in part,
 this limitation may not apply to You.
 .
 c. The disclaimer of warranties and limitation of liability provided above
 shall be interpreted in a manner that, to the extent possible, most closely
 approximates an absolute disclaimer and waiver of all liability.
 .
 Section 6 â�� Term and Termination.
 .
 a. This Public License applies for the term of the Copyright and Similar
 Rights licensed here. However, if You fail to comply with this Public
 License, then Your rights under this Public License terminate
 automatically.
 b. Where Your right to use the Licensed Material has terminated under Section
 6(a), it reinstates:
 .
 1. automatically as of the date the violation is cured, provided it is
 cured within 30 days of Your discovery of the violation; or
 2. upon express reinstatement by the Licensor.
 For the avoidance of doubt, this Section 6(b) does not affect any right the
 Licensor may have to seek remedies for Your violations of this Public
 License.
 c. For the avoidance of doubt, the Licensor may also offer the Licensed
 Material under separate terms or conditions or stop distributing the
 Licensed Material at any time; however, doing so will not terminate this
 Public License.
 d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.
 .
 Section 7 â�� Other Terms and Conditions.
 .
 a. The Licensor shall not be bound by any additional or different terms or
 conditions communicated by You unless expressly agreed.
 b. Any arrangements, understandings, or agreements regarding the Licensed
 Material not stated herein are separate from and independent of the terms
 and conditions of this Public License.
 .
 Section 8 â�� Interpretation.
 .
 a. For the avoidance of doubt, this Public License does not, and shall not be
 interpreted to, reduce, limit, restrict, or impose conditions on any use of
 the Licensed Material that could lawfully be made without permission under
 this Public License.
 b. To the extent possible, if any provision of this Public License is deemed
 unenforceable, it shall be automatically reformed to the minimum extent
 necessary to make it enforceable. If the provision cannot be reformed, it
 shall be severed from this Public License without affecting the
 enforceability of the remaining terms and conditions.
 c. No term or condition of this Public License will be waived and no failure
 to comply consented to unless expressly agreed to by the Licensor.
 d. Nothing in this Public License constitutes or may be interpreted as a
 limitation upon, or waiver of, any privileges and immunities that apply to
 the Licensor or You, including from the legal processes of any jurisdiction
 or authority.

License: BSD-3-clause
 Some rights reserved.
 .
 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are
 met:
 .
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 .
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.
 .
 * The names of the contributors may not be used to endorse or
 promote products derived from this software without specific
 prior written permission.
 .
 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

./usr/share/man/man1/ocrmypdf.1.gz

./usr/share/man/man1/ocrmypdf.1

.\" DO NOT MODIFY THIS FILE! It was generated by help2man 1.47.6.
.TH OCRMYPDF "1" "March 2018" "ocrmypdf 6.1.2" "User Commands"
.SH NAME
ocrmypdf \- add an OCR text layer to PDF files
.SH DESCRIPTION
usage: ocrmypdf [\-h] [\-l LANGUAGE] [\-\-image\-dpi DPI]
.IP
[\-\-output\-type {pdfa,pdf,pdfa\-1,pdfa\-2}] [\-\-sidecar [FILE]]
[\-\-version] [\-j N] [\-q] [\-v [VERBOSE]] [\-\-title TITLE]
[\-\-author AUTHOR] [\-\-subject SUBJECT] [\-\-keywords KEYWORDS]
[\-r] [\-\-remove\-background] [\-d] [\-c] [\-i] [\-\-oversample DPI]
[\-f] [\-s] [\-\-skip\-big MPixels] [\-\-max\-image\-mpixels MPixels]
[\-\-tesseract\-config CFG] [\-\-tesseract\-pagesegmode PSM]
[\-\-tesseract\-oem MODE]
[\-\-pdf\-renderer {auto,tesseract,hocr,sandwich}]
[\-\-tesseract\-timeout SECONDS]
[\-\-rotate\-pages\-threshold CONFIDENCE]
[\-\-pdfa\-image\-compression {auto,jpeg,lossless}]
[\-\-user\-words FILE] [\-\-user\-patterns FILE] [\-\-skip\-repair]
[\-k] [\-g] [\-\-flowchart FLOWCHART]
input_pdf_or_image output_pdf
.PP
Generates a searchable PDF or PDF/A from a regular PDF.
.PP
OCRmyPDF rasterizes each page of the input PDF, optionally corrects page
rotation and performs image processing, runs the Tesseract OCR engine on the
image, and then creates a PDF from the OCR information.
.SS "positional arguments:"
.TP
input_pdf_or_image
PDF file containing the images to be OCRed (or '\-' to
read from standard input)
.TP
output_pdf
Output searchable PDF file (or '\-' to write to
standard output). Existing files will be ovewritten.
If same as input file, the input file will be updated
only if processing is successful.
.SS "optional arguments:"
.TP
\fB\-h\fR, \fB\-\-help\fR
show this help message and exit
.TP
\fB\-l\fR LANGUAGE, \fB\-\-language\fR LANGUAGE
Language(s) of the file to be OCRed (see tesseract
\fB\-\-list\-langs\fR for all language packs installed in your
system). Use \fB\-l\fR eng+deu for multiple languages.
.TP
\fB\-\-image\-dpi\fR DPI
For input image instead of PDF, use this DPI instead
of file's.
.TP
\fB\-\-output\-type\fR {pdfa,pdf,pdfa\-1,pdfa\-2}
Choose output type. 'pdfa' creates a PDF/A\-2b
compliant file for long term archiving (default,
recommended) but may not suitable for users who want
their file altered as little as possible. 'pdfa' also
has problems with full Unicode text. 'pdf' attempts to
preserve file contents as much as possible. 'pdf\-a1'
creates a PDF/A1\-b file. 'pdf\-a2' is equivalent to
\&'pdfa'.
.TP
\fB\-\-sidecar\fR [FILE]
Generate sidecar text files that contain the same text
recognized by Tesseract. This may be useful for
building a OCR text database. If FILE is omitted, the
sidecar file be named {output_file}.txt If FILE is set
to '\-', the sidecar is written to stdout (a convenient
way to preview OCR quality). The output file and
sidecar may not both use stdout at the same time.
.TP
\fB\-\-version\fR
Print program version and exit
.SS "Job control options:"
.TP
\fB\-j\fR N, \fB\-\-jobs\fR N
Use up to N CPU cores simultaneously (default: use
all).
.TP
\fB\-q\fR, \fB\-\-quiet\fR
Suppress INFO messages
.TP
\fB\-v\fR [VERBOSE], \fB\-\-verbose\fR [VERBOSE]
Print more verbose messages for each additional
verbose level
.SS "Metadata options:"
.IP
Set output PDF/A metadata (default: copy input document's metadata)
.TP
\fB\-\-title\fR TITLE
Set document title (place multiple words in quotes)
.TP
\fB\-\-author\fR AUTHOR
Set document author
.TP
\fB\-\-subject\fR SUBJECT
Set document subject description
.TP
\fB\-\-keywords\fR KEYWORDS
Set document keywords
.SS "Image preprocessing options:"
.IP
Options to improve the quality of the final PDF and OCR
.TP
\fB\-r\fR, \fB\-\-rotate\-pages\fR
Automatically rotate pages based on detected text
orientation
.TP
\fB\-\-remove\-background\fR
Attempt to remove background from gray or color pages,
setting it to white
.TP
\fB\-d\fR, \fB\-\-deskew\fR
Deskew each page before performing OCR
.TP
\fB\-c\fR, \fB\-\-clean\fR
Clean pages from scanning artifacts before performing
OCR, and send the cleaned page to OCR, but do not
include the cleaned page in the output
.TP
\fB\-i\fR, \fB\-\-clean\-final\fR
Clean page as above, and incorporate the cleaned image
in the final PDF. Might remove desired content.
.TP
\fB\-\-oversample\fR DPI
Oversample images to at least the specified DPI, to
improve OCR results slightly
.SS "OCR options:"
.IP
Control how OCR is applied
.TP
\fB\-f\fR, \fB\-\-force\-ocr\fR
Rasterize any fonts or vector objects on each page,
apply OCR, and save the rastered output (this rewrites
the PDF)
.TP
\fB\-s\fR, \fB\-\-skip\-text\fR
Skip OCR on any pages that already contain text, but
include the page in final output; useful for PDFs that
contain a mix of images, text pages, and/or previously
OCRed pages
.TP
\fB\-\-skip\-big\fR MPixels
Skip OCR on pages larger than the specified amount of
megapixels, but include skipped pages in final output
.SS "Advanced:"
.IP
Advanced options to control Tesseract's OCR behavior
.TP
\fB\-\-max\-image\-mpixels\fR MPixels
Set maximum number of pixels to unpack before treating
an image as a decompression bomb
.TP
\fB\-\-tesseract\-config\fR CFG
Additional Tesseract configuration files \fB\-\-\fR see
documentation
.TP
\fB\-\-tesseract\-pagesegmode\fR PSM
Set Tesseract page segmentation mode (see tesseract
\fB\-\-help\fR)
.TP
\fB\-\-tesseract\-oem\fR MODE
Set Tesseract 4.0 OCR engine mode: 0 \- original
Tesseract only; 1 \- neural nets LSTM only; 2 \-
Tesseract + LSTM; 3 \- default.
.TP
\fB\-\-pdf\-renderer\fR {auto,tesseract,hocr,sandwich}
Choose OCR PDF renderer \- the default option is to let
OCRmyPDF choose.auto \- let OCRmyPDF choose; sandwich \-
default renderer for Tesseract 3.05.01 and newer; hocr
\- default renderer for older versions of Tesseract;
tesseract \- gives better results for non\-Latin
languages and Tesseract older than 3.05.01 but has
problems with some versions of Ghostscript; deprecated
.TP
\fB\-\-tesseract\-timeout\fR SECONDS
Give up on OCR after the timeout, but copy the
preprocessed page into the final output
.TP
\fB\-\-rotate\-pages\-threshold\fR CONFIDENCE
Only rotate pages when confidence is above this value
(arbitrary units reported by tesseract)
.TP
\fB\-\-pdfa\-image\-compression\fR {auto,jpeg,lossless}
Specify how to compress images in the output PDF/A.
\&'auto' lets OCRmyPDF decide. 'jpeg' changes all
grayscale and color images to JPEG compression.
\&'lossless' uses PNG\-style lossless compression for all
images. Monochrome images are always compressed using
a lossless codec. Compression settings are applied to
all pages, including those for which OCR was skipped.
Not supported for \fB\-\-output\-type\fR=\fI\,pdf\/\fR ; that setting
preserves the original compression of all images.
.TP
\fB\-\-user\-words\fR FILE
Specify the location of the Tesseract user words file.
This is a list of words Tesseract should consider
while performing OCR in addition to its standard
language dictionaries. This can improve OCR quality
especially for specialized and technical documents.
.TP
\fB\-\-user\-patterns\fR FILE
Specify the location of the Tesseract user patterns
file.
.TP
\fB\-\-skip\-repair\fR
Normally OCRmyPDF automatically repairs PDFs using
qpdf before processing. If you have already run qpdf
or a similar program that repairs PDF errors, you can
tell OCRmyPDF to skip repair with this option. This
may be helpful in batch processing where all files are
repaired prior to OCR occurs, since repair is single
threaded and time consuming for large files.
.SS "Debugging:"
.IP
Arguments to help with troubleshooting and debugging
.TP
\fB\-k\fR, \fB\-\-keep\-temporary\-files\fR
Keep temporary files (helpful for debugging)
.TP
\fB\-g\fR, \fB\-\-debug\-rendering\fR
Render each page twice with debug information on
second page
.TP
\fB\-\-flowchart\fR FLOWCHART
Generate the pipeline execution flowchart
.PP
OCRmyPDF attempts to keep the output file at about the same size. If a file
contains losslessly compressed images, and output file will be losslessly
compressed as well.
.PP
PDF is a page description file that attempts to preserve a layout exactly.
A PDF can contain vector objects (such as text or lines) and raster objects
(images). A page might have multiple images. OCRmyPDF is prepared to deal
with the wide variety of PDFs that exist in the wild.
.PP
When a PDF page contains text, OCRmyPDF assumes that the page has already
been OCRed or is a "born digital" page that should not be OCRed. The default
behavior is to exit in this case without producing a file. You can use the
option \fB\-\-skip\-text\fR to ignore pages with text, or \fB\-\-force\-ocr\fR to rasterize
all objects on the page and produce an image\-only PDF as output.
.IP
ocrmypdf \fB\-\-skip\-text\fR file_with_some_text_pages.pdf output.pdf
.IP
ocrmypdf \fB\-\-force\-ocr\fR word_document.pdf output.pdf
.PP
If you are concerned about long\-term archiving of PDFs, use the default option
\fB\-\-output\-type\fR pdfa which converts the PDF to a standardized PDF/A\-2b. This
converts images to sRGB colorspace, removes some features from the PDF such
as Javascript or forms. If you want to minimize the number of changes made to
your PDF, use \fB\-\-output\-type\fR pdf.
.PP
If OCRmyPDF is given an image file as input, it will attempt to convert the
image to a PDF before processing. For more control over the conversion of
images to PDF, use img2pdf, or other image to PDF software.
.PP
For example, this command uses img2pdf to convert all .png files beginning
with the 'page' prefix to a PDF, fitting each image on A4\-sized paper, and
sending the result to OCRmyPDF through a pipe.
.IP
img2pdf \fB\-\-pagesize\fR A4 page*.png | ocrmypdf \- myfile.pdf
.SS "HTML documentation is located at:"
.IP
\fI\,/usr/share/doc/ocrmypdf/html/index.html\/\fP
.PP
after installing the ocrmypdf\-doc package.

./usr/lib/python3/dist-packages/ocrmypdf/data/sRGB.icc

