
debian-binary
2.0

control.tar.xz
control.tar

./control

Package: ocrmypdf
Version: 9.6.0+dfsg-1
Architecture: all
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Original-Maintainer: Sean Whitton <spwhitton@spwhitton.name>
Installed-Size: 518
Depends: ghostscript (>= 9.18~dfsg~), icc-profiles-free, liblept5, python3-pdfminer (>= 20181108+dfsg-3), python3-pil, python3-pkg-resources, python3-reportlab, tesseract-ocr (>= 4.0.0), zlib1g, python3-cffi-backend-api-min (<= 9729), python3-cffi-backend-api-max (>= 9729), python3-chardet, python3-img2pdf (>= 0.3.0), python3-pikepdf (>= 1.7.0), python3-tqdm, python3:any
Recommends: unpaper, pngquant
Suggests: ocrmypdf-doc, python-watchdog, img2pdf
Section: graphics
Priority: optional
Homepage: https://github.com/jbarlow83/OCRmyPDF
Description: add an OCR text layer to PDF files
 OCRmyPDF generates a searchable PDF/A file from a regular PDF
 containing only images, allowing it to be searched.
 .
 It uses the Tesseract OCR engine and so supports all the languages
 that Tesseract does.
 .
 Some other main features:
 .
 * Places OCR text accurately below the image to ease copy / paste
 * Keeps the exact resolution of the original embedded images
 * When possible, inserts OCR information as a lossless operation
 without rendering vector information
 * Keeps file size about the same
 * If requested deskews and/or cleans the image before performing OCR
 * Validates input and output files
 * Provides debug mode to enable easy verification of the OCR results
 * Processes pages in parallel when more than one CPU core is
 available
 * Battle-tested on thousands of PDFs, a test suite and continuous
 integration.

./md5sums

a50cc1a1a2997cacd9d8856a87f8a927 usr/bin/ocrmypdf
0fb08c5e4094f3bfac59c62abe9e281b usr/lib/python3/dist-packages/ocrmypdf-9.6.0+dfsg.egg-info/PKG-INFO
68b329da9893e34099c7d8ad5cb9c940 usr/lib/python3/dist-packages/ocrmypdf-9.6.0+dfsg.egg-info/dependency_links.txt
c475a84ce35eb33ea93efeaca5a5f9d6 usr/lib/python3/dist-packages/ocrmypdf-9.6.0+dfsg.egg-info/entry_points.txt
68b329da9893e34099c7d8ad5cb9c940 usr/lib/python3/dist-packages/ocrmypdf-9.6.0+dfsg.egg-info/not-zip-safe
d41d8cd98f00b204e9800998ecf8427e usr/lib/python3/dist-packages/ocrmypdf-9.6.0+dfsg.egg-info/requires.txt
2c6b333333bc69d346c5657fc87ade9d usr/lib/python3/dist-packages/ocrmypdf-9.6.0+dfsg.egg-info/top_level.txt
076e7ba103450aaabf9791a85c1e1628 usr/lib/python3/dist-packages/ocrmypdf/__init__.py
7ed48e7b42b054465f6530f85fb8af06 usr/lib/python3/dist-packages/ocrmypdf/__main__.py
856adbdd794921e73a63e7a919cde38e usr/lib/python3/dist-packages/ocrmypdf/_graft.py
cecbfb5aee6c13a522ab6ef82ca3c8b8 usr/lib/python3/dist-packages/ocrmypdf/_jobcontext.py
8fe4a8f265d4dbdd26519ec28eaa40ae usr/lib/python3/dist-packages/ocrmypdf/_pipeline.py
a192a883e12f6e582b8b9575d0ed4fc2 usr/lib/python3/dist-packages/ocrmypdf/_sync.py
6252b751411774bc879f61ff9e5ee1ac usr/lib/python3/dist-packages/ocrmypdf/_unicodefun.py
6f8e52c8cb1bb966d7cfdb82c61f7546 usr/lib/python3/dist-packages/ocrmypdf/_validation.py
307987fbed91361adb682c0b2334e4bc usr/lib/python3/dist-packages/ocrmypdf/_version.py
a4f04626d22131389f333d27eba5dfef usr/lib/python3/dist-packages/ocrmypdf/api.py
6a6c480452357b80139a0ed61fb2ced5 usr/lib/python3/dist-packages/ocrmypdf/cli.py
43e79014ccc5ffc724973c0c562a4994 usr/lib/python3/dist-packages/ocrmypdf/exceptions.py
e9d36dd358a3d936ab0186b48068d94c usr/lib/python3/dist-packages/ocrmypdf/exec/__init__.py
cb26fce2a392e319676af45ea47e60f3 usr/lib/python3/dist-packages/ocrmypdf/exec/ghostscript.py
4b392fd6e68719cacad054d274d7bde6 usr/lib/python3/dist-packages/ocrmypdf/exec/jbig2enc.py
6fdf4ad3b3acb4e6f567f331b4c2a1b8 usr/lib/python3/dist-packages/ocrmypdf/exec/pngquant.py
64eee65dac0317a338244036932b0092 usr/lib/python3/dist-packages/ocrmypdf/exec/qpdf.py
9dd071b917e19482028d6b69e3f44efc usr/lib/python3/dist-packages/ocrmypdf/exec/tesseract.py
3359d03e1797606eb00aa7ba8721781f usr/lib/python3/dist-packages/ocrmypdf/exec/unpaper.py
a76bc380440ec48752df6104a9f4bfa4 usr/lib/python3/dist-packages/ocrmypdf/helpers.py
e90210180089cc3f7b60325174cd9145 usr/lib/python3/dist-packages/ocrmypdf/hocrtransform.py
898ebc1c93dfeca20c4a07e2d17dc7dd usr/lib/python3/dist-packages/ocrmypdf/leptonica.py
5dc1cdaf34bc5567389f9b106df3304a usr/lib/python3/dist-packages/ocrmypdf/lib/__init__.py
64ef9efc685591fdbb39a7e312959095 usr/lib/python3/dist-packages/ocrmypdf/lib/_leptonica.py
2dc7cc3db0ab1c28f028f1b3bc78835d usr/lib/python3/dist-packages/ocrmypdf/lib/compile_leptonica.py
0ccfec27d1f4f5c4928f3972f8363401 usr/lib/python3/dist-packages/ocrmypdf/optimize.py
2f83b5895192df2e06bb57a754d9f325 usr/lib/python3/dist-packages/ocrmypdf/pdfa.py
d78f0c92e9c3bdf830671de3f3c456db usr/lib/python3/dist-packages/ocrmypdf/pdfinfo/__init__.py
681c9812a6e7919a04e2870e300eaf6a usr/lib/python3/dist-packages/ocrmypdf/pdfinfo/ghosttext.py
71ac00ff60b320a613a2800c38375fc7 usr/lib/python3/dist-packages/ocrmypdf/pdfinfo/info.py
115f34d5a3ae92effd327aa35618890f usr/lib/python3/dist-packages/ocrmypdf/pdfinfo/layout.py
25001e1ddbbf2ab5fa83ba37b688383e usr/lib/python3/dist-packages/ocrmypdf/quality.py
974d7460cc3004737e76ef2de48e281a usr/share/bash-completion/completions/ocrmypdf
679264e2c4ea7107b8db1e86f2b32265 usr/share/doc/ocrmypdf/NEWS.Debian.gz
698afa6350cda7f266f5f24a538db8ff usr/share/doc/ocrmypdf/changelog.Debian.gz
aa7c015703b439a567b8fa5f8227bd92 usr/share/doc/ocrmypdf/copyright
10ca233ad28fc030b64525c27e631df7 usr/share/fish/completions/ocrmypdf.fish
42222049857e1610b25170088cb42a8c usr/share/man/man1/ocrmypdf.1.gz

./postinst

#!/bin/sh
set -e

Automatically added by dh_python3
if which py3compile >/dev/null 2>&1; then
	py3compile -p ocrmypdf
fi
if which pypy3compile >/dev/null 2>&1; then
	pypy3compile -p ocrmypdf || true
fi

End automatically added section

./prerm

#!/bin/sh
set -e

Automatically added by dh_python3
if which py3clean >/dev/null 2>&1; then
	py3clean -p ocrmypdf
else
	dpkg -L ocrmypdf | perl -ne 's,/([^/]*)\.py$,/__pycache__/\1.*, or next; unlink $_ or die $! foreach glob($_)'
	find /usr/lib/python3/dist-packages/ -type d -name __pycache__ -empty -print0 | xargs --null --no-run-if-empty rmdir
fi

End automatically added section

data.tar.xz
data.tar

./usr/bin/ocrmypdf

#!/usr/bin/python3
EASY-INSTALL-ENTRY-SCRIPT: 'ocrmypdf==9.6.0+dfsg','console_scripts','ocrmypdf'
__requires__ = 'ocrmypdf==9.6.0+dfsg'
import re
import sys
from pkg_resources import load_entry_point

if __name__ == '__main__':
 sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
 sys.exit(
 load_entry_point('ocrmypdf==9.6.0+dfsg', 'console_scripts', 'ocrmypdf')()
)

./usr/lib/python3/dist-packages/ocrmypdf/__init__.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from . import helpers, hocrtransform, leptonica, pdfa, pdfinfo
from ._version import PROGRAM_NAME, __version__
from .api import Verbosity, configure_logging, ocr
from .exceptions import (
 BadArgsError,
 DpiError,
 EncryptedPdfError,
 ExitCode,
 ExitCodeException,
 InputFileError,
 MissingDependencyError,
 OutputFileAccessError,
 PdfMergeFailedError,
 PriorOcrFoundError,
 SubprocessOutputError,
 TesseractConfigError,
 UnsupportedImageFormatError,
)

./usr/lib/python3/dist-packages/ocrmypdf/__main__.py

#!/usr/bin/env python3
© 2015-19 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import os
import sys

from . import __version__
from ._jobcontext import make_logger
from ._sync import run_pipeline
from ._validation import check_closed_streams, check_options
from .api import Verbosity, configure_logging
from .cli import parser
from .exceptions import BadArgsError, ExitCode, MissingDependencyError

def run(args=None):
 options = parser.parse_args(args=args)

 if not check_closed_streams(options):
 return ExitCode.bad_args

 if hasattr(os, 'nice'):
 os.nice(5)

 verbosity = options.verbose
 if not os.isatty(sys.stderr.fileno()):
 options.progress_bar = False
 if options.quiet:
 verbosity = Verbosity.quiet
 options.progress_bar = False
 configure_logging(
 verbosity, progress_bar_friendly=options.progress_bar, manage_root_logger=True
)
 log = make_logger('ocrmypdf')
 log.debug('ocrmypdf ' + __version__)
 try:
 check_options(options)
 except ValueError as e:
 log.error(e)
 return ExitCode.bad_args
 except BadArgsError as e:
 log.error(e)
 return e.exit_code
 except MissingDependencyError as e:
 log.error(e)
 return ExitCode.missing_dependency

 result = run_pipeline(options=options)
 return result

if __name__ == '__main__':
 sys.exit(run())

./usr/lib/python3/dist-packages/ocrmypdf/_graft.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import os
from contextlib import suppress
from pathlib import Path

import pikepdf

MAX_REPLACE_PAGES = 100

def _update_page_resources(*, page, font, font_key, procset):
 """Update this page's fonts with a reference to the Glyphless font"""

 if '/Resources' not in page:
 page['/Resources'] = pikepdf.Dictionary({})
 resources = page['/Resources']
 try:
 fonts = resources['/Font']
 except KeyError:
 fonts = pikepdf.Dictionary({})
 if font_key is not None and font_key not in fonts:
 fonts[font_key] = font
 resources['/Font'] = fonts

 # Reassign /ProcSet to one that just lists everything - ProcSet is
 # obsolete and doesn't matter but recommended for old viewer support
 resources['/ProcSet'] = procset

def strip_invisible_text(pdf, page):
 stream = []
 in_text_obj = False
 render_mode = 0
 text_objects = []

 page.page_contents_coalesce()
 for operands, operator in pikepdf.parse_content_stream(page, ''):
 if not in_text_obj:
 if operator == pikepdf.Operator('BT'):
 in_text_obj = True
 render_mode = 0
 text_objects.append((operands, operator))
 else:
 stream.append((operands, operator))
 else:
 if operator == pikepdf.Operator('Tr'):
 render_mode = operands[0]
 text_objects.append((operands, operator))
 if operator == pikepdf.Operator('ET'):
 in_text_obj = False
 if render_mode != 3:
 stream.extend(text_objects)
 text_objects.clear()

 def convert(op):
 try:
 return op.unparse()
 except AttributeError:
 return str(op).encode('ascii')

 lines = []

 for operands, operator in stream:
 if operator == pikepdf.Operator('INLINE IMAGE'):
 iim = operands[0]
 line = iim.unparse()
 else:
 line = b' '.join(convert(op) for op in operands) + b' ' + operator.unparse()
 lines.append(line)

 content_stream = b'\n'.join(lines)
 page.Contents = pikepdf.Stream(pdf, content_stream)

def _graft_text_layer(
 *, pdf_base, page_num, text, font, font_key, procset, rotation, strip_old_text, log
):
 """Insert the text layer from text page 0 on to pdf_base at page_num"""

 log.debug("Grafting")
 if Path(text).stat().st_size == 0:
 return

 # This is a pointer indicating a specific page in the base file
 pdf_text = pikepdf.open(text)
 pdf_text_contents = pdf_text.pages[0].Contents.read_bytes()

 base_page = pdf_base.pages.p(page_num)

 # The text page always will be oriented up by this stage but the original
 # content may have a rotation applied. Wrap the text stream with a rotation
 # so it will be oriented the same way as the rest of the page content.
 # (Previous versions OCRmyPDF rotated the content layer to match the text.)
 mediabox = [float(pdf_text.pages[0].MediaBox[v]) for v in range(4)]
 wt, ht = mediabox[2] - mediabox[0], mediabox[3] - mediabox[1]

 mediabox = [float(base_page.MediaBox[v]) for v in range(4)]
 wp, hp = mediabox[2] - mediabox[0], mediabox[3] - mediabox[1]

 translate = pikepdf.PdfMatrix().translated(-wt / 2, -ht / 2)
 untranslate = pikepdf.PdfMatrix().translated(wp / 2, hp / 2)
 corner = pikepdf.PdfMatrix().translated(mediabox[0], mediabox[1])
 # -rotation because the input is a clockwise angle and this formula
 # uses CCW
 rotation = -rotation % 360
 rotate = pikepdf.PdfMatrix().rotated(rotation)

 # Because of rounding of DPI, we might get a text layer that is not
 # identically sized to the target page. Scale to adjust. Normally this
 # is within 0.998.
 if rotation in (90, 270):
 wt, ht = ht, wt
 scale_x = wp / wt
 scale_y = hp / ht

 # log.debug('%r', scale_x, scale_y)
 scale = pikepdf.PdfMatrix().scaled(scale_x, scale_y)

 # Translate the text so it is centered at (0, 0), rotate it there, adjust
 # for a size different between initial and text PDF, then untranslate, and
 # finally move the lower left corner to match the mediabox
 ctm = translate @ rotate @ scale @ untranslate @ corner

 pdf_text_contents = b'q %s cm\n' % ctm.encode() + pdf_text_contents + b'\nQ\n'

 new_text_layer = pikepdf.Stream(pdf_base, pdf_text_contents)

 if strip_old_text:
 strip_invisible_text(pdf_base, base_page)

 base_page.page_contents_add(new_text_layer, prepend=True)

 _update_page_resources(
 page=base_page, font=font, font_key=font_key, procset=procset
)
 pdf_text.close()

def _find_font(text, pdf_base):
 """Copy a font from the filename text into pdf_base"""

 font, font_key = None, None
 possible_font_names = ('/f-0-0', '/F1')
 try:
 with pikepdf.open(text) as pdf_text:
 try:
 pdf_text_fonts = pdf_text.pages[0].Resources.get('/Font', {})
 except (AttributeError, IndexError, KeyError):
 return None, None
 for f in possible_font_names:
 pdf_text_font = pdf_text_fonts.get(f, None)
 if pdf_text_font is not None:
 font_key = f
 break
 if pdf_text_font:
 font = pdf_base.copy_foreign(pdf_text_font)
 return font, font_key
 except (FileNotFoundError, pikepdf.PdfError):
 # PdfError occurs if a 0-length file is written e.g. due to OCR timeout
 return None, None

class OcrGrafter:
 def __init__(self, context):
 self.context = context
 self.log = context.log
 self.path_base = Path(context.origin).resolve()

 self.pdf_base = pikepdf.open(self.path_base)
 self.font, self.font_key = None, None

 self.pdfinfo = context.pdfinfo
 self.output_file = context.get_path('graft_layers.pdf')

 self.procset = self.pdf_base.make_indirect(
 pikepdf.Object.parse(b'[/PDF /Text /ImageB /ImageC /ImageI]')
)

 self.emplacements = 1
 self.interim_count = 0

 def graft_page(self, page_result):
 pageno, image, text, _sidecar, autorotate_correction = page_result
 if text and not self.font:
 self.font, self.font_key = _find_font(text, self.pdf_base)

 emplaced_page = False
 content_rotation = self.pdfinfo[pageno].rotation
 path_image = Path(image).resolve() if image else None
 if path_image is not None and path_image != self.path_base:
 # We are updating the old page with a rasterized PDF of the new
 # page (without changing objgen, to preserve references)
 self.log.debug("Emplacement update")
 with pikepdf.open(image) as pdf_image:
 self.emplacements += 1
 foreign_image_page = pdf_image.pages[0]
 self.pdf_base.pages.append(foreign_image_page)
 local_image_page = self.pdf_base.pages[-1]
 self.pdf_base.pages[pageno].emplace(local_image_page)
 del self.pdf_base.pages[-1]
 emplaced_page = True

 if emplaced_page:
 content_rotation = autorotate_correction
 text_rotation = autorotate_correction
 text_misaligned = (text_rotation - content_rotation) % 360
 self.log.debug(
 f"Rotations for page {pageno}: [text, auto, misalign, content] = "
 f"{text_rotation}, {autorotate_correction}, "
 f"{text_misaligned}, {content_rotation}"
)

 if text and self.font:
 # Graft the text layer onto this page, whether new or old
 strip_old = self.context.options.redo_ocr
 _graft_text_layer(
 pdf_base=self.pdf_base,
 page_num=pageno + 1,
 text=text,
 font=self.font,
 font_key=self.font_key,
 rotation=text_misaligned,
 procset=self.procset,
 strip_old_text=strip_old,
 log=self.log,
)

 # Correct the rotation if applicable
 self.pdf_base.pages[pageno].Rotate = (
 content_rotation - autorotate_correction
) % 360

 if self.emplacements % MAX_REPLACE_PAGES == 0:
 self.save_and_reload()

 def save_and_reload(self):
 # Periodically save and reload the Pdf object. This will keep a
 # lid on our memory usage for very large files. Attach the font to
 # page 1 even if page 1 doesn't use it, so we have a way to get it
 # back.
 page0 = self.pdf_base.pages[0]
 _update_page_resources(
 page=page0, font=self.font, font_key=self.font_key, procset=self.procset
)

 # We cannot read and write the same file, that will corrupt it
 # but we don't to keep more copies than we need to. Delete intermediates.
 # {interim_count} is the opened file we were updateing
 # {interim_count - 1} can be deleted
 # {interim_count + 1} is the new file will produce and open
 old_file = self.output_file + f'_working{self.interim_count - 1}.pdf'
 if not self.context.options.keep_temporary_files:
 with suppress(FileNotFoundError):
 os.unlink(old_file)

 next_file = self.output_file + f'_working{self.interim_count + 1}.pdf'
 self.pdf_base.save(next_file)
 self.pdf_base.close()

 self.pdf_base = pikepdf.open(next_file)
 self.procset = self.pdf_base.pages[0].Resources.ProcSet
 self.font, self.font_key = None, None # Ensure we reacquire this information
 self.interim_count += 1

 def finalize(self):
 self.pdf_base.save(self.output_file)
 self.pdf_base.close()
 return self.output_file

./usr/lib/python3/dist-packages/ocrmypdf/_jobcontext.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import os
import shutil
import sys

class PicklableLoggerMixin:
 def __init__(self):
 self._log = None

 @property
 def log(self):
 if not self._log:
 self._log = self.get_logger()
 return self._log

 def __getstate__(self):
 # Python 3.6 is incapable of pickling a logger and marshalling it to another
 # process (threading._RLock error), so we disconnect it before pickling,
 # and create a new logger in the worker process.
 state = self.__dict__.copy()
 state['_log'] = None
 return state

class PDFContext(PicklableLoggerMixin):
 """Holds our context for a particular run of the pipeline"""

 def __init__(self, options, work_folder, origin, pdfinfo):
 PicklableLoggerMixin.__init__(self)
 self.options = options
 self.work_folder = work_folder
 self.origin = origin
 self.pdfinfo = pdfinfo
 if options:
 self.name = os.path.basename(options.input_file)
 else:
 self.name = 'origin.pdf'
 if self.name == '-':
 self.name = 'stdin'

 def get_logger(self):
 return make_logger(self.options, filename=self.name)

 def get_path(self, name):
 return os.path.join(self.work_folder, name)

 def get_page_contexts(self):
 npages = len(self.pdfinfo)
 for n in range(npages):
 yield PageContext(self, n)

class PageContext(PicklableLoggerMixin):
 """Holds our context for a page

 Must be pickable, so only store intrinsic/simple data elements
 """

 def __init__(self, pdf_context, pageno):
 PicklableLoggerMixin.__init__(self)
 self.work_folder = pdf_context.work_folder
 self.origin = pdf_context.origin
 self.options = pdf_context.options
 self.name = pdf_context.name
 self.pageno = pageno
 self.pageinfo = pdf_context.pdfinfo[pageno]
 self._log = None

 def get_logger(self):
 return make_logger(self.options, filename=self.name, page=self.pageno + 1)

 def get_path(self, name):
 return os.path.join(self.work_folder, "%06d_%s" % (self.pageno + 1, name))

def cleanup_working_files(work_folder, options):
 if options.keep_temporary_files:
 print(f"Temporary working files retained at:\n{work_folder}", file=sys.stderr)
 else:
 shutil.rmtree(work_folder, ignore_errors=True)

class LogNameAdapter(logging.LoggerAdapter):
 def process(self, msg, kwargs):
 # return '[%s] %s' % (self.extra['input_filename'], msg), kwargs
 return '%s' % (msg,), kwargs

class LogNamePageAdapter(logging.LoggerAdapter):
 def process(self, msg, kwargs):
 return (
 #'[%s:%05u] %s' % (self.extra['input_filename'], self.extra['page'], msg),
 '%4u: %s' % (self.extra['page'], msg),
 kwargs,
)

def make_logger(options=None, prefix='ocrmypdf', filename=None, page=None):
 log = logging.getLogger(prefix)
 if filename and page:
 adapter = LogNamePageAdapter(log, dict(input_filename=filename, page=page))
 elif filename:
 adapter = LogNameAdapter(log, dict(input_filename=filename))
 else:
 adapter = log
 return adapter

./usr/lib/python3/dist-packages/ocrmypdf/_pipeline.py

© 2016 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import os
import re
import sys
from datetime import datetime, timezone
from pathlib import Path
from shutil import copyfileobj

import img2pdf
import pikepdf
from pikepdf.models.metadata import encode_pdf_date
from PIL import Image

from . import leptonica
from ._version import PROGRAM_NAME
from ._version import __version__ as VERSION
from .exceptions import (
 DpiError,
 EncryptedPdfError,
 InputFileError,
 PriorOcrFoundError,
 UnsupportedImageFormatError,
)
from .exec import ghostscript, tesseract
from .helpers import safe_symlink
from .hocrtransform import HocrTransform
from .optimize import optimize
from .pdfa import generate_pdfa_ps
from .pdfinfo import Colorspace, Encoding, PdfInfo

VECTOR_PAGE_DPI = 400

def triage_image_file(input_file, output_file, options, log):
 log.info("Input file is not a PDF, checking if it is an image...")
 try:
 im = Image.open(input_file)
 except EnvironmentError as e:
 # Recover the original filename
 log.error(str(e).replace(input_file, options.input_file))
 raise UnsupportedImageFormatError() from e

 with im:
 log.info("Input file is an image")
 if 'dpi' in im.info:
 if im.info['dpi'] <= (96, 96) and not options.image_dpi:
 log.info("Image size: (%d, %d)" % im.size)
 log.info("Image resolution: (%d, %d)" % im.info['dpi'])
 log.error(
 "Input file is an image, but the resolution (DPI) is "
 "not credible. Estimate the resolution at which the "
 "image was scanned and specify it using --image-dpi."
)
 raise DpiError()
 elif not options.image_dpi:
 log.info("Image size: (%d, %d)" % im.size)
 log.error(
 "Input file is an image, but has no resolution (DPI) "
 "in its metadata. Estimate the resolution at which "
 "image was scanned and specify it using --image-dpi."
)
 raise DpiError()

 if im.mode in ('RGBA', 'LA'):
 log.error(
 "The input image has an alpha channel. Remove the alpha "
 "channel first."
)
 raise UnsupportedImageFormatError()

 if 'iccprofile' not in im.info:
 if im.mode == 'RGB':
 log.info("Input image has no ICC profile, assuming sRGB")
 elif im.mode == 'CMYK':
 log.error("Input CMYK image has no ICC profile, not usable")
 raise UnsupportedImageFormatError()

 try:
 log.info("Image seems valid. Try converting to PDF...")
 layout_fun = img2pdf.default_layout_fun
 if options.image_dpi:
 layout_fun = img2pdf.get_fixed_dpi_layout_fun(
 (options.image_dpi, options.image_dpi)
)
 with open(output_file, 'wb') as outf:
 img2pdf.convert(
 input_file, layout_fun=layout_fun, with_pdfrw=False, outputstream=outf
)
 log.info("Successfully converted to PDF, processing...")
 except img2pdf.ImageOpenError as e:
 log.error(e)
 raise UnsupportedImageFormatError() from e

def _pdf_guess_version(input_file, search_window=1024):
 """Try to find version signature at start of file.

 Not robust enough to deal with appended files.

 Returns empty string if not found, indicating file is probably not PDF.
 """

 with open(input_file, 'rb') as f:
 signature = f.read(search_window)
 m = re.search(br'%PDF-(\d\.\d)', signature)
 if m:
 return m.group(1)
 return ''

def triage(original_filename, input_file, output_file, options, log):
 try:
 if _pdf_guess_version(input_file):
 if options.image_dpi:
 log.warning(
 "Argument --image-dpi is being ignored because the "
 "input file is a PDF, not an image."
)
 # Origin file is a pdf create a symlink with pdf extension
 safe_symlink(input_file, output_file)
 return output_file
 except EnvironmentError as e:
 log.debug(f"Temporary file was at: {input_file}")
 msg = str(e).replace(input_file, original_filename)
 raise InputFileError(msg) from e

 triage_image_file(input_file, output_file, options, log)
 return output_file

def get_pdfinfo(input_file, detailed_page_analysis=False, progbar=False):
 try:
 return PdfInfo(
 input_file, detailed_page_analysis=detailed_page_analysis, progbar=progbar
)
 except pikepdf.PasswordError:
 raise EncryptedPdfError()
 except pikepdf.PdfError:
 raise InputFileError()

def validate_pdfinfo_options(context):
 log = context.log
 pdfinfo = context.pdfinfo
 options = context.options

 if pdfinfo.needs_rendering:
 log.error(
 "This PDF contains dynamic XFA forms created by Adobe LiveCycle "
 "Designer and can only be read by Adobe Acrobat or Adobe Reader."
)
 raise InputFileError()
 if pdfinfo.has_userunit and options.output_type.startswith('pdfa'):
 log.error(
 "This input file uses a PDF feature that is not supported "
 "by Ghostscript, so you cannot use --output-type=pdfa for this "
 "file. (Specifically, it uses the PDF-1.6 /UserUnit feature to "
 "support very large or small page sizes, and Ghostscript cannot "
 "output these files.) Use --output-type=pdf instead."
)
 raise InputFileError()
 if pdfinfo.has_acroform:
 if options.redo_ocr:
 log.error(
 "This PDF has a user fillable form. --redo-ocr is not "
 "currently possible on such files."
)
 raise InputFileError()
 else:
 log.warning(
 "This PDF has a fillable form. "
 "Chances are it is a pure digital "
 "document that does not need OCR."
)
 if not options.force_ocr:
 log.info(
 "Use the option --force-ocr to produce an image of the "
 "form and all filled form fields. The output PDF will be "
 "'flattened' and will no longer be fillable."
)

def get_page_dpi(pageinfo, options):
 "Get the DPI when nonsquare DPI is tolerable"
 xres = max(
 pageinfo.xres or VECTOR_PAGE_DPI,
 options.oversample or 0,
 VECTOR_PAGE_DPI if pageinfo.has_vector else 0,
)
 yres = max(
 pageinfo.yres or VECTOR_PAGE_DPI,
 options.oversample or 0,
 VECTOR_PAGE_DPI if pageinfo.has_vector else 0,
)
 return (float(xres), float(yres))

def get_page_square_dpi(pageinfo, options):
 "Get the DPI when we require xres == yres, scaled to physical units"
 xres = pageinfo.xres or 0
 yres = pageinfo.yres or 0
 userunit = pageinfo.userunit or 1
 return float(
 max(
 (xres * userunit) or VECTOR_PAGE_DPI,
 (yres * userunit) or VECTOR_PAGE_DPI,
 VECTOR_PAGE_DPI if pageinfo.has_vector else 0,
 options.oversample or 0,
)
)

def get_canvas_square_dpi(pageinfo, options):
 """Get the DPI when we require xres == yres, in Postscript units"""
 return float(
 max(
 (pageinfo.xres) or VECTOR_PAGE_DPI,
 (pageinfo.yres) or VECTOR_PAGE_DPI,
 VECTOR_PAGE_DPI if pageinfo.has_vector else 0,
 options.oversample or 0,
)
)

def is_ocr_required(page_context):
 pageinfo = page_context.pageinfo
 options = page_context.options
 log = page_context.log

 ocr_required = True

 if options.pages and pageinfo.pageno not in options.pages:
 log.debug(f"skipped {pageinfo.pageno} as requested by --pages {options.pages}")
 ocr_required = False
 elif pageinfo.has_text:
 if not options.force_ocr and not (options.skip_text or options.redo_ocr):
 raise PriorOcrFoundError(
 "page already has text! - aborting (use --force-ocr to force OCR)"
)
 elif options.force_ocr:
 log.info("page already has text! - rasterizing text and running OCR anyway")
 ocr_required = True
 elif options.redo_ocr:
 if pageinfo.has_corrupt_text:
 log.warn(
 "some text on this page cannot be mapped to characters: "
 "consider using --force-ocr instead"
)
 else:
 log.info("redoing OCR")
 ocr_required = True
 elif options.skip_text:
 log.info("skipping all processing on this page")
 ocr_required = False
 elif not pageinfo.images and not options.lossless_reconstruction:
 # We found a page with no images and no text. That means it may
 # have vector art that the user wants to OCR. If we determined
 # lossless reconstruction is not possible then we have to rasterize
 # the image. So if OCR is being forced, take that to mean YES, go
 # ahead and rasterize. If not forced, then pretend there's no text
 # on the page at all so we don't lose anything.
 # This could be made smarter by explicitly searching for vector art.
 if options.force_ocr and options.oversample:
 # The user really wants to reprocess this file
 log.info(
 "page has no images - "
 f"rasterizing at {options.oversample} DPI because "
 "--force-ocr --oversample was specified"
)
 elif options.force_ocr:
 # Warn the user they might not want to do this
 log.warn(
 "page has no images - "
 "all vector content will be "
 f"rasterized at {VECTOR_PAGE_DPI} DPI, losing some resolution and likely "
 "increasing file size. Use --oversample to adjust the "
 "DPI."
)
 else:
 log.info(
 "page has no images - "
 "skipping all processing on this page to avoid losing detail. "
 "Use --force-ocr if you wish to perform OCR on pages that "
 "have vector content."
)
 ocr_required = False

 if ocr_required and options.skip_big and pageinfo.images:
 pixel_count = pageinfo.width_pixels * pageinfo.height_pixels
 if pixel_count > (options.skip_big * 1_000_000):
 ocr_required = False
 log.warn(
 "page too big, skipping OCR "
 f"({(pixel_count / 1_000_000):.1f} MPixels > {options.skip_big:.1f} MPixels --skip-big)"
)
 return ocr_required

def rasterize_preview(input_file, page_context):
 output_file = page_context.get_path('rasterize_preview.jpg')
 canvas_dpi = get_canvas_square_dpi(page_context.pageinfo, page_context.options)
 page_dpi = get_page_square_dpi(page_context.pageinfo, page_context.options)
 ghostscript.rasterize_pdf(
 input_file,
 output_file,
 xres=canvas_dpi,
 yres=canvas_dpi,
 raster_device='jpeggray',
 log=page_context.log,
 page_dpi=(page_dpi, page_dpi),
 pageno=page_context.pageinfo.pageno + 1,
)
 return output_file

def describe_rotation(page_context, orient_conf, correction):
 """
 Describe the page rotation we are going to perform.
 """
 direction = {0: '⇧', 90: '⇨', 180: '⇩', 270: '⇦'}
 turns = {0: ' ', 90: '⬏', 180: '↻', 270: '⬑'}

 existing_rotation = page_context.pageinfo.rotation
 action = ''
 if orient_conf.confidence >= page_context.options.rotate_pages_threshold:
 if correction != 0:
 action = 'will rotate ' + turns[correction]
 else:
 action = 'rotation appears correct'
 else:
 if correction != 0:
 action = 'confidence too low to rotate'
 else:
 action = 'no change'

 facing = ''

 if existing_rotation != 0:
 facing = f"with existing rotation {direction.get(existing_rotation, '?')}, "
 facing += f"page is facing {direction.get(orient_conf.angle, '?')}"

 return f"{facing}, confidence {orient_conf.confidence:.2f} - {action}"

def get_orientation_correction(preview, page_context):
 """
 Work out orientation correct for each page.

 We ask Ghostscript to draw a preview page, which will rasterize with the
 current /Rotate applied, and then ask Tesseract which way the page is
 oriented. If the value of /Rotate is correct (e.g., a user already
 manually fixed rotation), then Tesseract will say the page is pointing
 up and the correction is zero. Otherwise, the orientation found by
 Tesseract represents the clockwise rotation, or the counterclockwise
 correction to rotation.

 When we draw the real page for OCR, we rotate it by the CCW correction,
 which points it (hopefully) upright. _graft.py takes care of the orienting
 the image and text layers.

 """

 orient_conf = tesseract.get_orientation(
 preview,
 engine_mode=page_context.options.tesseract_oem,
 timeout=page_context.options.tesseract_timeout,
 log=page_context.log,
 tesseract_env=page_context.options.tesseract_env,
)

 correction = orient_conf.angle % 360
 page_context.log.info(describe_rotation(page_context, orient_conf, correction))
 if (
 orient_conf.confidence >= page_context.options.rotate_pages_threshold
 and correction != 0
):
 return correction

 return 0

def rasterize(
 input_file, page_context, correction=0, output_tag='', remove_vectors=None
):
 colorspaces = ['pngmono', 'pnggray', 'png256', 'png16m']
 device_idx = 0

 if remove_vectors is None:
 remove_vectors = page_context.options.remove_vectors

 output_file = page_context.get_path(f'rasterize{output_tag}.png')
 pageinfo = page_context.pageinfo

 def at_least(cs):
 return max(device_idx, colorspaces.index(cs))

 for image in pageinfo.images:
 if image.type_ != 'image':
 continue # ignore masks
 if image.bpc > 1:
 if image.color == Colorspace.index:
 device_idx = at_least('png256')
 elif image.color == Colorspace.gray:
 device_idx = at_least('pnggray')
 else:
 device_idx = at_least('png16m')

 if pageinfo.has_vector:
 device_idx = at_least('png16m')

 device = colorspaces[device_idx]

 page_context.log.debug(f"Rasterize with {device}")

 # Produce the page image with square resolution or else deskew and OCR
 # will not work properly.
 canvas_dpi = get_canvas_square_dpi(pageinfo, page_context.options)
 page_dpi = get_page_square_dpi(pageinfo, page_context.options)

 ghostscript.rasterize_pdf(
 input_file,
 output_file,
 xres=canvas_dpi,
 yres=canvas_dpi,
 raster_device=device,
 log=page_context.log,
 page_dpi=(page_dpi, page_dpi),
 pageno=pageinfo.pageno + 1,
 rotation=correction,
 filter_vector=remove_vectors,
)
 return output_file

def preprocess_remove_background(input_file, page_context):
 if any(image.bpc > 1 for image in page_context.pageinfo.images):
 output_file = page_context.get_path('pp_rm_bg.png')
 leptonica.remove_background(input_file, output_file)
 return output_file
 else:
 page_context.log.info("background removal skipped on mono page")
 return input_file

def preprocess_deskew(input_file, page_context):
 output_file = page_context.get_path('pp_deskew.png')
 dpi = get_page_square_dpi(page_context.pageinfo, page_context.options)
 leptonica.deskew(input_file, output_file, dpi)
 return output_file

def preprocess_clean(input_file, page_context):
 from .exec import unpaper

 output_file = page_context.get_path('pp_clean.png')
 dpi = get_page_square_dpi(page_context.pageinfo, page_context.options)
 unpaper.clean(
 input_file,
 output_file,
 dpi,
 page_context.log,
 page_context.options.unpaper_args,
)
 return output_file

def create_ocr_image(image, page_context):
 """Create the image we send for OCR. May not be the same as the display
 image depending on preprocessing. This image will never be shown to the
 user."""

 output_file = page_context.get_path('ocr.png')
 options = page_context.options
 with Image.open(image) as im:
 from PIL import ImageColor
 from PIL import ImageDraw

 white = ImageColor.getcolor('#ffffff', im.mode)
 # pink = ImageColor.getcolor('#ff0080', im.mode)
 draw = ImageDraw.ImageDraw(im)

 xres, yres = im.info['dpi']
 page_context.log.debug('resolution %r %r' % (xres, yres))

 if not options.force_ocr:
 # Do not mask text areas when forcing OCR, because we need to OCR
 # all text areas
 mask = None # Exclude both visible and invisible text from OCR
 if options.redo_ocr:
 mask = True # Mask visible text, but not invisible text

 for textarea in page_context.pageinfo.get_textareas(
 visible=mask, corrupt=None
):
 # Calculate resolution based on the image size and page dimensions
 # without regard whatever resolution is in pageinfo (may differ or
 # be None)
 bbox = [float(v) for v in textarea]
 xscale, yscale = float(xres) / 72.0, float(yres) / 72.0
 pixcoords = [
 bbox[0] * xscale,
 im.height - bbox[3] * yscale,
 bbox[2] * xscale,
 im.height - bbox[1] * yscale,
]
 pixcoords = [int(round(c)) for c in pixcoords]
 page_context.log.debug('blanking %r', pixcoords)
 draw.rectangle(pixcoords, fill=white)
 # draw.rectangle(pixcoords, outline=pink)

 if options.threshold:
 pix = leptonica.Pix.frompil(im)
 pix = pix.masked_threshold_on_background_norm()
 im = pix.topil()

 del draw
 # Pillow requires integer DPI
 dpi = round(xres), round(yres)
 im.save(output_file, dpi=dpi)
 return output_file

def ocr_tesseract_hocr(input_file, page_context):
 hocr_out = page_context.get_path('ocr_hocr.hocr')
 hocr_text_out = page_context.get_path('ocr_hocr.txt')
 options = page_context.options
 tesseract.generate_hocr(
 input_file=input_file,
 output_files=[hocr_out, hocr_text_out],
 language=options.language,
 engine_mode=options.tesseract_oem,
 tessconfig=options.tesseract_config,
 timeout=options.tesseract_timeout,
 pagesegmode=options.tesseract_pagesegmode,
 user_words=options.user_words,
 user_patterns=options.user_patterns,
 tesseract_env=options.tesseract_env,
 log=page_context.log,
)
 return (hocr_out, hocr_text_out)

def should_visible_page_image_use_jpg(pageinfo):
 # If all images were JPEGs originally, produce a JPEG as output
 return pageinfo.images and all(im.enc == Encoding.jpeg for im in pageinfo.images)

def create_visible_page_jpg(image, page_context):
 output_file = page_context.get_path('visible.jpg')
 with Image.open(image) as im:
 # At this point the image should be a .png, but deskew, unpaper
 # might have removed the DPI information. In this case, fall back to
 # square DPI used to rasterize. When the preview image was
 # rasterized, it was also converted to square resolution, which is
 # what we want to give tesseract, so keep it square.
 fallback_dpi = get_page_square_dpi(page_context.pageinfo, page_context.options)
 dpi = im.info.get('dpi', (fallback_dpi, fallback_dpi))

 # Pillow requires integer DPI
 dpi = round(dpi[0]), round(dpi[1])
 im.save(output_file, format='JPEG', dpi=dpi)
 return output_file

def create_pdf_page_from_image(image, page_context):
 # We rasterize a square DPI version of each page because most image
 # processing tools don't support rectangular DPI. Use the square DPI as it
 # accurately describes the image. It would be possible to resample the image
 # at this stage back to non-square DPI to more closely resemble the input,
 # except that the hocr renderer does not understand non-square DPI. The
 # sandwich renderer would be fine.
 output_file = page_context.get_path('visible.pdf')
 dpi = get_page_square_dpi(page_context.pageinfo, page_context.options)
 layout_fun = img2pdf.get_fixed_dpi_layout_fun((dpi, dpi))

 # This create a single page PDF
 with open(image, 'rb') as imfile, open(output_file, 'wb') as pdf:
 page_context.log.debug('convert')
 img2pdf.convert(
 imfile, with_pdfrw=False, layout_fun=layout_fun, outputstream=pdf
)
 page_context.log.debug('convert done')
 return output_file

def render_hocr_page(hocr, page_context):
 output_file = page_context.get_path('ocr_hocr.pdf')
 dpi = get_page_square_dpi(page_context.pageinfo, page_context.options)
 hocrtransform = HocrTransform(hocr, dpi)
 hocrtransform.to_pdf(
 output_file,
 imageFileName=None,
 showBoundingboxes=False,
 invisibleText=True,
 interwordSpaces=True,
)
 return output_file

def ocr_tesseract_textonly_pdf(input_image, page_context):
 output_pdf = page_context.get_path('ocr_tess.pdf')
 output_text = page_context.get_path('ocr_tess.txt')
 options = page_context.options
 tesseract.generate_pdf(
 input_image=input_image,
 skip_pdf=None,
 output_pdf=output_pdf,
 output_text=output_text,
 language=options.language,
 engine_mode=options.tesseract_oem,
 text_only=True,
 tessconfig=options.tesseract_config,
 timeout=options.tesseract_timeout,
 pagesegmode=options.tesseract_pagesegmode,
 user_words=options.user_words,
 user_patterns=options.user_patterns,
 tesseract_env=options.tesseract_env,
 log=page_context.log,
)
 return (output_pdf, output_text)

def get_docinfo(base_pdf, options):
 def from_document_info(key):
 try:
 s = base_pdf.docinfo[key]
 return str(s)
 except (KeyError, TypeError):
 return ''

 pdfmark = {
 k: from_document_info(k)
 for k in ('/Title', '/Author', '/Keywords', '/Subject', '/CreationDate')
 }
 renderer_tag = 'OCR'
 if options is not None:
 if options.title:
 pdfmark['/Title'] = options.title
 if options.author:
 pdfmark['/Author'] = options.author
 if options.keywords:
 pdfmark['/Keywords'] = options.keywords
 if options.subject:
 pdfmark['/Subject'] = options.subject

 if options.pdf_renderer == 'sandwich':
 renderer_tag = 'OCR-PDF'

 pdfmark['/Creator'] = (
 f'{PROGRAM_NAME} {VERSION} / ' f'Tesseract {renderer_tag} {tesseract.version()}'
)
 pdfmark['/Producer'] = f'pikepdf {pikepdf.__version__}'
 if 'OCRMYPDF_CREATOR' in os.environ:
 pdfmark['/Creator'] = os.environ['OCRMYPDF_CREATOR']
 if 'OCRMYPDF_PRODUCER' in os.environ:
 pdfmark['/Producer'] = os.environ['OCRMYPDF_PRODUCER']

 pdfmark['/ModDate'] = encode_pdf_date(datetime.now(timezone.utc))
 return pdfmark

def generate_postscript_stub(context):
 output_file = context.get_path('pdfa.ps')
 generate_pdfa_ps(output_file)
 return output_file

def convert_to_pdfa(input_pdf, input_ps_stub, context):
 options = context.options
 input_pdfinfo = context.pdfinfo
 fix_docinfo_file = context.get_path('fix_docinfo.pdf')
 output_file = context.get_path('pdfa.pdf')

 # If the DocumentInfo record contains NUL characters, Ghostscript will
 # produce XMP metadata which contains invalid XML entities (�).
 # NULs in DocumentInfo seem to be common since older Acrobats included them.
 # pikepdf can deal with this, but we make the world a better place by
 # stamping them out as soon as possible.
 modified = False
 with pikepdf.open(input_pdf) as pdf_file:
 if pdf_file.docinfo:
 for k, v in pdf_file.docinfo.items():
 if b'\x00' in bytes(v):
 pdf_file.docinfo[k] = bytes(v).replace(b'\x00', b'')
 modified = True
 if modified:
 pdf_file.save(fix_docinfo_file)
 else:
 safe_symlink(input_pdf, fix_docinfo_file)

 ghostscript.generate_pdfa(
 pdf_version=input_pdfinfo.min_version,
 pdf_pages=[fix_docinfo_file, input_ps_stub],
 output_file=output_file,
 compression=options.pdfa_image_compression,
 log=context.log,
 pdfa_part=options.output_type[-1], # is pdfa-1, pdfa-2, or pdfa-3
)

 return output_file

def should_linearize(working_file, context):
 filesize = os.stat(working_file).st_size
 if filesize > (context.options.fast_web_view * 1_000_000):
 return True
 return False

def metadata_fixup(working_file, context):
 output_file = context.get_path('metafix.pdf')
 options = context.options

 def report_on_metadata(missing):
 if not missing:
 return
 if options.output_type.startswith('pdfa'):
 context.log.warning(
 "Some input metadata could not be copied because it is not "
 "permitted in PDF/A. You may wish to examine the output "
 "PDF's XMP metadata."
)
 context.log.debug(
 "The following metadata fields were not copied: %r", missing
)
 else:
 context.log.error(
 "Some input metadata could not be copied."
 "You may wish to examine the output PDF's XMP metadata."
)
 context.log.info(
 "The following metadata fields were not copied: %r", missing
)

 with pikepdf.open(context.origin) as original, pikepdf.open(working_file) as pdf:
 docinfo = get_docinfo(original, options)
 with pdf.open_metadata() as meta:
 meta.load_from_docinfo(docinfo, delete_missing=False, raise_failure=False)
 # If xmp:CreateDate is missing, set it to the modify date to
 # match Ghostscript, for consistency
 if 'xmp:CreateDate' not in meta:
 meta['xmp:CreateDate'] = meta.get('xmp:ModifyDate', '')

 meta_original = original.open_metadata()
 missing = set(meta_original.keys()) - set(meta.keys())
 report_on_metadata(missing)

 pdf.save(
 output_file,
 compress_streams=True,
 preserve_pdfa=True,
 object_stream_mode=pikepdf.ObjectStreamMode.generate,
 linearize=(# Don't linearize if optimize() will be linearizing too
 should_linearize(working_file, context)
 if options.optimize == 0
 else False
),
)

 return output_file

def optimize_pdf(input_file, context):
 output_file = context.get_path('optimize.pdf')
 save_settings = dict(
 compress_streams=True,
 preserve_pdfa=True,
 object_stream_mode=pikepdf.ObjectStreamMode.generate,
 linearize=should_linearize(input_file, context),
)
 optimize(input_file, output_file, context, save_settings)
 return output_file

def merge_sidecars(txt_files, context):
 output_file = context.get_path('sidecar.txt')
 with open(output_file, 'w', encoding="utf-8") as stream:
 for page_num, txt_file in enumerate(txt_files):
 if page_num != 0:
 stream.write('\f') # Form feed between pages
 if txt_file:
 with open(txt_file, 'r', encoding="utf-8") as in_:
 txt = in_.read()
 # Tesseract v4 alpha started adding form feeds in
 # commit aa6eb6b
 # No obvious way to detect what binaries will do this, so
 # for consistency just ignore its form feeds and insert our
 # own
 if txt.endswith('\f'):
 stream.write(txt[:-1])
 else:
 stream.write(txt)
 else:
 stream.write(f'[OCR skipped on page {(page_num + 1)}]')
 return output_file

def copy_final(input_file, output_file, context):
 context.log.debug('%s -> %s', input_file, output_file)
 with open(input_file, 'rb') as input_stream:
 if output_file == '-':
 copyfileobj(input_stream, sys.stdout.buffer)
 sys.stdout.flush()
 else:
 # At this point we overwrite the output_file specified by the user
 # use copyfileobj because then we use open() to create the file and
 # get the appropriate umask, ownership, etc.
 with open(output_file, 'wb') as output_stream:
 copyfileobj(input_stream, output_stream)

./usr/lib/python3/dist-packages/ocrmypdf/_sync.py

© 2016 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import logging.handlers
import multiprocessing
import os
import signal
import sys
import threading
from collections import namedtuple
from pathlib import Path
from tempfile import mkdtemp

import PIL
from tqdm import tqdm

from ._graft import OcrGrafter
from ._jobcontext import PDFContext, cleanup_working_files, make_logger
from ._pipeline import (
 convert_to_pdfa,
 copy_final,
 create_ocr_image,
 create_pdf_page_from_image,
 create_visible_page_jpg,
 generate_postscript_stub,
 get_orientation_correction,
 get_pdfinfo,
 is_ocr_required,
 merge_sidecars,
 metadata_fixup,
 ocr_tesseract_hocr,
 ocr_tesseract_textonly_pdf,
 optimize_pdf,
 preprocess_clean,
 preprocess_deskew,
 preprocess_remove_background,
 rasterize,
 rasterize_preview,
 render_hocr_page,
 should_visible_page_image_use_jpg,
 triage,
 validate_pdfinfo_options,
)
from ._validation import (
 check_requested_output_file,
 create_input_file,
 report_output_file_size,
)
from .exceptions import ExitCode, ExitCodeException
from .exec import qpdf
from .helpers import available_cpu_count
from .pdfa import file_claims_pdfa

PageResult = namedtuple(
 'PageResult', 'pageno, pdf_page_from_image, ocr, text, orientation_correction'
)

def preprocess(page_context, image, remove_background, deskew, clean):
 if remove_background:
 image = preprocess_remove_background(image, page_context)
 if deskew:
 image = preprocess_deskew(image, page_context)
 if clean:
 image = preprocess_clean(image, page_context)
 return image

def exec_page_sync(page_context):
 options = page_context.options
 orientation_correction = 0
 pdf_page_from_image_out = None
 ocr_out = None
 text_out = None
 if is_ocr_required(page_context):
 if options.rotate_pages:
 # Rasterize
 rasterize_preview_out = rasterize_preview(page_context.origin, page_context)
 orientation_correction = get_orientation_correction(
 rasterize_preview_out, page_context
)

 rasterize_out = rasterize(
 page_context.origin,
 page_context,
 correction=orientation_correction,
 remove_vectors=False,
)

 if not any([options.clean, options.clean_final, options.remove_vectors]):
 ocr_image = preprocess_out = preprocess(
 page_context,
 rasterize_out,
 options.remove_background,
 options.deskew,
 clean=False,
)
 else:
 if not options.lossless_reconstruction:
 preprocess_out = preprocess(
 page_context,
 rasterize_out,
 options.remove_background,
 options.deskew,
 clean=options.clean_final,
)
 if options.remove_vectors:
 rasterize_ocr_out = rasterize(
 page_context.origin,
 page_context,
 correction=orientation_correction,
 remove_vectors=True,
 output_tag='_ocr',
)
 else:
 rasterize_ocr_out = rasterize_out
 ocr_image = preprocess(
 page_context,
 rasterize_ocr_out,
 options.remove_background,
 options.deskew,
 clean=options.clean,
)

 ocr_image_out = create_ocr_image(ocr_image, page_context)

 pdf_page_from_image_out = None
 if not options.lossless_reconstruction:
 visible_image_out = preprocess_out
 if should_visible_page_image_use_jpg(page_context.pageinfo):
 visible_image_out = create_visible_page_jpg(
 visible_image_out, page_context
)
 pdf_page_from_image_out = create_pdf_page_from_image(
 visible_image_out, page_context
)

 if options.pdf_renderer == 'hocr':
 (hocr_out, text_out) = ocr_tesseract_hocr(ocr_image_out, page_context)
 ocr_out = render_hocr_page(hocr_out, page_context)

 if options.pdf_renderer == 'sandwich':
 (ocr_out, text_out) = ocr_tesseract_textonly_pdf(
 ocr_image_out, page_context
)

 return PageResult(
 pageno=page_context.pageno,
 pdf_page_from_image=pdf_page_from_image_out,
 ocr=ocr_out,
 text=text_out,
 orientation_correction=orientation_correction,
)

def post_process(pdf_file, context):
 pdf_out = pdf_file
 if context.options.output_type.startswith('pdfa'):
 ps_stub_out = generate_postscript_stub(context)
 pdf_out = convert_to_pdfa(pdf_out, ps_stub_out, context)

 pdf_out = metadata_fixup(pdf_out, context)
 return optimize_pdf(pdf_out, context)

def worker_init(queue, max_pixels):
 """Initialize a process pool worker"""

 # Ignore SIGINT (our parent process will kill us gracefully)
 signal.signal(signal.SIGINT, signal.SIG_IGN)

 # Reconfigure the root logger for this process to send all messages to a queue
 h = logging.handlers.QueueHandler(queue)
 root = logging.getLogger()
 root.handlers = []
 root.addHandler(h)

 # In Windows, child process will not inherit our change to this value in
 # the parent process, so ensure workers get it set
 PIL.Image.MAX_IMAGE_PIXELS = max_pixels

def worker_thread_init(_queue, max_pixels):
 # This is probably not needed since threads should all see the same memory,
 # but done for consistency.
 PIL.Image.MAX_IMAGE_PIXELS = max_pixels

def log_listener(queue):
 """Listen to the worker processes and forward the messages to logging

 For simplicity this is a thread rather than a process. Only one process
 should actually write to sys.stderr or whatever we're using, so if this is
 made into a process the main application needs to be directed to it.

 See https://docs.python.org/3/howto/logging-cookbook.html#logging-to-a-single-file-from-multiple-processes
 """

 while True:
 try:
 record = queue.get()
 if record is None:
 break
 logger = logging.getLogger(record.name)
 logger.handle(record)
 except Exception:
 import traceback

 print("Logging problem", file=sys.stderr)
 traceback.print_exc(file=sys.stderr)

def exec_concurrent(context):
 """Execute the pipeline concurrently"""

 # Run exec_page_sync on every page context
 max_workers = min(len(context.pdfinfo), context.options.jobs)
 if max_workers > 1:
 context.log.info("Start processing %d pages concurrently", max_workers)

 # Tesseract 4.x can be multithreaded, and we also run multiple workers. We want
 # to manage how many threads it uses to avoid creating total threads than cores.
 # Performance testing shows we're better off
 # parallelizing ocrmypdf and forcing Tesseract to be single threaded, which we
 # get by setting the envvar OMP_THREAD_LIMIT to 1. But if the page count of the
 # input file is small, then we allow Tesseract to use threads, subject to the
 # constraint: (ocrmypdf workers) * (tesseract threads) <= max_workers.
 # As of Tesseract 4.1, 3 threads is the most effective on a 4 core/8 thread system.
 tess_threads = min(3, context.options.jobs // max_workers)
 if context.options.tesseract_env is None:
 context.options.tesseract_env = os.environ.copy()
 context.options.tesseract_env.setdefault('OMP_THREAD_LIMIT', str(tess_threads))
 if tess_threads > 1:
 context.log.info("Using Tesseract OpenMP thread limit %d", tess_threads)

 if context.options.use_threads:
 from multiprocessing.dummy import Pool

 initializer = worker_thread_init
 else:
 Pool = multiprocessing.Pool
 initializer = worker_init

 sidecars = [None] * len(context.pdfinfo)
 ocrgraft = OcrGrafter(context)

 log_queue = multiprocessing.Queue(-1)
 listener = threading.Thread(target=log_listener, args=(log_queue,))
 listener.start()
 with tqdm(
 total=(2 * len(context.pdfinfo)),
 desc='OCR',
 unit='page',
 unit_scale=0.5,
 disable=not context.options.progress_bar,
) as pbar:
 pool = Pool(
 processes=max_workers,
 initializer=initializer,
 initargs=(log_queue, PIL.Image.MAX_IMAGE_PIXELS),
)
 try:
 results = pool.imap_unordered(exec_page_sync, context.get_page_contexts())
 while True:
 try:
 page_result = results.next()
 sidecars[page_result.pageno] = page_result.text
 pbar.update()
 ocrgraft.graft_page(page_result)
 pbar.update()
 except StopIteration:
 break
 except KeyboardInterrupt:
 # Terminate pool so we exit instantly
 pool.terminate()
 # Don't try listener.join() here, will deadlock
 raise
 except Exception:
 if not os.environ.get("PYTEST_CURRENT_TEST", ""):
 # Unless inside pytest, exit immediately because no one wants
 # to wait for child processes to finalize results that will be
 # thrown away. Inside pytest, we want child processes to exit
 # cleanly so that they output an error messages or coverage data
 # we need from them.
 pool.terminate()
 raise
 finally:
 # Terminate log listener
 log_queue.put_nowait(None)
 pool.close()
 pool.join()

 listener.join()

 # Output sidecar text
 if context.options.sidecar:
 text = merge_sidecars(sidecars, context)
 # Copy text file to destination
 copy_final(text, context.options.sidecar, context)

 # Merge layers to one single pdf
 pdf = ocrgraft.finalize()

 # PDF/A and metadata
 pdf = post_process(pdf, context)

 # Copy PDF file to destination
 copy_final(pdf, context.options.output_file, context)

class NeverRaise(Exception):
 """An exception that is never raised"""

 pass # pylint: disable=unnecessary-pass

def samefile(f1, f2):
 if os.name == 'nt':
 return f1 == f2
 else:
 return os.path.samefile(f1, f2)

def configure_debug_logging(log_filename, prefix=''):
 log_file_handler = logging.FileHandler(log_filename, delay=True)
 log_file_handler.setLevel(logging.DEBUG)
 formatter = logging.Formatter(
 '[%(asctime)s] - %(name)s - %(levelname)7s - %(message)s'
)
 log_file_handler.setFormatter(formatter)
 logging.getLogger(prefix).addHandler(log_file_handler)
 return log_file_handler

def run_pipeline(options, api=False):
 log = make_logger(options, __name__)

 # Any changes to options will not take effect for options that are already
 # bound to function parameters in the pipeline. (For example
 # options.input_file, options.pdf_renderer are already bound.)
 if not options.jobs:
 options.jobs = available_cpu_count()

 work_folder = mkdtemp(prefix="com.github.ocrmypdf.")
 if (options.keep_temporary_files or options.verbose >= 1) and not os.environ.get(
 'PYTEST_CURRENT_TEST', ''
):
 configure_debug_logging(Path(work_folder) / "debug.log")

 try:
 check_requested_output_file(options)
 start_input_file, original_filename = create_input_file(options, work_folder)

 # Triage image or pdf
 origin_pdf = triage(
 original_filename,
 start_input_file,
 os.path.join(work_folder, 'origin.pdf'),
 options,
 log,
)

 # Gather pdfinfo and create context
 pdfinfo = get_pdfinfo(
 origin_pdf,
 detailed_page_analysis=options.redo_ocr,
 progbar=options.progress_bar,
)

 context = PDFContext(options, work_folder, origin_pdf, pdfinfo)

 # Validate options are okay for this pdf
 validate_pdfinfo_options(context)

 # Execute the pipeline
 exec_concurrent(context)

 if options.output_file == '-':
 log.info("Output sent to stdout")
 elif samefile(options.output_file, os.devnull):
 pass # Say nothing when sending to dev null
 else:
 if options.output_type.startswith('pdfa'):
 pdfa_info = file_claims_pdfa(options.output_file)
 if pdfa_info['pass']:
 log.info(
 "Output file is a %s (as expected)", pdfa_info['conformance']
)
 else:
 log.warning(
 "Output file is okay but is not PDF/A (seems to be %s)",
 pdfa_info['conformance'],
)
 return ExitCode.pdfa_conversion_failed
 if not qpdf.check(options.output_file, log):
 log.warning('Output file: The generated PDF is INVALID')
 return ExitCode.invalid_output_pdf
 report_output_file_size(options, start_input_file, options.output_file)

 except (KeyboardInterrupt if not api else NeverRaise) as e:
 if options.verbose >= 1:
 log.exception("KeyboardInterrupt")
 else:
 log.error("KeyboardInterrupt")
 return ExitCode.ctrl_c
 except (ExitCodeException if not api else NeverRaise) as e:
 if str(e):
 log.error("%s: %s", type(e).__name__, str(e))
 else:
 log.error(type(e).__name__)
 return e.exit_code
 except (Exception if not api else NeverRaise) as e:
 log.exception("An exception occurred while executing the pipeline")
 return ExitCode.other_error
 finally:
 cleanup_working_files(work_folder, options)

 return ExitCode.ok

./usr/lib/python3/dist-packages/ocrmypdf/_unicodefun.py

Copyright (c) 2014, Armin Ronacher
#
Copyright (c) 2017, James R Barlow
#
Some rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
#
* The names of the contributors may not be used to endorse or
promote products derived from this software without specific
prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import codecs
import os
import sys

def verify_python3_env(): # pragma: no cover
 """Ensures that the environment is good for unicode on Python 3."""

 # PEP 538 changes in Python 3.7 should make this wrangling unnecessary
 if sys.version_info[0:3] >= (3, 7, 0):
 return

 try:
 import locale

 fs_enc = codecs.lookup(locale.getpreferredencoding()).name
 except Exception:
 fs_enc = 'ascii'
 if fs_enc != 'ascii':
 return

 extra = ''
 if os.name == 'posix':
 import subprocess

 rv = subprocess.run(
 ['locale', '-a'], stdout=subprocess.PIPE, stderr=subprocess.PIPE
).stdout
 good_locales = set()
 has_c_utf8 = False

 # Make sure we're operating on text here.
 if isinstance(rv, bytes):
 rv = rv.decode('ascii', 'replace')

 for line in rv.splitlines():
 locale = line.strip()
 if locale.lower().endswith(('.utf-8', '.utf8')):
 good_locales.add(locale)
 if locale.lower() in ('c.utf8', 'c.utf-8'):
 has_c_utf8 = True

 extra += '\n\n'
 if not good_locales:
 extra += (
 'Additional information: on this system no suitable UTF-8\n'
 'locales were discovered. This most likely requires resolving\n'
 'by reconfiguring the locale system.'
)
 elif has_c_utf8:
 extra += (
 'This system supports the C.UTF-8 locale which is recommended.\n'
 'You might be able to resolve your issue by exporting the\n'
 'following environment variables:\n\n'
 ' export LC_ALL=C.UTF-8\n'
 ' export LANG=C.UTF-8'
)
 else:
 extra += (
 'This system lists a couple of UTF-8 supporting locales that\n'
 'you can pick from. The following suitable locales were\n'
 'discovered: %s'
) % ', '.join(sorted(good_locales))

 bad_locale = None
 for locale in os.environ.get('LC_ALL'), os.environ.get('LANG'):
 if locale and locale.lower().endswith(('.utf-8', '.utf8')):
 bad_locale = locale
 if locale is not None:
 break
 if bad_locale is not None:
 extra += (
 '\nocrmypdf discovered that you exported a UTF-8 locale\n'
 'but the locale system could not pick up from it because\n'
 'it does not exist. The exported locale is "%s" but it\n'
 'is not supported'
) % bad_locale

 raise RuntimeError(
 'ocrmypdf will abort further execution because Python 3 '
 'was configured to use ASCII as encoding for the '
 'environment.' + extra
)

./usr/lib/python3/dist-packages/ocrmypdf/_validation.py

#!/usr/bin/env python3
© 2015-17 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import locale
import logging
import os
import sys
from pathlib import Path
from shutil import copyfileobj

import PIL

from ._unicodefun import verify_python3_env
from .exceptions import (
 BadArgsError,
 InputFileError,
 MissingDependencyError,
 OutputFileAccessError,
)
from .exec import (
 check_external_program,
 ghostscript,
 jbig2enc,
 pngquant,
 qpdf,
 tesseract,
 unpaper,
)
from .helpers import is_file_writable, is_iterable_notstr, monotonic, safe_symlink

External dependencies

HOCR_OK_LANGS = frozenset(['eng', 'deu', 'spa', 'ita', 'por'])
DEFAULT_LANGUAGE = 'eng' # Enforce English hegemony

log = logging.getLogger(__name__)

Critical environment tests
verify_python3_env()

def check_platform():
 if os.name == 'nt' and sys.maxsize <= 2 ** 32: # pragma: no cover
 # 32-bit interpreter on Windows
 log.error(
 "You are running OCRmyPDF in a 32-bit (x86) Python interpreter."
 "Please use a 64-bit (x86-64) version of Python."
)

def check_options_languages(options):
 if not options.language:
 options.language = [DEFAULT_LANGUAGE]
 system_lang = locale.getlocale()[0]
 if system_lang and not system_lang.startswith('en'):
 log.debug("No language specified; assuming --language %s", DEFAULT_LANGUAGE)

 # Support v2.x "eng+deu" language syntax
 if '+' in options.language[0]:
 options.language = options.language[0].split('+')

 languages = set(options.language)
 if not languages.issubset(tesseract.languages()):
 msg = (
 "The installed version of tesseract does not have language "
 "data for the following requested languages: \n"
)
 for lang in languages - tesseract.languages():
 msg += lang + '\n'
 raise MissingDependencyError(msg)

def check_options_output(options):
 # We have these constraints to check for.
 # 1. Ghostscript < 9.20 mangles multibyte Unicode
 # 2. hocr doesn't work on non-Latin languages (so don't select it)

 languages = set(options.language)
 is_latin = languages.issubset(HOCR_OK_LANGS)

 if options.pdf_renderer == 'hocr' and not is_latin:
 msg = (
 "The 'hocr' PDF renderer is known to cause problems with one "
 "or more of the languages in your document. Use "
 "--pdf-renderer auto (the default) to avoid this issue."
)
 log.warning(msg)

 if ghostscript.version() < '9.20' and options.output_type != 'pdf' and not is_latin:
 # https://bugs.ghostscript.com/show_bug.cgi?id=696874
 # Ghostscript < 9.20 fails to encode multibyte characters properly
 msg = (
 "The installed version of Ghostscript does not work correctly "
 "with the OCR languages you specified. Use --output-type pdf or "
 "upgrade to Ghostscript 9.20 or later to avoid this issue."
)
 msg += f"Found Ghostscript {ghostscript.version()}"
 log.warning(msg)

 # Decide on what renderer to use
 if options.pdf_renderer == 'auto':
 options.pdf_renderer = 'sandwich'

 if options.pdf_renderer == 'sandwich' and not tesseract.has_textonly_pdf(
 options.tesseract_env, languages
):
 raise MissingDependencyError(
 "You are using an alpha version of Tesseract 4.0 that does not support "
 "the textonly_pdf parameter. We don't support versions this old."
)

 if options.output_type == 'pdfa':
 options.output_type = 'pdfa-2'

 if options.output_type == 'pdfa-3' and ghostscript.version() < '9.19':
 raise MissingDependencyError(
 "--output-type pdfa-3 requires Ghostscript 9.19 or later"
)

 lossless_reconstruction = False
 if not any(
 (
 options.deskew,
 options.clean_final,
 options.force_ocr,
 options.remove_background,
)
):
 lossless_reconstruction = True
 options.lossless_reconstruction = lossless_reconstruction

 if not options.lossless_reconstruction and options.redo_ocr:
 raise BadArgsError(
 "--redo-ocr is not currently compatible with --deskew, "
 "--clean-final, and --remove-background"
)

def check_options_sidecar(options):
 if options.sidecar == '\0':
 if options.output_file == '-':
 raise BadArgsError(
 "--sidecar filename must be specified when output file is stdout."
)
 options.sidecar = options.output_file + '.txt'

def check_options_preprocessing(options):
 if options.clean_final:
 options.clean = True
 if options.unpaper_args and not options.clean:
 raise BadArgsError("--clean is required for --unpaper-args")
 if options.clean:
 check_external_program(
 program='unpaper',
 package='unpaper',
 version_checker=unpaper.version,
 need_version='6.1',
 required_for=['--clean, --clean-final'],
)
 try:
 if options.unpaper_args:
 options.unpaper_args = unpaper.validate_custom_args(
 options.unpaper_args
)
 except Exception as e:
 raise BadArgsError(str(e))

def _pages_from_ranges(ranges):
 if is_iterable_notstr(ranges):
 return set(ranges)
 pages = []
 page_groups = ranges.replace(' ', '').split(',')
 for g in page_groups:
 if not g:
 continue
 try:
 start, end = g.split('-')
 except ValueError:
 pages.append(int(g) - 1)
 else:
 try:
 pages.extend(range(int(start) - 1, int(end)))
 except ValueError:
 raise BadArgsError("invalid page range")

 if not monotonic(pages):
 log.warning(
 "List of pages to process contains duplicate pages, or pages that are "
 "out of order"
)
 if any(page < 0 for page in pages):
 raise BadArgsError("pages refers to a page number less than 1")

 log.debug("OCRing only these pages: %s", pages)
 return set(pages)

def check_options_ocr_behavior(options):
 exclusive_options = sum(
 [
 (1 if opt else 0)
 for opt in (options.force_ocr, options.skip_text, options.redo_ocr)
]
)
 if exclusive_options >= 2:
 raise BadArgsError("Choose only one of --force-ocr, --skip-text, --redo-ocr.")
 if options.pages and options.sidecar:
 raise BadArgsError("--pages and --sidecar are mutually exclusive")
 if options.pages:
 options.pages = _pages_from_ranges(options.pages)

def check_options_optimizing(options):
 if options.optimize >= 2:
 check_external_program(
 program='pngquant',
 package='pngquant',
 version_checker=pngquant.version,
 need_version='2.0.1',
 required_for='--optimize {2,3}',
)

 if options.optimize >= 2:
 # Although we use JBIG2 for optimize=1, don't nag about it unless the
 # user is asking for more optimization
 check_external_program(
 program='jbig2',
 package='jbig2enc',
 version_checker=jbig2enc.version,
 need_version='0.28',
 required_for='--optimize {2,3} | --jbig2-lossy',
 recommended=True if not options.jbig2_lossy else False,
)

 if options.optimize == 0 and any(
 [options.jbig2_lossy, options.png_quality, options.jpeg_quality]
):
 log.warning(
 "The arguments --jbig2-lossy, --png-quality, and --jpeg-quality "
 "will be ignored because --optimize=0."
)

def check_options_advanced(options):
 if options.pdfa_image_compression != 'auto' and options.output_type.startswith(
 'pdfa'
):
 log.warning(
 "--pdfa-image-compression argument has no effect when "
 "--output-type is not 'pdfa', 'pdfa-1', or 'pdfa-2'"
)
 if not tesseract.has_user_words(options.tesseract_env) and (
 options.user_words or options.user_patterns
):
 log.warning(
 "Tesseract 4.0 ignores --user-words and --user-patterns, so these "
 "arguments have no effect."
)

def check_options_metadata(options):
 import unicodedata

 docinfo = [options.title, options.author, options.keywords, options.subject]
 for s in (m for m in docinfo if m):
 for c in s:
 if unicodedata.category(c) == 'Co' or ord(c) >= 0x10000:
 raise ValueError(
 "One of the metadata strings contains "
 "an unsupported Unicode character: '{}' (U+{})".format(
 c, hex(ord(c))[2:].upper()
)
)

def check_options_pillow(options):
 PIL.Image.MAX_IMAGE_PIXELS = int(options.max_image_mpixels * 1_000_000)
 if PIL.Image.MAX_IMAGE_PIXELS == 0:
 PIL.Image.MAX_IMAGE_PIXELS = None

def check_options(options):
 check_platform()
 check_options_languages(options)
 check_options_metadata(options)
 check_options_output(options)
 check_options_sidecar(options)
 check_options_preprocessing(options)
 check_options_ocr_behavior(options)
 check_options_optimizing(options)
 check_options_advanced(options)
 check_options_pillow(options)
 check_dependency_versions(options)

def check_closed_streams(options): # pragma: no cover
 """Work around Python issue with multiprocessing forking on closed streams

 https://bugs.python.org/issue28326

 Attempting to a fork/exec a new Python process when any of std{in,out,err}
 are closed or not flushable for some reason may raise an exception.
 Fix this by opening devnull if the handle seems to be closed. Do this
 globally to avoid tracking places all places that fork.

 Seems to be specific to multiprocessing.Process not all Python process
 forkers.

 The error actually occurs when the stream object is not flushable,
 but replacing an open stream object that is not flushable with
 /dev/null is a bad idea since it will create a silent failure. Replacing
 a closed handle with /dev/null seems safe.

 """

 if sys.version_info[0:3] >= (3, 6, 4):
 return True # Issued fixed in Python 3.6.4+

 if sys.stderr is None:
 sys.stderr = open(os.devnull, 'w')

 if sys.stdin is None:
 if options.input_file == '-':
 log.error("Trying to read from stdin but stdin seems closed")
 return False
 sys.stdin = open(os.devnull, 'r')

 if sys.stdout is None:
 if options.output_file == '-':
 # Can't replace stdout if the user is piping
 # If this case can even happen, it must be some kind of weird
 # stream.
 log.error(
 "Output was set to stdout '-' but the stream attached to "
 "stdout does not support the flush() system call. This "
 "will fail."
)
 return False
 sys.stdout = open(os.devnull, 'w')

 return True

def log_page_orientations(pdfinfo):
 direction = {0: 'n', 90: 'e', 180: 's', 270: 'w'}
 orientations = []
 for n, page in enumerate(pdfinfo):
 angle = page.rotation or 0
 if angle != 0:
 orientations.append('{0}{1}'.format(n + 1, direction.get(angle, '')))
 if orientations:
 log.info('Page orientations detected: %s', ' '.join(orientations))

def create_input_file(options, work_folder):
 if options.input_file == '-':
 # stdin
 log.info('reading file from standard input')
 target = os.path.join(work_folder, 'stdin')
 with open(target, 'wb') as stream_buffer:
 copyfileobj(sys.stdin.buffer, stream_buffer)
 return target, "<stdin>"
 else:
 try:
 target = os.path.join(work_folder, 'origin')
 safe_symlink(options.input_file, target)
 return target, os.fspath(options.input_file)
 except FileNotFoundError:
 raise InputFileError(f"File not found - {options.input_file}")

def check_requested_output_file(options):
 if options.output_file == '-':
 if sys.stdout.isatty():
 raise BadArgsError(
 "Output was set to stdout '-' but it looks like stdout "
 "is connected to a terminal. Please redirect stdout to a "
 "file."
)
 elif not is_file_writable(options.output_file):
 raise OutputFileAccessError(
 f"Output file location ({options.output_file}) is not a writable file."
)

def report_output_file_size(options, input_file, output_file):
 try:
 output_size = Path(output_file).stat().st_size
 input_size = Path(input_file).stat().st_size
 except FileNotFoundError:
 return # Outputting to stream or something
 ratio = output_size / input_size
 if ratio < 1.35 or input_size < 25000:
 return # Seems fine

 reasons = []
 image_preproc = {
 'deskew',
 'clean_final',
 'remove_background',
 'oversample',
 'force_ocr',
 }
 for arg in image_preproc:
 if getattr(options, arg, False):
 reasons.append(
 f"The argument --{arg.replace('_', '-')} was issued, causing transcoding."
)

 if options.optimize == 0:
 reasons.append("Optimization was disabled.")
 else:
 image_optimizers = {
 'jbig2': jbig2enc.available(),
 'pngquant': pngquant.available(),
 }
 for name, available in image_optimizers.items():
 if not available:
 reasons.append(
 f"The optional dependency '{name}' was not found, so some image "
 f"optimizations could not be attempted."
)

 if reasons:
 explanation = "Possible reasons for this include:\n" + '\n'.join(reasons) + "\n"
 else:
 explanation = "No reason for this increase is known. Please report this issue."

 log.warning(
 f"The output file size is {ratio:.2f}× larger than the input file.\n"
 f"{explanation}"
)

def check_dependency_versions(options):
 check_external_program(
 program='tesseract',
 package={'linux': 'tesseract-ocr'},
 version_checker=tesseract.version,
 need_version='4.0.0', # using backport for Travis CI
)
 check_external_program(
 program='gs',
 package='ghostscript',
 version_checker=ghostscript.version,
 need_version='9.15', # limited by Travis CI / Ubuntu 14.04 backports
)
 if ghostscript.version() == '9.24':
 raise MissingDependencyError(
 "Ghostscript 9.24 contains serious regressions and is not "
 "supported. Please upgrade to Ghostscript 9.25 or use an older "
 "version."
)
 check_external_program(
 program='qpdf',
 package='qpdf',
 version_checker=qpdf.version,
 need_version='8.0.2',
)

./usr/lib/python3/dist-packages/ocrmypdf/_version.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import pkg_resources

PROGRAM_NAME = 'ocrmypdf'

Official PEP 396
__version__ = pkg_resources.get_distribution('ocrmypdf').version

./usr/lib/python3/dist-packages/ocrmypdf/api.py

© 2019 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import os
import sys
from contextlib import suppress
from enum import IntEnum
from pathlib import Path
from typing import Dict, List

from tqdm import tqdm

from ._sync import run_pipeline
from ._validation import check_options
from .cli import parser

class TqdmConsole:
 """Wrapper to log messages in a way that is compatible with tqdm progress bar

 This routes log messages through tqdm so that it can print them above the
 progress bar, and then refresh the progress bar, rather than overwriting
 it which looks messy.

 For some reason Python 3.6 prints extra empty messages from time to time,
 so we suppress those.
 """

 def __init__(self, file):
 self.file = file
 self.py36 = sys.version_info[0:2] == (3, 6)

 def write(self, msg):
 # When no progress bar is active, tqdm.write() routes to print()
 if self.py36:
 if msg.strip() != '':
 tqdm.write(msg.rstrip(), end='\n', file=self.file)
 else:
 tqdm.write(msg.rstrip(), end='\n', file=self.file)

 def flush(self):
 with suppress(AttributeError):
 self.file.flush()

class Verbosity(IntEnum):
 """Verbosity level for configure_logging."""

 quiet = -1 #: Suppress most messages
 default = 0 #: Default level of logging
 debug = 1 #: Output ocrmypdf debug messages
 debug_all = 2 #: More detailed debugging from ocrmypdf and dependent modules

def configure_logging(verbosity, progress_bar_friendly=True, manage_root_logger=False):
 """Set up logging.

 Library users may wish to use this function if they want their log output to be
 similar to ocrmypdf command line interface. If not used, the external application
 should configure logging on its own.

 ocrmypdf will perform all of its logging under the ``"ocrmypdf"`` logging namespace.
 In addition, ocrmypdf imports pdfminer, which logs under ``"pdfminer"``. A library
 user may wish to configure both; note that pdfminer is extremely chatty at the log
 level ``logging.INFO``.

 Library users may perform additional configuration afterwards.

 Args:
 verbosity (Verbosity): Verbosity level.
 progress_bar_friendly (bool): Install the TqdmConsole log handler, which is
 compatible with the tqdm progress bar; without this log messages will
 overwrite the progress bar
 manage_root_logger (bool): Configure the process's root logger, to ensure
 all log output is sent through

 Returns:
 The toplevel logger for ocrmypdf (or the root logger, if we are managing it).
 """

 prefix = '' if manage_root_logger else 'ocrmypdf'
 log = logging.getLogger(prefix)
 log.setLevel(logging.DEBUG)

 if progress_bar_friendly:
 console = logging.StreamHandler(stream=TqdmConsole(sys.stderr))
 else:
 console = logging.StreamHandler(stream=sys.stderr)

 if verbosity < 0:
 console.setLevel(logging.ERROR)
 elif verbosity >= 1:
 console.setLevel(logging.DEBUG)
 else:
 console.setLevel(logging.INFO)

 formatter = logging.Formatter('%(levelname)7s - %(message)s')
 if verbosity >= 2:
 formatter = logging.Formatter('%(name)s - %(levelname)7s - %(message)s')

 console.setFormatter(formatter)
 log.addHandler(console)

 if verbosity <= 1:
 pdfminer_log = logging.getLogger('pdfminer')
 pdfminer_log.setLevel(logging.ERROR)
 pil_log = logging.getLogger('PIL')
 pil_log.setLevel(logging.INFO)

 if manage_root_logger:
 logging.captureWarnings(True)

 return log

def create_options(*, input_file, output_file, **kwargs):
 cmdline = []
 deferred = []

 for arg, val in kwargs.items():
 if val is None:
 continue

 # These arguments with special handling for which we bypass
 # argparse
 if arg in {'tesseract_env', 'progress_bar'}:
 deferred.append((arg, val))
 continue

 cmd_style_arg = arg.replace('_', '-')

 # Booleans are special: add only if True, omit for False
 if isinstance(val, bool):
 if val:
 cmdline.append(f"--{cmd_style_arg}")
 continue

 # We have a parameter
 cmdline.append(f"--{cmd_style_arg}")
 if isinstance(val, (int, float)):
 cmdline.append(str(val))
 elif isinstance(val, str):
 cmdline.append(val)
 elif isinstance(val, Path):
 cmdline.append(str(val))
 else:
 raise TypeError(f"{arg}: {val} ({type(val)})")

 cmdline.append(str(input_file))
 cmdline.append(str(output_file))

 parser.api_mode = True
 options = parser.parse_args(cmdline)
 for keyword, val in deferred:
 setattr(options, keyword, val)

 # If we are running a Tesseract spoof, ensure it knows what the input file is
 if os.environ.get('PYTEST_CURRENT_TEST') and options.tesseract_env:
 options.tesseract_env['_OCRMYPDF_TEST_INFILE'] = os.fspath(input_file)

 return options

def ocr(# pylint: disable=unused-argument
 input_file: os.PathLike,
 output_file: os.PathLike,
 *,
 language: List[str] = None,
 image_dpi: int = None,
 output_type=None,
 sidecar: os.PathLike = None,
 jobs: int = None,
 use_threads: bool = None,
 title: str = None,
 author: str = None,
 subject: str = None,
 keywords: str = None,
 rotate_pages: bool = None,
 remove_background: bool = None,
 deskew: bool = None,
 clean: bool = None,
 clean_final: bool = None,
 unpaper_args: str = None,
 oversample: int = None,
 remove_vectors: bool = None,
 threshold: bool = None,
 force_ocr: bool = None,
 skip_text: bool = None,
 redo_ocr: bool = None,
 skip_big: float = None,
 optimize: int = None,
 jpg_quality: int = None,
 png_quality: int = None,
 jbig2_lossy: bool = None,
 jbig2_page_group_size: int = None,
 pages: str = None,
 max_image_mpixels: float = None,
 tesseract_config: List[str] = None,
 tesseract_pagesegmode: int = None,
 tesseract_oem: int = None,
 pdf_renderer=None,
 tesseract_timeout: float = None,
 rotate_pages_threshold: float = None,
 pdfa_image_compression=None,
 user_words: os.PathLike = None,
 user_patterns: os.PathLike = None,
 fast_web_view: float = None,
 keep_temporary_files: bool = None,
 progress_bar: bool = None,
 tesseract_env: Dict[str, str] = None,
):
 """Run OCRmyPDF on one PDF or image.

 For most arguments, see documentation for the equivalent command line parameter.
 A few specific arguments are discussed here:

 Args:
 use_threads (bool): Use worker threads instead of processes. This reduces
 performance but may make debugging easier since it is easier to set
 breakpoints.
 tesseract_env (dict): Override environment variables for Tesseract
 Raises:
 ocrmypdf.PdfMergeFailedError: If the input PDF is malformed, preventing merging
 with the OCR layer.
 ocrmypdf.MissingDependencyError: If a required dependency program is missing or
 was not found on PATH.
 ocrmypdf.UnsupportedImageFormatError: If the input file type was an image that
 could not be read, or some other file type that is not a PDF.
 ocrmypdf.DpiError: If the input file is an image, but the resolution of the
 image is not credible (allowing it to proceed would cause poor OCR).
 ocrmypdf.OutputFileAccessError: If an attempt to write to the intended output
 file failed.
 ocrmypdf.PriorOcrFoundError: If the input PDF seems to have OCR or digital
 text already, and settings did not tell us to proceed.
 ocrmypdf.InputFileError: Any other problem with the input file.
 ocrmypdf.SubprocessOutputError: Any error related to executing a subprocess.
 ocrmypdf.EncryptedPdfERror: If the input PDF is encrypted (password protected).
 OCRmyPDF does not remove passwords.
 ocrmypdf.TesseractConfigError: If Tesseract reported its configuration was not
 valid.

 Returns:
 :class:`ocrmypdf.ExitCode`
 """

 options = create_options(**locals())
 check_options(options)
 return run_pipeline(options, api=True)

./usr/lib/python3/dist-packages/ocrmypdf/cli.py

© 2015-19 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import argparse

from ._version import PROGRAM_NAME as _PROGRAM_NAME
from ._version import __version__ as _VERSION

def numeric(basetype, min_=None, max_=None):
 """Validator for numeric params"""
 min_ = basetype(min_) if min_ is not None else None
 max_ = basetype(max_) if max_ is not None else None

 def _numeric(string):
 value = basetype(string)
 if (min_ is not None and value < min_) or (max_ is not None and value > max_):
 msg = "%r not in valid range %r" % (string, (min_, max_))
 raise argparse.ArgumentTypeError(msg)
 return value

 _numeric.__name__ = basetype.__name__
 return _numeric

class ArgumentParser(argparse.ArgumentParser):
 """Override parser's default behavior of calling sys.exit()

 https://stackoverflow.com/questions/5943249/python-argparse-and-controlling-overriding-the-exit-status-code
 """

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.api_mode = False

 def error(self, message):
 if not self.api_mode:
 super().error(message)
 return
 raise ValueError(message)

parser = ArgumentParser(
 prog=_PROGRAM_NAME,
 fromfile_prefix_chars='@',
 formatter_class=argparse.RawDescriptionHelpFormatter,
 description="""\
Generates a searchable PDF or PDF/A from a regular PDF.

OCRmyPDF rasterizes each page of the input PDF, optionally corrects page
rotation and performs image processing, runs the Tesseract OCR engine on the
image, and then creates a PDF from the OCR information.
""",
 epilog="""\
OCRmyPDF attempts to keep the output file at about the same size. If a file
contains losslessly compressed images, and output file will be losslessly
compressed as well.

PDF is a page description file that attempts to preserve a layout exactly.
A PDF can contain vector objects (such as text or lines) and raster objects
(images). A page might have multiple images. OCRmyPDF is prepared to deal
with the wide variety of PDFs that exist in the wild.

When a PDF page contains text, OCRmyPDF assumes that the page has already
been OCRed or is a "born digital" page that should not be OCRed. The default
behavior is to exit in this case without producing a file. You can use the
option --skip-text to ignore pages with text, or --force-ocr to rasterize
all objects on the page and produce an image-only PDF as output.

 ocrmypdf --skip-text file_with_some_text_pages.pdf output.pdf

 ocrmypdf --force-ocr word_document.pdf output.pdf

If you are concerned about long-term archiving of PDFs, use the default option
--output-type pdfa which converts the PDF to a standardized PDF/A-2b. This
converts images to sRGB colorspace, removes some features from the PDF such
as Javascript or forms. If you want to minimize the number of changes made to
your PDF, use --output-type pdf.

If OCRmyPDF is given an image file as input, it will attempt to convert the
image to a PDF before processing. For more control over the conversion of
images to PDF, use img2pdf, or other image to PDF software.

For example, this command uses img2pdf to convert all .png files beginning
with the 'page' prefix to a PDF, fitting each image on A4-sized paper, and
sending the result to OCRmyPDF through a pipe.

 img2pdf --pagesize A4 page*.png | ocrmypdf - myfile.pdf

HTML documentation is located at:
 /usr/share/doc/ocrmypdf/html/index.html
after installing the ocrmypdf-doc package.

""",
)

parser.add_argument(
 'input_file',
 metavar="input_pdf_or_image",
 help="PDF file containing the images to be OCRed (or '-' to read from "
 "standard input)",
)
parser.add_argument(
 'output_file',
 metavar="output_pdf",
 help="Output searchable PDF file (or '-' to write to standard output). "
 "Existing files will be ovewritten. If same as input file, the "
 "input file will be updated only if processing is successful.",
)
parser.add_argument(
 '-l',
 '--language',
 action='append',
 help="Language(s) of the file to be OCRed (see tesseract --list-langs for "
 "all language packs installed in your system). Use -l eng+deu for "
 "multiple languages.",
)
parser.add_argument(
 '--image-dpi',
 metavar='DPI',
 type=int,
 help="For input image instead of PDF, use this DPI instead of file's.",
)
parser.add_argument(
 '--output-type',
 choices=['pdfa', 'pdf', 'pdfa-1', 'pdfa-2', 'pdfa-3'],
 default='pdfa',
 help="Choose output type. 'pdfa' creates a PDF/A-2b compliant file for "
 "long term archiving (default, recommended) but may not suitable "
 "for users who want their file altered as little as possible. 'pdfa' "
 "also has problems with full Unicode text. 'pdf' attempts to "
 "preserve file contents as much as possible. 'pdf-a1' creates a "
 "PDF/A1-b file. 'pdf-a2' is equivalent to 'pdfa'. 'pdf-a3' creates a "
 "PDF/A3-b file.",
)

Use null string '\0' as sentinel to indicate the user supplied no argument,
since that is the only invalid character for filepaths on all platforms
bool('\0') is True in Python
parser.add_argument(
 '--sidecar',
 nargs='?',
 const='\0',
 default=None,
 metavar='FILE',
 help="Generate sidecar text files that contain the same text recognized "
 "by Tesseract. This may be useful for building a OCR text database. "
 "If FILE is omitted, the sidecar file be named {output_file}.txt "
 "If FILE is set to '-', the sidecar is written to stdout (a "
 "convenient way to preview OCR quality). The output file and sidecar "
 "may not both use stdout at the same time.",
)

parser.add_argument(
 '--version',
 action='version',
 version=_VERSION,
 help="Print program version and exit",
)

jobcontrol = parser.add_argument_group("Job control options")
jobcontrol.add_argument(
 '-j',
 '--jobs',
 metavar='N',
 type=numeric(int, 0, 256),
 help="Use up to N CPU cores simultaneously (default: use all).",
)
jobcontrol.add_argument(
 '-q', '--quiet', action='store_true', help="Suppress INFO messages"
)
jobcontrol.add_argument(
 '-v',
 '--verbose',
 type=numeric(int, 0, 2),
 default=0,
 const=1,
 nargs='?',
 help="Print more verbose messages for each additional verbose level. Use "
 "`-v 1` typically for much more detailed logging. Higher numbers "
 "are probably only useful in debugging.",
)
jobcontrol.add_argument(
 '--no-progress-bar',
 action='store_false',
 dest='progress_bar',
 help=argparse.SUPPRESS,
)
jobcontrol.add_argument('--use-threads', action='store_true', help=argparse.SUPPRESS)

metadata = parser.add_argument_group(
 "Metadata options",
 "Set output PDF/A metadata (default: copy input document's metadata)",
)
metadata.add_argument(
 '--title', type=str, help="Set document title (place multiple words in quotes)"
)
metadata.add_argument('--author', type=str, help="Set document author")
metadata.add_argument('--subject', type=str, help="Set document subject description")
metadata.add_argument('--keywords', type=str, help="Set document keywords")

preprocessing = parser.add_argument_group(
 "Image preprocessing options",
 "Options to improve the quality of the final PDF and OCR",
)
preprocessing.add_argument(
 '-r',
 '--rotate-pages',
 action='store_true',
 help="Automatically rotate pages based on detected text orientation",
)
preprocessing.add_argument(
 '--remove-background',
 action='store_true',
 help="Attempt to remove background from gray or color pages, setting it "
 "to white ",
)
preprocessing.add_argument(
 '-d', '--deskew', action='store_true', help="Deskew each page before performing OCR"
)
preprocessing.add_argument(
 '-c',
 '--clean',
 action='store_true',
 help="Clean pages from scanning artifacts before performing OCR, and send "
 "the cleaned page to OCR, but do not include the cleaned page in "
 "the output",
)
preprocessing.add_argument(
 '-i',
 '--clean-final',
 action='store_true',
 help="Clean page as above, and incorporate the cleaned image in the final "
 "PDF. Might remove desired content.",
)
preprocessing.add_argument(
 '--unpaper-args',
 type=str,
 default=None,
 help="A quoted string of arguments to pass to unpaper. Requires --clean. "
 "Example: --unpaper-args '--layout double'.",
)
preprocessing.add_argument(
 '--oversample',
 metavar='DPI',
 type=numeric(int, 0, 5000),
 default=0,
 help="Oversample images to at least the specified DPI, to improve OCR "
 "results slightly",
)
preprocessing.add_argument(
 '--remove-vectors',
 action='store_true',
 help="EXPERIMENTAL. Mask out any vector objects in the PDF so that they "
 "will not be included in OCR. This can eliminate false characters.",
)
preprocessing.add_argument(
 '--threshold',
 action='store_true',
 help="EXPERIMENTAL. Threshold image to 1bpp before sending it to Tesseract for OCR. Can "
 "improve OCR quality compared to Tesseract's thresholder.",
)

ocrsettings = parser.add_argument_group("OCR options", "Control how OCR is applied")
ocrsettings.add_argument(
 '-f',
 '--force-ocr',
 action='store_true',
 help="Rasterize any text or vector objects on each page, apply OCR, and "
 "save the rastered output (this rewrites the PDF)",
)
ocrsettings.add_argument(
 '-s',
 '--skip-text',
 action='store_true',
 help="Skip OCR on any pages that already contain text, but include the "
 "page in final output; useful for PDFs that contain a mix of "
 "images, text pages, and/or previously OCRed pages",
)
ocrsettings.add_argument(
 '--redo-ocr',
 action='store_true',
 help="Attempt to detect and remove the hidden OCR layer from files that "
 "were previously OCRed with OCRmyPDF or another program. Apply OCR "
 "to text found in raster images. Existing visible text objects will "
 "not be changed. If there is no existing OCR, OCR will be added.",
)
ocrsettings.add_argument(
 '--skip-big',
 type=numeric(float, 0, 5000),
 metavar='MPixels',
 help="Skip OCR on pages larger than the specified amount of megapixels, "
 "but include skipped pages in final output",
)

optimizing = parser.add_argument_group(
 "Optimization options", "Control how the PDF is optimized after OCR"
)
optimizing.add_argument(
 '-O',
 '--optimize',
 type=int,
 choices=range(0, 4),
 default=1,
 help=(
 "Control how PDF is optimized after processing:"
 "0 - do not optimize; "
 "1 - do safe, lossless optimizations (default); "
 "2 - do some lossy optimizations; "
 "3 - do aggressive lossy optimizations (including lossy JBIG2)"
),
)
optimizing.add_argument(
 '--jpeg-quality',
 type=numeric(int, 0, 100),
 default=0,
 metavar='Q',
 help=(
 "Adjust JPEG quality level for JPEG optimization. "
 "100 is best quality and largest output size; "
 "1 is lowest quality and smallest output; "
 "0 uses the default."
),
)
optimizing.add_argument(
 '--jpg-quality',
 type=numeric(int, 0, 100),
 default=0,
 metavar='Q',
 dest='jpeg_quality',
 help=argparse.SUPPRESS, # Alias for --jpeg-quality
)
optimizing.add_argument(
 '--png-quality',
 type=numeric(int, 0, 100),
 default=0,
 metavar='Q',
 help=(
 "Adjust PNG quality level to use when quantizing PNGs. "
 "Values have same meaning as with --jpeg-quality"
),
)
optimizing.add_argument(
 '--jbig2-lossy',
 action='store_true',
 help=(
 "Enable JBIG2 lossy mode (better compression, not suitable for some "
 "use cases - see documentation)."
),
)
optimizing.add_argument(
 '--jbig2-page-group-size',
 type=numeric(int, 1, 10000),
 default=0,
 metavar='N',
 # Adjust number of pages to consider at once for JBIG2 compression
 help=argparse.SUPPRESS,
)

advanced = parser.add_argument_group(
 "Advanced", "Advanced options to control Tesseract's OCR behavior"
)
advanced.add_argument(
 '--pages',
 type=str,
 help="Limit OCR to the specified pages (ranges or comma separated), skipping others",
)
advanced.add_argument(
 '--max-image-mpixels',
 action='store',
 type=numeric(float, 0),
 metavar='MPixels',
 help="Set maximum number of pixels to unpack before treating an image as a "
 "decompression bomb",
 default=128.0,
)
advanced.add_argument(
 '--tesseract-config',
 action='append',
 metavar='CFG',
 default=[],
 help="Additional Tesseract configuration files -- see documentation",
)
advanced.add_argument(
 '--tesseract-pagesegmode',
 action='store',
 type=int,
 metavar='PSM',
 choices=range(0, 14),
 help="Set Tesseract page segmentation mode (see tesseract --help)",
)
advanced.add_argument(
 '--tesseract-oem',
 action='store',
 type=int,
 metavar='MODE',
 choices=range(0, 4),
 help=(
 "Set Tesseract 4.0 OCR engine mode: "
 "0 - original Tesseract only; "
 "1 - neural nets LSTM only; "
 "2 - Tesseract + LSTM; "
 "3 - default."
),
)
advanced.add_argument(
 '--pdf-renderer',
 choices=['auto', 'hocr', 'sandwich'],
 default='auto',
 help="Choose OCR PDF renderer - the default option is to let OCRmyPDF "
 "choose. See documentation for discussion.",
)
advanced.add_argument(
 '--tesseract-timeout',
 default=180.0,
 type=numeric(float, 0),
 metavar='SECONDS',
 help='Give up on OCR after the timeout, but copy the preprocessed page '
 'into the final output',
)
advanced.add_argument(
 '--rotate-pages-threshold',
 default=14.0,
 type=numeric(float, 0, 1000),
 metavar='CONFIDENCE',
 help="Only rotate pages when confidence is above this value (arbitrary "
 "units reported by tesseract)",
)
advanced.add_argument(
 '--pdfa-image-compression',
 choices=['auto', 'jpeg', 'lossless'],
 default='auto',
 help="Specify how to compress images in the output PDF/A. 'auto' lets "
 "OCRmyPDF decide. 'jpeg' changes all grayscale and color images to "
 "JPEG compression. 'lossless' uses PNG-style lossless compression "
 "for all images. Monochrome images are always compressed using a "
 "lossless codec. Compression settings "
 "are applied to all pages, including those for which OCR was "
 "skipped. Not supported for --output-type=pdf ; that setting "
 "preserves the original compression of all images.",
)
advanced.add_argument(
 '--user-words',
 metavar='FILE',
 help="Specify the location of the Tesseract user words file. This is a "
 "list of words Tesseract should consider while performing OCR in "
 "addition to its standard language dictionaries. This can improve "
 "OCR quality especially for specialized and technical documents.",
)
advanced.add_argument(
 '--user-patterns',
 metavar='FILE',
 help="Specify the location of the Tesseract user patterns file.",
)
advanced.add_argument(
 '--fast-web-view',
 type=numeric(float, 0),
 default=1.0,
 metavar="MEGABYTES",
 help="If the size of file is more than this threshold (in MB), then "
 "linearize the PDF for fast web viewing. This allows the PDF to be "
 "displayed before it is fully downloaded in web browsers, but increases "
 "the space required slightly. By default we skip this for small files "
 "which do not benefit. If the threshold is 0 it will be apply to all files. "
 "Set the threshold very high to disable.",
)

debugging = parser.add_argument_group(
 "Debugging", "Arguments to help with troubleshooting and debugging"
)
debugging.add_argument(
 '-k',
 '--keep-temporary-files',
 action='store_true',
 help="Keep temporary files (helpful for debugging)",
)
debugging.add_argument('--tesseract-env', type=str, help=argparse.SUPPRESS)

./usr/lib/python3/dist-packages/ocrmypdf/exceptions.py

© 2016 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from enum import IntEnum
from textwrap import dedent

class ExitCode(IntEnum):
 ok = 0
 bad_args = 1
 input_file = 2
 missing_dependency = 3
 invalid_output_pdf = 4
 file_access_error = 5
 already_done_ocr = 6
 child_process_error = 7
 encrypted_pdf = 8
 invalid_config = 9
 pdfa_conversion_failed = 10
 other_error = 15
 ctrl_c = 130

class ExitCodeException(Exception):
 exit_code = ExitCode.other_error
 message = ""

 def __str__(self):
 super_msg = super().__str__() # Don't do str(super())
 if self.message:
 return self.message.format(super_msg)
 return super_msg

class BadArgsError(ExitCodeException):
 exit_code = ExitCode.bad_args

class PdfMergeFailedError(ExitCodeException):
 exit_code = ExitCode.input_file
 message = dedent(
 '''\
 Failed to merge PDF image layer with OCR layer

 Usually this happens because the input PDF file is malformed and
 ocrmypdf cannot automatically correct the problem on its own.

 Try using
 ocrmypdf --pdf-renderer sandwich [..other args..]
 '''
)

class MissingDependencyError(ExitCodeException):
 exit_code = ExitCode.missing_dependency

class UnsupportedImageFormatError(ExitCodeException):
 exit_code = ExitCode.input_file

class DpiError(ExitCodeException):
 exit_code = ExitCode.input_file

class OutputFileAccessError(ExitCodeException):
 exit_code = ExitCode.file_access_error

class PriorOcrFoundError(ExitCodeException):
 exit_code = ExitCode.already_done_ocr

class InputFileError(ExitCodeException):
 exit_code = ExitCode.input_file

class SubprocessOutputError(ExitCodeException):
 exit_code = ExitCode.child_process_error

class EncryptedPdfError(ExitCodeException):
 exit_code = ExitCode.encrypted_pdf
 message = dedent(
 '''\
 Input PDF is encrypted. The encryption must be removed to
 perform OCR.

 For information about this PDF's security use
 qpdf --show-encryption infilename

 You can remove the encryption using
 qpdf --decrypt [--password=[password]] infilename
 '''
)

class TesseractConfigError(ExitCodeException):
 exit_code = ExitCode.invalid_config
 message = "Error occurred while parsing a Tesseract configuration file"

./usr/lib/python3/dist-packages/ocrmypdf/exec/__init__.py

© 2016 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Wrappers to manage subprocess calls"""

import logging
import os
import re
import shutil
import sys
from collections.abc import Mapping
from functools import lru_cache
from subprocess import PIPE, STDOUT, CalledProcessError
from subprocess import run as subprocess_run

from ..exceptions import ExitCode, MissingDependencyError

log = logging.getLogger(__name__)

def _get_program(args, env=None):
 program = args[0]
 test_path = env.get('_OCRMYPDF_TEST_PATH', '')
 if test_path:
 program = shutil.which(program, path=test_path)
 return program

def run(args, *, env=None, **kwargs):
 """Wrapper around subprocess.run()

 The main purpose of this wrapper is to allow us to substitute the main program
 for a spoof in the test suite. The hidden variable _OCRMYPDF_TEST_PATH replaces
 the main PATH as a location to check for programs to run.

 Secondly we have to account for behavioral differences in Windows in particular.
 Creating symbolic links in Windows requires administrator privileges and
 may not work if for some reason we're using a FAT file system or the temporary
 folder is on a different drive from the working folder. The test suite
 works around this by creating shim Python scripts that perform the same function
 as a symbolic link, but those shims require support on this side, to ensure
 we call them with Python.

 """
 if not env:
 env = os.environ

 # Search in spoof path if necessary
 program = _get_program(args, env)

 # If we are running a .py on Windows, ensure we call it with this Python
 # (to support test suite shims)
 if os.name == 'nt' and program.lower().endswith('.py'):
 args = [sys.executable, program] + args[1:]
 else:
 args = [program] + args[1:]

 if os.name == 'nt':
 paths = os.pathsep.join(os.get_exec_path(env))
 if not shutil.which(args[0], path=paths):
 shimmed_path = shim_paths_with_program_files(env)
 new_args0 = shutil.which(args[0], path=shimmed_path)
 if new_args0:
 args[0] = new_args0

 process_log = log.getChild(os.path.basename(program))
 process_log.debug("Running: %s", args)
 if sys.version_info < (3, 7) and os.name == 'nt':
 # Can't use close_fds=True on Windows with Python 3.6 or older
 # https://bugs.python.org/issue19575, etc.
 kwargs['close_fds'] = False
 proc = subprocess_run(args, env=env, **kwargs)
 if process_log.isEnabledFor(logging.DEBUG):
 try:
 stderr = proc.stderr.decode('utf-8', 'replace')
 except AttributeError:
 stderr = proc.stderr
 if stderr:
 process_log.debug("stderr = %s", stderr)
 return proc

def get_version(program, *, version_arg='--version', regex=r'(\d+(\.\d+)*)', env=None):
 """Get the version of the specified program"""
 args_prog = [program, version_arg]
 try:
 proc = run(
 args_prog,
 close_fds=True,
 universal_newlines=True,
 stdout=PIPE,
 stderr=STDOUT,
 check=True,
 env=env,
)
 output = proc.stdout
 except FileNotFoundError as e:
 raise MissingDependencyError(
 f"Could not find program '{program}' on the PATH"
) from e
 except CalledProcessError as e:
 if e.returncode != 0:
 raise MissingDependencyError(
 f"Ran program '{program}' but it exited with an error:\n{e.output}"
) from e
 raise MissingDependencyError(
 f"Could not find program '{program}' on the PATH"
) from e
 try:
 version = re.match(regex, output.strip()).group(1)
 except AttributeError as e:
 raise MissingDependencyError(
 f"The program '{program}' did not report its version. "
 f"Message was:\n{output}"
)

 return version

def shim_paths_with_program_files(env=None):
 if not env:
 env = os.environ
 program_files = env.get('PROGRAMFILES', '')
 if not program_files:
 return env.get('PATH', '')
 paths = []
 try:
 for dirname in os.listdir(program_files):
 if dirname.lower() == 'tesseract-ocr':
 paths.append(os.path.join(program_files, dirname))
 elif dirname.lower() == 'gs':
 try:
 latest_gs = max(
 os.listdir(os.path.join(program_files, dirname)),
 key=lambda d: float(d[2:]),
)
 except (FileNotFoundError, NotADirectoryError):
 continue
 paths.append(os.path.join(program_files, dirname, latest_gs, 'bin'))
 except EnvironmentError:
 pass
 paths.extend(path for path in os.get_exec_path(env) if path not in set(paths))
 return os.pathsep.join(paths)

missing_program = '''
The program '{program}' could not be executed or was not found on your
system PATH.
'''

missing_optional_program = '''
The program '{program}' could not be executed or was not found on your
system PATH. This program is required when you use the
{required_for} arguments. You could try omitting these arguments, or install
the package.
'''

missing_recommend_program = '''
The program '{program}' could not be executed or was not found on your
system PATH. This program is recommended when using the {required_for} arguments,
but not required, so we will proceed. For best results, install the program.
'''

old_version = '''
OCRmyPDF requires '{program}' {need_version} or higher. Your system appears
to have {found_version}. Please update this program.
'''

old_version_required_for = '''
OCRmyPDF requires '{program}' {need_version} or higher when run with the
{required_for} arguments. If you omit these arguments, OCRmyPDF may be able to
proceed. For best results, install the program.
'''

osx_install_advice = '''
If you have homebrew installed, try these command to install the missing
package:
 brew install {package}
'''

linux_install_advice = '''
On systems with the aptitude package manager (Debian, Ubuntu), try these
commands:
 sudo apt-get update
 sudo apt-get install {package}

On RPM-based systems (Red Hat, Fedora), search for instructions on
installing the RPM for {program}.
'''

windows_install_advice = '''
If not already installed, install the Chocolatey package manager. Then use
a command prompt to install the missing package:
 choco install {package}
'''

def _get_platform():
 if sys.platform.startswith('freebsd'):
 return 'freebsd'
 elif sys.platform.startswith('linux'):
 return 'linux'
 elif sys.platform.startswith('win'):
 return 'windows'
 return sys.platform

def _error_trailer(program, package, **kwargs):
 if isinstance(package, Mapping):
 package = package.get(_get_platform(), program)

 if _get_platform() == 'darwin':
 log.info(osx_install_advice.format(**locals()))
 elif _get_platform() == 'linux':
 log.info(linux_install_advice.format(**locals()))
 elif _get_platform() == 'windows':
 log.info(windows_install_advice.format(**locals()))

def _error_missing_program(program, package, required_for, recommended):
 if required_for:
 log.error(missing_optional_program.format(**locals()))
 elif recommended:
 log.info(missing_recommend_program.format(**locals()))
 else:
 log.error(missing_program.format(**locals()))
 _error_trailer(**locals())

def _error_old_version(program, package, need_version, found_version, required_for):
 if required_for:
 log.error(old_version_required_for.format(**locals()))
 else:
 log.error(old_version.format(**locals()))
 _error_trailer(**locals())

def check_external_program(
 *,
 program,
 package,
 version_checker,
 need_version,
 required_for=None,
 recommended=False,
 **kwargs, # To consume log parameter
):
 if kwargs:
 if not 'log' in kwargs:
 log.warning('check_external_program(log=...) is deprecated')
 try:
 found_version = version_checker()
 except (CalledProcessError, FileNotFoundError, MissingDependencyError):
 _error_missing_program(program, package, required_for, recommended)
 if not recommended:
 raise MissingDependencyError()
 return

 if found_version < need_version:
 _error_old_version(program, package, need_version, found_version, required_for)
 if not recommended:
 raise MissingDependencyError()

 log.debug('Found %s %s', program, found_version)

./usr/lib/python3/dist-packages/ocrmypdf/exec/ghostscript.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Interface to Ghostscript executable"""

import logging
import os
import re
import warnings
from contextlib import suppress
from functools import lru_cache
from io import BytesIO
from os import fspath
from pathlib import Path
from shutil import which
from subprocess import PIPE, CalledProcessError

from PIL import Image

from ..exceptions import MissingDependencyError, SubprocessOutputError
from . import get_version, run

gslog = logging.getLogger()

GS = 'gs'
if os.name == 'nt':
 GS = which('gswin64c')
 if not GS:
 GS = which('gswin32c')
 if not GS:
 raise MissingDependencyError(
 """

 This error normally occurs when ocrmypdf can't Ghostscript. Please
 ensure Ghostscript is installed and its location is added to the
 system PATH environment variable.

 For details see:
 https://ocrmypdf.readthedocs.io/en/latest/installation.html

 """
)
 GS = Path(GS).stem

@lru_cache(maxsize=1)
def version():
 return get_version(GS)

def jpeg_passthrough_available():
 """Returns True if the installed version of Ghostscript supports JPEG passthru

 Prior to 9.23, Ghostscript decode and re-encoded JPEGs internally. In 9.23
 it gained the ability to keep JPEGs unmodified. However, the 9.23
 implementation was buggy and would deletes the last two bytes of images in
 some cases, as reported here.
 https://bugs.ghostscript.com/show_bug.cgi?id=699216

 The issue was fixed for 9.24, hence that is the first version we consider
 the feature available. (However, we don't use 9.24 at all, so the first
 version that allows JPEG passthrough is 9.25.

 """
 return version() >= '9.24'

def _gs_error_reported(stream):
 return re.search(r'error', stream, flags=re.IGNORECASE)

def extract_text(input_file, pageno=1):
 """Use the txtwrite device to get text layout information out

 For details on options of -dTextFormat see
 https://www.ghostscript.com/doc/current/VectorDevices.htm#TXT

 Format is like
 <page>
 <line>

 <char bbox="...." c="X"/>

 :param pageno: number of page to extract, or all pages if None
 :return: XML-ish text representation in bytes
 """

 if pageno is not None:
 pages = ['-dFirstPage=%i' % pageno, '-dLastPage=%i' % pageno]
 else:
 pages = []

 # Note due to bug https://bugs.ghostscript.com/show_bug.cgi?id=701971
 # Ghostscript <= 9.50 will truncate output unless we write to stdout, so
 # don't write to a file.
 args_gs = (
 [
 GS,
 '-dQUIET',
 '-dSAFER',
 '-dBATCH',
 '-dNOPAUSE',
 '-sDEVICE=txtwrite',
 '-dTextFormat=0',
]
 + pages
 + ['-o', '-', fspath(input_file), "-sstdout=%stderr"]
)

 try:
 p = run(args_gs, stdout=PIPE, stderr=PIPE, check=True)
 except CalledProcessError as e:
 raise SubprocessOutputError(
 'Ghostscript text extraction failed\n%s\n%s'
 % (input_file, e.stderr.decode(errors='replace'))
)

 return p.stdout

def rasterize_pdf(
 input_file,
 output_file,
 xres,
 yres,
 raster_device,
 log,
 pageno=1,
 page_dpi=None,
 rotation=None,
 filter_vector=False,
):
 """Rasterize one page of a PDF at resolution (xres, yres) in canvas units.

 The image is sized to match the integer pixels dimensions implied by
 (xres, yres) even if those numbers are noninteger. The image's DPI will
 be overridden with the values in page_dpi.

 :param input_file: pathlike
 :param output_file: pathlike
 :param xres: resolution at which to rasterize page
 :param yres:
 :param raster_device:
 :param log:
 :param pageno: page number to rasterize (beginning at page 1)
 :param page_dpi: resolution tuple (x, y) overriding output image DPI
 :param rotation: 0, 90, 180, 270: clockwise angle to rotate page
 :param filter_vector: if True, remove vector graphics objects
 :return:
 """
 res = round(xres, 6), round(yres, 6)
 if not page_dpi:
 page_dpi = res
 if not log:
 log = gslog

 args_gs = (
 [
 GS,
 '-dQUIET',
 '-dSAFER',
 '-dBATCH',
 '-dNOPAUSE',
 f'-sDEVICE={raster_device}',
 f'-dFirstPage={pageno}',
 f'-dLastPage={pageno}',
 f'-r{res[0]:f}x{res[1]:f}',
]
 + (['-dFILTERVECTOR'] if filter_vector else [])
 + [
 '-o',
 '-',
 '-sstdout=%stderr',
 '-dAutoRotatePages=/None', # Probably has no effect on raster
 '-f',
 fspath(input_file),
]
)

 log.debug(args_gs)
 try:
 p = run(args_gs, stdout=PIPE, stderr=PIPE, check=True)
 except CalledProcessError as e:
 log.error(e.stderr.decode(errors='replace'))
 raise SubprocessOutputError('Ghostscript rasterizing failed')
 else:
 stderr = p.stderr.decode(errors='replace')
 if _gs_error_reported(stderr):
 log.error(stderr)
 elif stderr:
 log.debug(stderr)

 with Image.open(BytesIO(p.stdout)) as im:
 if rotation is not None:
 log.debug("Rotating output by %i", rotation)
 # rotation is a clockwise angle and Image.ROTATE_* is
 # counterclockwise so this cancels out the rotation
 if rotation == 90:
 im = im.transpose(Image.ROTATE_90)
 elif rotation == 180:
 im = im.transpose(Image.ROTATE_180)
 elif rotation == 270:
 im = im.transpose(Image.ROTATE_270)
 if rotation % 180 == 90:
 page_dpi = page_dpi[1], page_dpi[0]
 im.save(fspath(output_file), dpi=page_dpi)

def generate_pdfa(
 pdf_pages,
 output_file,
 compression,
 log,
 threads=None, # deprecated parameter
 pdf_version='1.5',
 pdfa_part='2',
):
 """Generate a PDF/A.

 The pdf_pages, a list files, will be merged into output_file. One or more
 PDF files may be merged. One of the files in this list must be a pdfmark
 file that provides Ghostscript with details on how to perform the PDF/A
 conversion. By default with we pick PDF/A-2b, but this works for 1 or 3.

 compression can be 'jpeg', 'lossless', or an empty string. In 'jpeg',
 Ghostscript is instructed to convert color and grayscale images to DCT
 (JPEG encoding). In 'lossless' Ghostscript is told to convert images to
 Flate (lossless/PNG). If the parameter is omitted Ghostscript is left to
 make its own decisions about how to encode images; it appears to use a
 heuristic to decide how to encode images. As of Ghostscript 9.25, we
 support passthrough JPEG which allows Ghostscript to avoid transcoding
 images entirely. (The feature was added in 9.23 but broken, and the 9.24
 release of Ghostscript had regressions, so we don't support it until 9.25.)
 """
 if not log:
 log = gslog
 if threads is not None:
 warnings.warn(
 "use of deprecated parameter 'threads'", category=DeprecationWarning
)

 compression_args = []
 if compression == 'jpeg':
 compression_args = [
 "-dAutoFilterColorImages=false",
 "-dColorImageFilter=/DCTEncode",
 "-dAutoFilterGrayImages=false",
 "-dGrayImageFilter=/DCTEncode",
]
 elif compression == 'lossless':
 compression_args = [
 "-dAutoFilterColorImages=false",
 "-dColorImageFilter=/FlateEncode",
 "-dAutoFilterGrayImages=false",
 "-dGrayImageFilter=/FlateEncode",
]
 else:
 compression_args = [
 "-dAutoFilterColorImages=true",
 "-dAutoFilterGrayImages=true",
]

 # Older versions of Ghostscript expect a leading slash in
 # sColorConversionStrategy, newer ones should not have it. See Ghostscript
 # git commit fe1c025d.
 strategy = 'RGB' if version() >= '9.19' else '/RGB'

 if version() == '9.23':
 # 9.23: new feature JPEG passthrough is broken in some cases, best to
 # disable it always
 # https://bugs.ghostscript.com/show_bug.cgi?id=699216
 compression_args.append('-dPassThroughJPEGImages=false')

 # nb no need to specify ProcessColorModel when ColorConversionStrategy
 # is set; see:
 # https://bugs.ghostscript.com/show_bug.cgi?id=699392
 args_gs = (
 [
 GS,
 "-dQUIET",
 "-dBATCH",
 "-dNOPAUSE",
 "-dSAFER",
 "-dCompatibilityLevel=" + str(pdf_version),
 "-sDEVICE=pdfwrite",
 "-dAutoRotatePages=/None",
 "-sColorConversionStrategy=" + strategy,
]
 + compression_args
 + [
 "-dJPEGQ=95",
 "-dPDFA=" + pdfa_part,
 "-dPDFACompatibilityPolicy=1",
 "-o",
 "-",
 "-sstdout=%stderr",
]
)
 args_gs.extend(fspath(s) for s in pdf_pages) # Stringify Path objs
 try:
 with Path(output_file).open('wb') as output:
 p = run(args_gs, stdout=output, stderr=PIPE, check=True)
 except CalledProcessError as e:
 # Ghostscript does not change return code when it fails to create
 # PDF/A - check PDF/A status elsewhere
 log.error(e.stderr.decode(errors='replace'))
 raise SubprocessOutputError('Ghostscript PDF/A rendering failed')
 else:
 stderr = p.stderr.decode('utf-8', errors='replace')
 if _gs_error_reported(stderr):
 last_part = None
 repcount = 0
 for part in stderr.split('****'):
 if part != last_part:
 if repcount > 1:
 log.error(f"(previous error message repeated {repcount} times)")
 repcount = 0
 log.error(part)
 else:
 repcount += 1
 last_part = part
 elif 'overprint mode not set' in stderr:
 # Unless someone is going to print PDF/A documents on a
 # magical sRGB printer I can't see the removal of overprinting
 # being a problem....
 log.debug(
 "Ghostscript had to remove PDF 'overprinting' from the "
 "input file to complete PDF/A conversion. "
)

./usr/lib/python3/dist-packages/ocrmypdf/exec/jbig2enc.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Interface to jbig2 executable"""

from functools import lru_cache
from subprocess import PIPE

from ..exceptions import MissingDependencyError
from . import get_version, run

@lru_cache(maxsize=1)
def version():
 return get_version('jbig2', regex=r'jbig2enc (\d+(\.\d+)*).*')

def available():
 try:
 version()
 except MissingDependencyError:
 return False
 return True

def convert_group(*, cwd, infiles, out_prefix):
 args = [
 'jbig2',
 '-b',
 out_prefix,
 '-s', # symbol mode (lossy)
 # '-r', # refinement mode (lossless symbol mode, currently disabled in
 # jbig2)
 '-p',
]
 args.extend(infiles)
 proc = run(args, cwd=cwd, stdout=PIPE, stderr=PIPE)
 proc.check_returncode()
 return proc

def convert_single(*, cwd, infile, outfile):
 args = ['jbig2', '-p', infile]
 with open(outfile, 'wb') as fstdout:
 proc = run(args, cwd=cwd, stdout=fstdout, stderr=PIPE)
 proc.check_returncode()
 return proc

./usr/lib/python3/dist-packages/ocrmypdf/exec/pngquant.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Interface to pngquant executable"""

from functools import lru_cache
from subprocess import run
from tempfile import NamedTemporaryFile

from PIL import Image

from ..exceptions import MissingDependencyError
from . import get_version

@lru_cache(maxsize=1)
def version():
 return get_version('pngquant', regex=r'(\d+(\.\d+)*).*')

def available():
 try:
 version()
 except MissingDependencyError:
 return False
 return True

def quantize(input_file, output_file, quality_min, quality_max):
 if input_file.endswith('.jpg'):
 with Image.open(input_file) as im, NamedTemporaryFile(suffix='.png') as tmp:
 im.save(tmp)
 args = [
 'pngquant',
 '--force',
 '--skip-if-larger',
 '--output',
 output_file,
 '--quality',
 f'{quality_min}-{quality_max}',
 '--',
 tmp.name,
]
 run(args)
 else:
 args = [
 'pngquant',
 '--force',
 '--skip-if-larger',
 '--output',
 output_file,
 '--quality',
 f'{quality_min}-{quality_max}',
 '--',
 input_file,
]
 run(args)

./usr/lib/python3/dist-packages/ocrmypdf/exec/qpdf.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Interface to qpdf executable"""

from io import StringIO

import pikepdf

def version():
 return pikepdf.__libqpdf_version__

def check(input_file, log=None):
 pdf = None
 try:
 pdf = pikepdf.open(input_file)
 except pikepdf.PdfError as e:
 if log:
 log.error(e)
 return False
 else:
 messages = pdf.check()
 for msg in messages:
 if 'error' in msg.lower():
 log.error(msg)
 else:
 log.warning(msg)

 sio = StringIO()
 linearize = None
 try:
 pdf.check_linearization(sio)
 except RuntimeError:
 pass
 else:
 linearize = sio.getvalue()
 if linearize:
 log.warning(linearize)

 if not messages and not linearize:
 return True
 return False
 finally:
 if pdf:
 pdf.close()

./usr/lib/python3/dist-packages/ocrmypdf/exec/tesseract.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see .

"""Interface to Tesseract executable"""

import logging
import os
import shutil
from collections import namedtuple
from contextlib import suppress
from os import fspath
from subprocess import PIPE, STDOUT, CalledProcessError, TimeoutExpired

from ..exceptions import (
 MissingDependencyError,
 SubprocessOutputError,
 TesseractConfigError,
)
from ..helpers import page_number, safe_symlink
from . import get_version, run

OrientationConfidence = namedtuple('OrientationConfidence', ('angle', 'confidence'))

HOCR_TEMPLATE = """

"""

class TesseractLoggerAdapter(logging.LoggerAdapter):
 def process(self, msg, kwargs):
 kwargs['extra'] = self.extra
 return '[tesseract] %s' % (msg), kwargs

def version(tesseract_env=None):
 return get_version('tesseract', regex=r'tesseract\s(.+)', env=tesseract_env)

def v4(tesseract_env=None):
 "Is this Tesseract v4.0?"
 return version(tesseract_env) >= '4'

def has_textonly_pdf(tesseract_env=None, langs=None):
 """Does Tesseract have textonly_pdf capability?

 Available in v4.00.00alpha since January 2017. Best to
 parse the parameter list.
 """
 args_tess = tess_base_args(langs, engine_mode=None) + ['--print-parameters', 'pdf']
 params = ''
 try:
 proc = run(
 args_tess,
 check=True,
 universal_newlines=True,
 stdout=PIPE,
 stderr=STDOUT,
 env=tesseract_env,
)
 params = proc.stdout
 except CalledProcessError as e:
 raise MissingDependencyError(
 "Could not --print-parameters from tesseract"
) from e
 if 'textonly_pdf' in params:
 return True
 return False

def has_user_words(tesseract_env=None):
 """Does Tesseract have --user-words capability?

 Not available in 4.0, but available in 4.1. Also available in 3.x, but
 we no longer support 3.x.
 """
 return version(tesseract_env) >= '4.1'

def languages(tesseract_env=None):
 def lang_error(output):
 msg = (
 "Tesseract failed to report available languages.\n"
 "Output from Tesseract:\n"
 "-----------\n"
)
 msg += output
 return msg

 args_tess = ['tesseract', '--list-langs']
 try:
 proc = run(
 args_tess,
 universal_newlines=True,
 stdout=PIPE,
 stderr=STDOUT,
 check=True,
 env=tesseract_env,
)
 output = proc.stdout
 except CalledProcessError as e:
 raise MissingDependencyError(lang_error(e.output)) from e

 for line in output.splitlines():
 if line.startswith('Error'):
 raise MissingDependencyError(lang_error(output))
 header, *rest = output.splitlines()
 return set(lang.strip() for lang in rest)

def tess_base_args(langs, engine_mode):
 args = ['tesseract']
 if langs:
 args.extend(['-l', '+'.join(langs)])
 if engine_mode is not None:
 args.extend(['--oem', str(engine_mode)])
 return args

def get_orientation(input_file, engine_mode, timeout: float, log, tesseract_env=None):
 args_tesseract = tess_base_args(['osd'], engine_mode) + [
 '--psm',
 '0',
 fspath(input_file),
 'stdout',
]

 try:
 p = run(
 args_tesseract,
 stdout=PIPE,
 stderr=STDOUT,
 timeout=timeout,
 check=True,
 env=tesseract_env,
)
 stdout = p.stdout
 except TimeoutExpired:
 return OrientationConfidence(angle=0, confidence=0.0)
 except CalledProcessError as e:
 tesseract_log_output(log, e.output, input_file)
 if (
 b'Too few characters. Skipping this page' in e.output
 or b'Image too large' in e.output
):
 return OrientationConfidence(0, 0)
 raise SubprocessOutputError() from e
 else:
 osd = {}
 for line in stdout.decode().splitlines():
 line = line.strip()
 parts = line.split(':', maxsplit=2)
 if len(parts) == 2:
 osd[parts[0].strip()] = parts[1].strip()

 angle = int(osd.get('Orientation in degrees', 0))
 oc = OrientationConfidence(
 angle=angle, confidence=float(osd.get('Orientation confidence', 0))
)
 return oc

def tesseract_log_output(mainlog, stdout, input_file):
 log = TesseractLoggerAdapter(
 mainlog, extra=mainlog.extra if hasattr(mainlog, 'extra') else None
)

 try:
 text = stdout.decode()
 except UnicodeDecodeError:
 text = stdout.decode('utf-8', 'ignore')

 lines = text.splitlines()
 for line in lines:
 if line.startswith("Tesseract Open Source"):
 continue
 elif line.startswith("Warning in pixReadMem"):
 continue
 elif 'diacritics' in line:
 log.warning("lots of diacritics - possibly poor OCR")
 elif line.startswith('OSD: Weak margin'):
 log.warning("unsure about page orientation")
 elif 'Error in pixScanForForeground' in line:
 pass # Appears to be spurious/problem with nonwhite borders
 elif 'Error in boxClipToRectangle' in line:
 pass # Always appears with pixScanForForeground message
 elif 'parameter not found: ' in line.lower():
 log.error(line.strip())
 problem = line.split('found: ')[1]
 raise TesseractConfigError(problem)
 elif 'error' in line.lower() or 'exception' in line.lower():
 log.error(line.strip())
 elif 'warning' in line.lower():
 log.warning(line.strip())
 elif 'read_params_file' in line.lower():
 log.error(line.strip())
 else:
 log.info(line.strip())

def page_timedout(log, input_file, timeout):
 if timeout == 0:
 return
 prefix = f"{(page_number(input_file)):4d}: [tesseract] "
 log.warning(prefix + " took too long to OCR - skipping")

def _generate_null_hocr(output_hocr, output_sidecar, image):
 """Produce a .hocr file that reports no text detected on a page that is
 the same size as the input image."""
 from PIL import Image

 with Image.open(image) as im:
 w, h = im.size

 with open(output_hocr, 'w', encoding="utf-8") as f:
 f.write(HOCR_TEMPLATE.format(w, h))
 with open(output_sidecar, 'w', encoding='utf-8') as f:
 f.write('[skipped page]')

def generate_hocr(
 input_file,
 output_files,
 language: list,
 engine_mode,
 tessconfig: list,
 timeout: float,
 pagesegmode: int,
 user_words,
 user_patterns,
 tesseract_env,
 log,
):

 output_hocr = next(o for o in output_files if fspath(o).endswith('.hocr'))
 output_sidecar = next(o for o in output_files if fspath(o).endswith('.txt'))
 prefix = os.path.splitext(output_hocr)[0]

 args_tesseract = tess_base_args(language, engine_mode)

 if pagesegmode is not None:
 args_tesseract.extend(['--psm', str(pagesegmode)])

 if user_words:
 args_tesseract.extend(['--user-words', user_words])

 if user_patterns:
 args_tesseract.extend(['--user-patterns', user_patterns])

 # Reminder: test suite tesseract spoofers will break after any changes
 # to the number of order parameters here
 args_tesseract.extend([input_file, prefix, 'hocr', 'txt'] + tessconfig)
 try:
 p = run(
 args_tesseract,
 stdout=PIPE,
 stderr=STDOUT,
 timeout=timeout,
 check=True,
 env=tesseract_env,
)
 stdout = p.stdout
 except TimeoutExpired:
 # Generate a HOCR file with no recognized text if tesseract times out
 # Temporary workaround to hocrTransform not being able to function if
 # it does not have a valid hOCR file.
 page_timedout(log, input_file, timeout)
 _generate_null_hocr(output_hocr, output_sidecar, input_file)
 except CalledProcessError as e:
 tesseract_log_output(log, e.output, input_file)
 if b'Image too large' in e.output:
 _generate_null_hocr(output_hocr, output_sidecar, input_file)
 return

 raise SubprocessOutputError() from e
 else:
 tesseract_log_output(log, stdout, input_file)
 # The sidecar text file will get the suffix .txt; rename it to
 # whatever caller wants it named
 if os.path.exists(prefix + '.txt'):
 shutil.move(prefix + '.txt', output_sidecar)

def use_skip_page(text_only, skip_pdf, output_pdf, output_text):
 with open(output_text, 'w') as f:
 f.write('[skipped page]')

 if skip_pdf and not text_only:
 # Substitute a "skipped page"
 with suppress(FileNotFoundError):
 os.remove(output_pdf) # In case it was partially created
 safe_symlink(skip_pdf, output_pdf)
 return

 # Or normally, just write a 0 byte file to the output to indicate a skip
 with open(output_pdf, 'wb') as out:
 out.write(b'')

def generate_pdf(
 *,
 input_image,
 skip_pdf=None,
 output_pdf,
 output_text,
 language: list,
 engine_mode,
 text_only: bool,
 tessconfig: list,
 timeout: float,
 pagesegmode: int,
 user_words,
 user_patterns,
 tesseract_env,
 log,
):
 """Use Tesseract to render a PDF.

 input_image -- image to analyze
 skip_pdf -- if we time out, use this file as output
 output_pdf -- file to generate
 output_text -- OCR text file
 language -- list of languages to consider
 engine_mode -- engine mode argument for tess v4
 text_only -- enable tesseract text only mode?
 tessconfig -- tesseract configuration
 timeout -- timeout (seconds)
 log -- logger object
 """

 args_tesseract = tess_base_args(language, engine_mode)

 if pagesegmode is not None:
 args_tesseract.extend(['--psm', str(pagesegmode)])

 if text_only and has_textonly_pdf(tesseract_env, language):
 args_tesseract.extend(['-c', 'textonly_pdf=1'])

 if user_words:
 args_tesseract.extend(['--user-words', user_words])

 if user_patterns:
 args_tesseract.extend(['--user-patterns', user_patterns])

 prefix = os.path.splitext(output_pdf)[0] # Tesseract appends suffixes

 # Reminder: test suite tesseract spoofers might break after any changes
 # to the number of order parameters here

 args_tesseract.extend([input_image, prefix, 'pdf', 'txt'] + tessconfig)
 try:
 p = run(
 args_tesseract,
 stdout=PIPE,
 stderr=STDOUT,
 timeout=timeout,
 check=True,
 env=tesseract_env,
)
 stdout = p.stdout
 if os.path.exists(prefix + '.txt'):
 shutil.move(prefix + '.txt', output_text)
 except TimeoutExpired:
 page_timedout(log, input_image, timeout)
 use_skip_page(text_only, skip_pdf, output_pdf, output_text)
 except CalledProcessError as e:
 tesseract_log_output(log, e.output, input_image)
 if b'Image too large' in e.output:
 use_skip_page(text_only, skip_pdf, output_pdf, output_text)
 return
 raise SubprocessOutputError() from e
 else:
 tesseract_log_output(log, stdout, input_image)

./usr/lib/python3/dist-packages/ocrmypdf/exec/unpaper.py

© 2015 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

unpaper documentation:
https://github.com/Flameeyes/unpaper/blob/master/doc/basic-concepts.md

"""Interface to unpaper executable"""

import os
import shlex
from functools import lru_cache
from subprocess import PIPE, STDOUT, CalledProcessError
from tempfile import TemporaryDirectory

from PIL import Image

from ..exceptions import MissingDependencyError, SubprocessOutputError
from . import get_version
from . import run as external_run

@lru_cache(maxsize=1)
def version():
 return get_version('unpaper')

def run(input_file, output_file, dpi, log, mode_args):
 args_unpaper = ['unpaper', '-v', '--dpi', str(dpi)] + mode_args

 SUFFIXES = {'1': '.pbm', 'L': '.pgm', 'RGB': '.ppm'}

 with TemporaryDirectory() as tmpdir, Image.open(input_file) as im:
 if im.mode not in SUFFIXES.keys():
 log.info("Converting image to other colorspace")
 try:
 if im.mode == 'P' and len(im.getcolors()) == 2:
 im = im.convert(mode='1')
 else:
 im = im.convert(mode='RGB')
 except IOError as e:
 im.close()
 raise MissingDependencyError(
 "Could not convert image with type " + im.mode
) from e

 try:
 suffix = SUFFIXES[im.mode]
 except KeyError:
 raise MissingDependencyError(
 "Failed to convert image to a supported format."
) from e

 input_pnm = os.path.join(tmpdir, f'input{suffix}')
 output_pnm = os.path.join(tmpdir, f'output{suffix}')
 im.save(input_pnm, format='PPM')

 # To prevent any shenanigans from accepting arbitrary parameters in
 # --unpaper-args, we:
 # 1) run with cwd set to a tmpdir with only unpaper's files
 # 2) forbid the use of '/' in arguments, to prevent changing paths
 # 3) append absolute paths for the input and output file
 # This should ensure that a user cannot clobber some other file with
 # their unpaper arguments (whether intentionally or otherwise)
 args_unpaper.extend([input_pnm, output_pnm])
 try:
 proc = external_run(
 args_unpaper,
 check=True,
 close_fds=True,
 universal_newlines=True,
 stderr=STDOUT,
 cwd=tmpdir,
 stdout=PIPE,
)
 except CalledProcessError as e:
 log.debug(e.output)
 raise e from e
 else:
 log.debug(proc.stdout)
 # unpaper sets dpi to 72; fix this
 try:
 with Image.open(output_pnm) as imout:
 imout.save(output_file, dpi=(dpi, dpi))
 except (FileNotFoundError, OSError):
 raise SubprocessOutputError(
 "unpaper: failed to produce the expected output file. "
 + " Called with: "
 + str(args_unpaper)
) from None

def validate_custom_args(args: str):
 unpaper_args = shlex.split(args)
 if any('/' in arg for arg in unpaper_args):
 raise ValueError('No filenames allowed in --unpaper-args')
 return unpaper_args

def clean(input_file, output_file, dpi, log, unpaper_args=None):
 default_args = [
 '--layout',
 'none',
 '--mask-scan-size',
 '100', # don't blank out narrow columns
 '--no-border-align', # don't align visible content to borders
 '--no-mask-center', # don't center visible content within page
 '--no-grayfilter', # don't remove light gray areas
 '--no-blackfilter', # don't remove solid black areas
 '--no-deskew', # don't deskew
]
 if not unpaper_args:
 unpaper_args = default_args
 run(input_file, output_file, dpi, log, unpaper_args)

./usr/lib/python3/dist-packages/ocrmypdf/helpers.py

© 2016 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import multiprocessing
import os
import shutil
import warnings
from collections.abc import Iterable
from contextlib import suppress
from functools import wraps
from pathlib import Path

log = logging.getLogger(__name__)

def safe_symlink(input_file, soft_link_name, *args, **kwargs):
 """
 Helper function: relinks soft symbolic link if necessary
 """
 if len(args) == 1 and isinstance(args[0], logging.Logger):
 log.warning("Deprecated: safe_symlink(,log)")
 if 'log' in kwargs:
 log.warning('Deprecated: safe_symlink(...log=)')

 input_file = os.fspath(input_file)
 soft_link_name = os.fspath(soft_link_name)

 # Guard against soft linking to oneself
 if input_file == soft_link_name:
 log.warning(
 "No symbolic link made. You are using "
 "the original data directory as the working directory."
)
 return

 # Soft link already exists: delete for relink?
 if os.path.lexists(soft_link_name):
 # do not delete or overwrite real (non-soft link) file
 if not os.path.islink(soft_link_name):
 raise FileExistsError(f"{soft_link_name} exists and is not a link")
 try:
 os.unlink(soft_link_name)
 except OSError:
 log.debug("Can't unlink %s", soft_link_name)

 if not os.path.exists(input_file):
 raise FileNotFoundError(f"trying to create a broken symlink to {input_file}")

 if os.name == 'nt':
 # Don't actually use symlinks on Windows due to permission issues
 shutil.copyfile(input_file, soft_link_name)
 return

 log.debug("os.symlink(%s, %s)", input_file, soft_link_name)

 # Create symbolic link using absolute path
 os.symlink(os.path.abspath(input_file), soft_link_name)

def is_iterable_notstr(thing):
 return isinstance(thing, Iterable) and not isinstance(thing, str)

def monotonic(L):
 """Does list increase monotonically?"""
 return all(b > a for a, b in zip(L, L[1:]))

def page_number(input_file):
 """Get one-based page number implied by filename (000002.pdf -> 2)"""
 return int(os.path.basename(os.fspath(input_file))[0:6])

def available_cpu_count():
 try:
 return multiprocessing.cpu_count()
 except NotImplementedError:
 pass
 warnings.warn(
 "Could not get CPU count. Assuming one (1) CPU." "Use -j N to set manually."
)
 return 1

def is_file_writable(test_file):
 """Intentionally racy test if target is writable.

 We intend to write to the output file if and only if we succeed and
 can replace it atomically. Before doing the OCR work, make sure
 the location is writable.
 """
 try:
 if not isinstance(test_file, Path):
 p = Path(test_file)
 else:
 p = test_file

 if p.is_symlink():
 p = p.resolve(strict=False)

 # p.is_file() throws an exception in some cases
 if p.exists() and p.is_file():
 return os.access(
 os.fspath(p),
 os.W_OK,
 effective_ids=(os.access in os.supports_effective_ids),
)
 else:
 try:
 fp = p.open('wb')
 except OSError:
 return False
 else:
 fp.close()
 with suppress(OSError):
 p.unlink()
 return True
 except (EnvironmentError, RuntimeError) as e:
 log.debug(e)
 log.error(str(e))
 return False

def deprecated(func):
 """Warn that function is deprecated"""

 @wraps(func)
 def new_func(*args, **kwargs):
 warnings.simplefilter('always', DeprecationWarning) # turn off filter
 warnings.warn(
 "Call to deprecated function {}.".format(func.__name__),
 category=DeprecationWarning,
 stacklevel=2,
)
 warnings.simplefilter('default', DeprecationWarning) # reset filter
 return func(*args, **kwargs)

 return new_func

./usr/lib/python3/dist-packages/ocrmypdf/hocrtransform.py

#!/usr/bin/env python3
#
Copyright (c) 2010, Jonathan Brinley
Original version from: https://github.com/jbrinley/HocrConverter
#
Copyright (c) 2013-14, Julien Pfefferkorn
Modifications
#
Copyright (c) 2015-16, James R. Barlow
Set text to transparent
#
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
#
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import argparse
import re
from collections import namedtuple
from math import atan, cos, sin
from xml.etree import ElementTree

from reportlab.lib.units import inch
from reportlab.pdfgen.canvas import Canvas

Rect = namedtuple('Rect', ['x1', 'y1', 'x2', 'y2'])

class HocrTransformError(Exception):
 pass

class HocrTransform:

 """
 A class for converting documents from the hOCR format.
 For details of the hOCR format, see:
 http://kba.cloud/hocr-spec/
 """

 box_pattern = re.compile(r'bbox((\s+\d+){4})')
 baseline_pattern = re.compile(
 r'''
 baseline \s+
 ([\-\+]?\d*\.?\d*) \s+ # +/- decimal float
 ([\-\+]?\d+) # +/- int''',
 re.VERBOSE,
)
 ligatures = str.maketrans(
 {'ﬀ': 'ff', 'ﬃ': 'ffi', 'ﬄ': 'ffl', 'ﬁ': 'fi', 'ﬂ': 'fl'}
)

 def __init__(self, hocrFileName, dpi):
 self.dpi = dpi
 self.hocr = ElementTree.parse(hocrFileName)

 # if the hOCR file has a namespace, ElementTree requires its use to
 # find elements
 matches = re.match(r'({.*})html', self.hocr.getroot().tag)
 self.xmlns = ''
 if matches:
 self.xmlns = matches.group(1)

 # get dimension in pt (not pixel!!!!) of the OCRed image
 self.width, self.height = None, None
 for div in self.hocr.findall(".//%sdiv[@class='ocr_page']" % (self.xmlns)):
 coords = self.element_coordinates(div)
 pt_coords = self.pt_from_pixel(coords)
 self.width = pt_coords.x2 - pt_coords.x1
 self.height = pt_coords.y2 - pt_coords.y1
 # there shouldn't be more than one, and if there is, we don't want
 # it
 break
 if self.width is None or self.height is None:
 raise HocrTransformError("hocr file is missing page dimensions")

 def __str__(self): # pragma: no cover
 """
 Return the textual content of the HTML body
 """
 if self.hocr is None:
 return ''
 body = self.hocr.find(".//%sbody" % (self.xmlns))
 if body:
 return self._get_element_text(body)
 else:
 return ''

 def _get_element_text(self, element):
 """
 Return the textual content of the element and its children
 """
 text = ''
 if element.text is not None:
 text += element.text
 for child in element.getchildren():
 text += self._get_element_text(child)
 if element.tail is not None:
 text += element.tail
 return text

 @classmethod
 def element_coordinates(cls, element):
 """
 Returns a tuple containing the coordinates of the bounding box around
 an element
 """
 out = (0, 0, 0, 0)
 if 'title' in element.attrib:
 matches = cls.box_pattern.search(element.attrib['title'])
 if matches:
 coords = matches.group(1).split()
 out = Rect._make(int(coords[n]) for n in range(4))
 return out

 @classmethod
 def baseline(cls, element):
 """
 Returns a tuple containing the baseline slope and intercept.
 """
 if 'title' in element.attrib:
 matches = cls.baseline_pattern.search(element.attrib['title'])
 if matches:
 return float(matches.group(1)), int(matches.group(2))
 return (0, 0)

 def pt_from_pixel(self, pxl):
 """
 Returns the quantity in PDF units (pt) given quantity in pixels
 """
 return Rect._make((c / self.dpi * inch) for c in pxl)

 @classmethod
 def replace_unsupported_chars(cls, s):
 """
 Given an input string, returns the corresponding string that:
 - is available in the helvetica facetype
 - does not contain any ligature (to allow easy search in the PDF file)
 """
 return s.translate(cls.ligatures)

 def to_pdf(
 self,
 outFileName,
 imageFileName=None,
 showBoundingboxes=False,
 fontname="Helvetica",
 invisibleText=False,
 interwordSpaces=False,
):
 """
 Creates a PDF file with an image superimposed on top of the text.
 Text is positioned according to the bounding box of the lines in
 the hOCR file.
 The image need not be identical to the image used to create the hOCR
 file.
 It can have a lower resolution, different color mode, etc.
 """
 # create the PDF file
 # page size in points (1/72 in.)
 pdf = Canvas(outFileName, pagesize=(self.width, self.height), pageCompression=1)

 # draw bounding box for each paragraph
 # light blue for bounding box of paragraph
 pdf.setStrokeColorRGB(0, 1, 1)
 # light blue for bounding box of paragraph
 pdf.setFillColorRGB(0, 1, 1)
 pdf.setLineWidth(0) # no line for bounding box
 for elem in self.hocr.findall(".//%sp[@class='%s']" % (self.xmlns, "ocr_par")):

 elemtxt = self._get_element_text(elem).rstrip()
 if len(elemtxt) == 0:
 continue

 pxl_coords = self.element_coordinates(elem)
 pt = self.pt_from_pixel(pxl_coords)

 # draw the bbox border
 if showBoundingboxes: # pragma: no cover
 pdf.rect(
 pt.x1, self.height - pt.y2, pt.x2 - pt.x1, pt.y2 - pt.y1, fill=1
)

 found_lines = False
 for line in self.hocr.findall(
 ".//%sspan[@class='%s']" % (self.xmlns, "ocr_line")
):
 found_lines = True
 self._do_line(
 pdf,
 line,
 "ocrx_word",
 fontname,
 invisibleText,
 interwordSpaces,
 showBoundingboxes,
)

 if not found_lines:
 # Tesseract did not report any lines (just words)
 root = self.hocr.find(".//%sdiv[@class='%s']" % (self.xmlns, "ocr_page"))
 self._do_line(
 pdf,
 root,
 "ocrx_word",
 fontname,
 invisibleText,
 interwordSpaces,
 showBoundingboxes,
)
 # put the image on the page, scaled to fill the page
 if imageFileName is not None:
 pdf.drawImage(imageFileName, 0, 0, width=self.width, height=self.height)

 # finish up the page and save it
 pdf.showPage()
 pdf.save()

 @classmethod
 def polyval(cls, poly, x): # pragma: no cover
 return x * poly[0] + poly[1]

 def _do_line(
 self,
 pdf,
 line,
 elemclass,
 fontname,
 invisibleText,
 interwordSpaces,
 showBoundingboxes,
):
 pxl_line_coords = self.element_coordinates(line)
 line_box = self.pt_from_pixel(pxl_line_coords)
 line_height = line_box.y2 - line_box.y1

 slope, pxl_intercept = self.baseline(line)
 if abs(slope) < 0.005:
 slope = 0.0
 angle = atan(slope)
 cos_a, sin_a = cos(angle), sin(angle)

 text = pdf.beginText()
 intercept = pxl_intercept / self.dpi * inch

 # Don't allow the font to break out of the bounding box. Division by
 # cos_a accounts for extra clearance between the glyph's vertical axis
 # on a sloped baseline and the edge of the bounding box.
 fontsize = (line_height - abs(intercept)) / cos_a
 text.setFont(fontname, fontsize)
 if invisibleText:
 text.setTextRenderMode(3) # Invisible (indicates OCR text)

 # Intercept is normally negative, so this places it above the bottom
 # of the line box
 baseline_y2 = self.height - (line_box.y2 + intercept)

 if showBoundingboxes: # pragma: no cover
 # draw the baseline in magenta, dashed
 pdf.setDash()
 pdf.setStrokeColorRGB(0.95, 0.65, 0.95)
 pdf.setLineWidth(0.5)
 # negate slope because it is defined as a rise/run in pixel
 # coordinates and page coordinates have the y axis flipped
 pdf.line(
 line_box.x1,
 baseline_y2,
 line_box.x2,
 self.polyval((-slope, baseline_y2), line_box.x2 - line_box.x1),
)
 # light green for bounding box of word/line
 pdf.setDash(6, 3)
 pdf.setStrokeColorRGB(1, 0, 0)

 text.setTextTransform(cos_a, -sin_a, sin_a, cos_a, line_box.x1, baseline_y2)
 pdf.setFillColorRGB(0, 0, 0) # text in black

 elements = line.findall(".//%sspan[@class='%s']" % (self.xmlns, elemclass))
 for elem in elements:
 elemtxt = self._get_element_text(elem).strip()
 elemtxt = self.replace_unsupported_chars(elemtxt)
 if elemtxt == '':
 continue

 pxl_coords = self.element_coordinates(elem)
 box = self.pt_from_pixel(pxl_coords)
 if interwordSpaces:
 # if `--interword-spaces` is true, append a space
 # to the end of each text element to allow simpler PDF viewers
 # such as PDF.js to better recognize words in search and copy
 # and paste. Do not remove space from last word in line, even
 # though it would look better, because it will interfere with
 # naive text extraction. \n does not work either.
 elemtxt += ' '
 box = Rect._make(
 (
 box.x1,
 line_box.y1,
 box.x2 + pdf.stringWidth(' ', fontname, line_height),
 line_box.y2,
)
)
 box_width = box.x2 - box.x1
 font_width = pdf.stringWidth(elemtxt, fontname, fontsize)

 # draw the bbox border
 if showBoundingboxes: # pragma: no cover
 pdf.rect(
 box.x1, self.height - line_box.y2, box_width, line_height, fill=0
)

 # Adjust relative position of cursor
 # This is equivalent to:
 # text.setTextOrigin(pt.x1, self.height - line_box.y2)
 # but the former generates a full text reposition matrix (Tm) in the
 # content stream while this issues a "offset" (Td) command.
 # .moveCursor() is relative to start of the text line, where the
 # "text line" means whatever reportlab defines it as. Do not use
 # use .getCursor(), since moveCursor() rather unintuitively plans
 # its moves relative to .getStartOfLine().
 # For skewed lines, in the text transform we set up a rotated
 # coordinate system, so we don't have to account for the
 # incremental offset. Surprisingly most PDF viewers can handle this.
 cursor = text.getStartOfLine()
 dx = box.x1 - cursor[0]
 dy = baseline_y2 - cursor[1]
 text.moveCursor(dx, dy)

 # If reportlab tells us this word is 0 units wide, our best seems
 # to be to suppress this text
 if font_width > 0:
 text.setHorizScale(100 * box_width / font_width)
 text.textOut(elemtxt)
 pdf.drawText(text)

if __name__ == "__main__":
 parser = argparse.ArgumentParser(description='Convert hocr file to PDF')
 parser.add_argument(
 '-b',
 '--boundingboxes',
 action="store_true",
 default=False,
 help='Show bounding boxes borders',
)
 parser.add_argument(
 '-r',
 '--resolution',
 type=int,
 default=300,
 help='Resolution of the image that was OCRed',
)
 parser.add_argument(
 '-i',
 '--image',
 default=None,
 help='Path to the image to be placed above the text',
)
 parser.add_argument(
 '--interword-spaces',
 action='store_true',
 default=False,
 help='Add spaces between words',
)
 parser.add_argument('hocrfile', help='Path to the hocr file to be parsed')
 parser.add_argument('outputfile', help='Path to the PDF file to be generated')
 args = parser.parse_args()

 hocr = HocrTransform(args.hocrfile, args.resolution)
 hocr.to_pdf(
 args.outputfile,
 args.image,
 args.boundingboxes,
 interwordSpaces=args.interword_spaces,
)

./usr/lib/python3/dist-packages/ocrmypdf/leptonica.py

#!/usr/bin/env python3
-*- coding: utf-8 -*-
#
© 2013-16: jbarlow83 from Github (https://github.com/jbarlow83)
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.
#
Python FFI wrapper for Leptonica library

import argparse
import logging
import os
import sys
import warnings
from collections.abc import Sequence
from contextlib import suppress
from ctypes.util import find_library
from functools import lru_cache
from io import BytesIO
from os import fspath
from tempfile import TemporaryFile

from .exceptions import MissingDependencyError
from .exec import shim_paths_with_program_files
from .lib._leptonica import ffi

pylint: disable=protected-access

logger = logging.getLogger(__name__)

if os.name == 'nt':
 libname = 'liblept-5'
 os.environ['PATH'] = shim_paths_with_program_files()
else:
 libname = 'lept'
_libpath = find_library(libname)
if not _libpath:
 raise MissingDependencyError(
 """

 This error normally occurs when ocrmypdf can't find the Leptonica
 library, which is usually installed with Tesseract OCR. It could be that
 Tesseract is not installed properly, we can't find the installation
 on your system PATH environment variable.

 The library we are looking for is usually called:
 liblept-5.dll (Windows)
 liblept*.dylib (macOS)
 liblept*.so (Linux/BSD)

 Please review our installation procedures to find a solution:
 https://ocrmypdf.readthedocs.io/en/latest/installation.html

 """
)
try:
 lept = ffi.dlopen(_libpath)
 lept.setMsgSeverity(lept.L_SEVERITY_WARNING)
except ffi.error as e:
 raise MissingDependencyError(
 f"Leptonica library found at {_libpath}, but we could not access it"
) from e

class _LeptonicaErrorTrap:
 """
 Context manager to trap errors reported by Leptonica.

 Leptonica's error return codes don't provide much informatino about what
 went wrong. Leptonica does, however, write more detailed errors to stderr
 (provided this is not disabled at compile time). The Leptonica source
 code is very consistent in its use of macros to generate errors.

 This context manager redirects stderr to a temporary file which is then
 read and parsed for error messages. As a side benefit, debug messages
 from Leptonica are also suppressed.

 """

 def __init__(self):
 self.tmpfile = None
 self.copy_of_stderr = -1
 self.no_stderr = False

 def __enter__(self):
 from io import UnsupportedOperation

 self.tmpfile = TemporaryFile()

 # Save the old stderr, and redirect stderr to temporary file
 with suppress(AttributeError):
 sys.stderr.flush()
 try:
 self.copy_of_stderr = os.dup(sys.stderr.fileno())
 os.dup2(self.tmpfile.fileno(), sys.stderr.fileno(), inheritable=False)
 except AttributeError:
 # We are in some unusual context where our Python process does not
 # have a sys.stderr. Leptonica still expects to write to file
 # descriptor 2, so we are going to ensure it is redirected.
 self.copy_of_stderr = None
 self.no_stderr = True
 os.dup2(self.tmpfile.fileno(), 2, inheritable=False)
 except UnsupportedOperation:
 self.copy_of_stderr = None
 return

 def __exit__(self, exc_type, exc_value, traceback):
 # Restore old stderr
 with suppress(AttributeError):
 sys.stderr.flush()

 if self.copy_of_stderr is not None:
 os.dup2(self.copy_of_stderr, sys.stderr.fileno())
 os.close(self.copy_of_stderr)
 if self.no_stderr:
 os.close(2)

 # Get data from tmpfile
 self.tmpfile.seek(0) # Cursor will be at end, so move back to beginning
 leptonica_output = self.tmpfile.read().decode(errors='replace')
 self.tmpfile.close()
 # If there are Python errors, record them
 if exc_type:
 logger.warning(leptonica_output)

 # If there are Leptonica errors, wrap them in Python excpetions
 if 'Error' in leptonica_output:
 if 'image file not found' in leptonica_output:
 raise FileNotFoundError()
 if 'pixWrite: stream not opened' in leptonica_output:
 raise LeptonicaIOError()
 if 'index not valid' in leptonica_output:
 raise IndexError()
 raise LeptonicaError(leptonica_output)

 return False

class LeptonicaError(Exception):
 pass

class LeptonicaIOError(LeptonicaError):
 pass

class LeptonicaObject:
 """General wrapper for Leptonica objects

 When Leptonica returns an object, we bundled it in a wrapper class, which
 manages its memory. The wrapper class assumes that it will be calling some
 sort of lept.thingDestroy() function when the instance is deleted. Most
 Leptonica objects are reference counted, and destroy decrements the
 refcount.

 Most of the time, when Leptonica returns something, we wrap and it the job
 is done. When wrapping objects that came from a Leptonica container, like
 a PIXA returning PIX, the subclass must clone the object before passing it
 here, to maintain the reference count.

 CFFI ensures that the destroy function is called at garbage collection time
 so we do not need to mess with __del__.
 """

 cdata_destroy = lambda cdata: None
 LEPTONICA_TYPENAME = ''

 def __init__(self, cdata):
 if not cdata:
 raise ValueError('Tried to wrap a NULL ' + self.LEPTONICA_TYPENAME)
 self._cdata = ffi.gc(cdata, self._destroy)

 @classmethod
 def _destroy(cls, cdata):
 """Destroy some cdata"""
 # Leptonica API uses double-pointers for its destroy APIs to prevent
 # dangling pointers. This means we need to put our single pointer,
 # cdata, in a temporary CDATA**.
 pp = ffi.new('{} **'.format(cls.LEPTONICA_TYPENAME), cdata)
 cls.cdata_destroy(pp)

class Pix(LeptonicaObject):
 """
 Wrapper around leptonica's PIX object.

 Leptonica uses referencing counting on PIX objects. Also, many Leptonica
 functions return the original object with an increased reference count
 if the operation had no effect (for example, image skew was found to be 0).
 This has complications for memory management in Python. Whenever Leptonica
 returns a PIX object (new or old), we wrap it in this class, which
 registers it with the FFI garbage collector. pixDestroy() decrements the
 reference count and only destroys when the last reference is removed.

 Leptonica's reference counting is not threadsafe. This class can be used
 in a threadsafe manner if a Python threading.Lock protects the data.

 This class treats Pix objects as immutable. All methods return new
 modified objects. This allows convenient chaining:

 >>> Pix.open('filename.jpg').scale((0.5, 0.5)).deskew().show()
 """

 LEPTONICA_TYPENAME = "PIX"
 cdata_destroy = lept.pixDestroy

 def __repr__(self):
 if self._cdata:
 s = "<leptonica.Pix image size={0}x{1} depth={2}{4} at 0x{3:x}>"
 return s.format(
 self._cdata.w,
 self._cdata.h,
 self._cdata.d,
 int(ffi.cast('intptr_t', self._cdata)),
 '(colormapped)' if self._cdata.colormap else '',
)
 else:
 return "<leptonica.Pix image NULL>"

 def _repr_png_(self):
 """iPython display hook

 returns png version of image
 """

 data = ffi.new('l_uint8 **')
 size = ffi.new('size_t *')

 err = lept.pixWriteMemPng(data, size, self._cdata, 0)
 if err != 0:
 raise LeptonicaIOError("pixWriteMemPng")

 char_data = ffi.cast('char *', data[0])
 return ffi.buffer(char_data, size[0])[:]

 def __getstate__(self):
 data = ffi.new('l_uint32 **')
 size = ffi.new('size_t *')

 err = lept.pixSerializeToMemory(self._cdata, data, size)
 if err != 0:
 raise LeptonicaIOError("pixSerializeToMemory")

 char_data = ffi.cast('char *', data[0])

 # Copy from C bytes to python bytes()
 data_bytes = ffi.buffer(char_data, size[0])[:]

 # Can now free C bytes
 lept.lept_free(char_data)
 return dict(data=data_bytes)

 def __setstate__(self, state):
 cdata_bytes = ffi.new('char[]', state['data'])
 cdata_uint32 = ffi.cast('l_uint32 *', cdata_bytes)

 pix = lept.pixDeserializeFromMemory(cdata_uint32, len(state['data']))
 Pix.__init__(self, pix)

 def __eq__(self, other):
 if not isinstance(other, Pix):
 return NotImplemented
 same = ffi.new('l_int32 *', 0)
 with _LeptonicaErrorTrap():
 err = lept.pixEqual(self._cdata, other._cdata, same)
 if err:
 raise TypeError()
 return bool(same[0])

 @property
 def width(self):
 return self._cdata.w

 @property
 def height(self):
 return self._cdata.h

 @property
 def depth(self):
 return self._cdata.d

 @property
 def size(self):
 return (self._cdata.w, self._cdata.h)

 @property
 def info(self):
 return {'dpi': (self._cdata.xres, self._cdata.yres)}

 @property
 def mode(self):
 "Return mode like PIL.Image"
 if self.depth == 1:
 return '1'
 elif self.depth >= 16:
 return 'RGB'
 elif not self._cdata.colormap:
 return 'L'
 else:
 return 'P'

 @classmethod
 def read(cls, path):
 warnings.warn('Use Pix.open() instead', DeprecationWarning)
 return cls.open(path)

 @classmethod
 def open(cls, path):
 """Load an image file into a PIX object.

 Leptonica can load TIFF, PNM (PBM, PGM, PPM), PNG, and JPEG. If
 loading fails then the object will wrap a C null pointer.
 """
 with open(path, 'rb') as py_file:
 data = py_file.read()
 buffer = ffi.from_buffer(data)
 with _LeptonicaErrorTrap():
 return cls(lept.pixReadMem(buffer, len(buffer)))

 def write_implied_format(self, path, jpeg_quality=0, jpeg_progressive=0):
 """Write pix to the filename, with the extension indicating format.

 jpeg_quality -- quality (iff JPEG; 1 - 100, 0 for default)
 jpeg_progressive -- (iff JPEG; 0 for baseline seq., 1 for progressive)
 """
 lept_format = lept.getImpliedFileFormat(os.fsencode(path))
 with open(path, 'wb') as py_file:
 data = ffi.new('l_uint8 **pdata')
 size = ffi.new('size_t *psize')
 with _LeptonicaErrorTrap():
 if lept_format == lept.L_JPEG_ENCODE:
 lept.pixWriteMemJpeg(
 data, size, self._cdata, jpeg_quality, jpeg_progressive
)
 else:
 lept.pixWriteMem(data, size, self._cdata, lept_format)
 buffer = ffi.buffer(data[0], size[0])
 py_file.write(buffer)

 @classmethod
 def frompil(self, pillow_image):
 """Create a copy of a PIL.Image from this Pix"""
 bio = BytesIO()
 pillow_image.save(bio, format='png', compress_level=1)
 py_buffer = bio.getbuffer()
 c_buffer = ffi.from_buffer(py_buffer)
 with _LeptonicaErrorTrap():
 pix = Pix(lept.pixReadMem(c_buffer, len(c_buffer)))
 return pix

 def topil(self):
 """Returns a PIL.Image version of this Pix"""
 from PIL import Image

 # Leptonica manages data in words, so it implicitly does an endian
 # swap. Tell Pillow about this when it reads the data.
 pix = self
 if sys.byteorder == 'little':
 if self.mode == 'RGB':
 raw_mode = 'XBGR'
 elif self.mode == 'RGBA':
 raw_mode = 'ABGR'
 elif self.mode == '1':
 raw_mode = '1;I'
 pix = Pix(lept.pixEndianByteSwapNew(pix._cdata))
 else:
 raw_mode = self.mode
 pix = Pix(lept.pixEndianByteSwapNew(pix._cdata))
 else:
 raw_mode = self.mode # no endian swap needed

 size = (pix._cdata.w, pix._cdata.h)
 bytecount = pix._cdata.wpl * 4 * pix._cdata.h
 buf = ffi.buffer(pix._cdata.data, bytecount)
 stride = pix._cdata.wpl * 4

 im = Image.frombytes(self.mode, size, buf, 'raw', raw_mode, stride)

 return im

 def show(self):
 return self.topil().show()

 def deskew(self, reduction_factor=0):
 """Returns the deskewed pix object.

 A clone of the original is returned when the algorithm cannot find a
 skew angle with sufficient confidence.

 reduction_factor -- amount to downsample (0 for default) when searching
 for skew angle
 """
 with _LeptonicaErrorTrap():
 return Pix(lept.pixDeskew(self._cdata, reduction_factor))

 def scale(self, scale_xy):
 "Returns the pix object rescaled according to the proportions given."
 with _LeptonicaErrorTrap():
 return Pix(lept.pixScale(self._cdata, scale_xy[0], scale_xy[1]))

 def rotate180(self):
 with _LeptonicaErrorTrap():
 return Pix(lept.pixRotate180(ffi.NULL, self._cdata))

 def rotate_orth(self, quads):
 "Orthographic rotation, quads: 0-3, number of clockwise rotations"
 with _LeptonicaErrorTrap():
 return Pix(lept.pixRotateOrth(self._cdata, quads))

 def find_skew(self):
 """Returns a tuple (deskew angle in degrees, confidence value).

 Returns (None, None) if no angle is available.
 """
 with _LeptonicaErrorTrap():
 angle = ffi.new('float *', 0.0)
 confidence = ffi.new('float *', 0.0)
 result = lept.pixFindSkew(self._cdata, angle, confidence)
 if result == 0:
 return (angle[0], confidence[0])
 else:
 return (None, None)

 def convert_rgb_to_luminance(self):
 with _LeptonicaErrorTrap():
 gray_pix = lept.pixConvertRGBToLuminance(self._cdata)
 if gray_pix:
 return Pix(gray_pix)
 return None

 def remove_colormap(self, removal_type):
 """Remove a palette (colormap); if no colormap, returns a copy of this
 image

 removal_type - any of lept.REMOVE_CMAP_*

 """
 with _LeptonicaErrorTrap():
 return Pix(
 lept.pixRemoveColormapGeneral(self._cdata, removal_type, lept.L_COPY)
)

 def otsu_adaptive_threshold(
 self, tile_size=(300, 300), kernel_size=(4, 4), scorefract=0.1
):
 with _LeptonicaErrorTrap():
 sx, sy = tile_size
 smoothx, smoothy = kernel_size
 p_pix = ffi.new('PIX **')

 pix = Pix(lept.pixConvertTo8(self._cdata, 0))
 result = lept.pixOtsuAdaptiveThreshold(
 pix._cdata, sx, sy, smoothx, smoothy, scorefract, ffi.NULL, p_pix
)
 if result == 0:
 return Pix(p_pix[0])
 else:
 return None

 def otsu_threshold_on_background_norm(
 self,
 mask=None,
 tile_size=(10, 15),
 thresh=100,
 mincount=50,
 bgval=255,
 kernel_size=(2, 2),
 scorefract=0.1,
):
 with _LeptonicaErrorTrap():
 sx, sy = tile_size
 smoothx, smoothy = kernel_size
 mask = ffi.NULL
 if isinstance(mask, Pix):
 mask = mask._cdata

 pix = Pix(lept.pixConvertTo8(self._cdata, 0))
 thresh_pix = lept.pixOtsuThreshOnBackgroundNorm(
 pix._cdata,
 mask,
 sx,
 sy,
 thresh,
 mincount,
 bgval,
 smoothx,
 smoothy,
 scorefract,
 ffi.NULL,
)
 return Pix(thresh_pix)

 def masked_threshold_on_background_norm(
 self,
 mask=None,
 tile_size=(10, 15),
 thresh=100,
 mincount=50,
 kernel_size=(2, 2),
 scorefract=0.1,
):
 with _LeptonicaErrorTrap():
 sx, sy = tile_size
 smoothx, smoothy = kernel_size
 mask = ffi.NULL
 if isinstance(mask, Pix):
 mask = mask._cdata

 pix = Pix(lept.pixConvertTo8(self._cdata, 0))
 thresh_pix = lept.pixMaskedThreshOnBackgroundNorm(
 pix._cdata,
 mask,
 sx,
 sy,
 thresh,
 mincount,
 smoothx,
 smoothy,
 scorefract,
 ffi.NULL,
)
 return Pix(thresh_pix)

 def crop_to_foreground(
 self,
 threshold=128,
 mindist=70,
 erasedist=30,
 pagenum=0,
 showmorph=0,
 display=0,
 pdfdir=ffi.NULL,
):
 if get_leptonica_version() < 'leptonica-1.76':
 # Leptonica 1.76 changed the API for pixFindPageForeground; we don't
 # support the old version
 raise LeptonicaError("Not available in this version of Leptonica")
 with _LeptonicaErrorTrap():
 cropbox = Box(
 lept.pixFindPageForeground(
 self._cdata, threshold, mindist, erasedist, showmorph, ffi.NULL
)
)

 cropped_pix = lept.pixClipRectangle(self._cdata, cropbox._cdata, ffi.NULL)

 return Pix(cropped_pix)

 def clean_background_to_white(
 self, mask=None, grayscale=None, gamma=1.0, black=0, white=255
):
 with _LeptonicaErrorTrap():
 return Pix(
 lept.pixCleanBackgroundToWhite(
 self._cdata,
 mask or ffi.NULL,
 grayscale or ffi.NULL,
 gamma,
 black,
 white,
)
)

 def gamma_trc(self, gamma=1.0, minval=0, maxval=255):
 with _LeptonicaErrorTrap():
 return Pix(lept.pixGammaTRC(ffi.NULL, self._cdata, gamma, minval, maxval))

 def background_norm(
 self,
 mask=None,
 grayscale=None,
 tile_size=(10, 15),
 fg_threshold=60,
 min_count=40,
 bg_val=200,
 smooth_kernel=(2, 1),
):
 # Background norm doesn't work on color mapped Pix, so remove colormap
 target_pix = self.remove_colormap(lept.REMOVE_CMAP_BASED_ON_SRC)
 with _LeptonicaErrorTrap():
 return Pix(
 lept.pixBackgroundNorm(
 target_pix._cdata,
 mask or ffi.NULL,
 grayscale or ffi.NULL,
 tile_size[0],
 tile_size[1],
 fg_threshold,
 min_count,
 bg_val,
 smooth_kernel[0],
 smooth_kernel[1],
)
)

 @staticmethod
 @lru_cache(maxsize=1)
 def make_pixel_sum_tab8():
 return lept.makePixelSumTab8()

 @staticmethod
 def correlation_binary(pix1, pix2):
 if get_leptonica_version() < 'leptonica-1.72':
 # Older versions of Leptonica (pre-1.72) have a buggy
 # implementation of pixCorrelationBinary that overflows on larger
 # images. Ubuntu 14.04/trusty has 1.70. Ubuntu PPA
 # ppa:alex-p/tesseract-ocr has leptonlib 1.75.
 raise LeptonicaError("Leptonica version is too old")

 correlation = ffi.new('float *', 0.0)
 result = lept.pixCorrelationBinary(pix1._cdata, pix2._cdata, correlation)
 if result != 0:
 raise LeptonicaError("Correlation failed")
 return correlation[0]

 def generate_pdf_ci_data(self, type_, quality):
 "Convert to PDF data, with transcoding"
 p_compdata = ffi.new('L_COMP_DATA **')
 result = lept.pixGenerateCIData(self._cdata, type_, quality, 0, p_compdata)
 if result != 0:
 raise LeptonicaError("Generate PDF data failed")
 return CompressedData(p_compdata[0])

 def invert(self):
 return Pix(lept.pixInvert(ffi.NULL, self._cdata))

 def locate_barcodes(self):
 try:
 with _LeptonicaErrorTrap():
 pix = Pix(lept.pixConvertTo8(self._cdata, 0))
 pixa_candidates = PixArray(lept.pixExtractBarcodes(pix._cdata, 0))
 if not pixa_candidates:
 return
 sarray = StringArray(
 lept.pixReadBarcodes(
 pixa_candidates._cdata,
 lept.L_BF_ANY,
 lept.L_USE_WIDTHS,
 ffi.NULL,
 0,
)
)
 except (LeptonicaError, ValueError, IndexError):
 return
 finally:
 leptonica_junk = ('junkpixt.png', 'junkpixt')
 for junk in leptonica_junk:
 with suppress(FileNotFoundError):
 os.unlink(junk) # leptonica may produce this

 for n, s in enumerate(sarray):
 decoded = s.decode()
 if decoded.strip() == '':
 continue
 box = pixa_candidates.get_box(n)
 left, top = box.x, box.y
 right, bottom = box.x + box.w, box.y + box.h
 yield (decoded, (left, top, right, bottom))

 def despeckle(self, size):
 if size == 2:
 speckle2 = """
 oooo
 oC o
 o o
 oooo
 """
 sel1 = Sel.from_selstr(speckle2, 'speckle2')
 sel2 = Sel.create_brick(2, 2, 0, 0, lept.SEL_HIT)
 elif size == 3:
 speckle3 = """
 ooooo
 oC o
 o o
 o o
 ooooo
 """
 sel1 = Sel.from_selstr(speckle3, 'speckle3')
 sel2 = Sel.create_brick(3, 3, 0, 0, lept.SEL_HIT)
 else:
 raise ValueError(size)

 pixhmt = Pix(lept.pixHMT(ffi.NULL, self._cdata, sel1._cdata))
 pixdilated = Pix(lept.pixDilate(ffi.NULL, pixhmt._cdata, sel2._cdata))

 pixsub = Pix(lept.pixSubtract(ffi.NULL, self._cdata, pixdilated._cdata))
 return pixsub

class CompressedData(LeptonicaObject):
 """Wrapper for L_COMP_DATA - abstract compressed image data"""

 LEPTONICA_TYPENAME = 'L_COMP_DATA'
 cdata_destroy = lept.l_CIDataDestroy

 @classmethod
 def open(cls, path, jpeg_quality=75):
 "Open compressed data, without transcoding"
 filename = fspath(path)

 p_compdata = ffi.new('L_COMP_DATA **')
 result = lept.l_generateCIDataForPdf(
 os.fsencode(filename), ffi.NULL, jpeg_quality, p_compdata
)
 if result != 0:
 raise LeptonicaError("CompressedData.open")
 return CompressedData(p_compdata[0])

 def __len__(self):
 return self._cdata.nbytescomp

 def read(self):
 buf = ffi.buffer(self._cdata.datacomp, self._cdata.nbytescomp)
 return bytes(buf)

 def __getattr__(self, name):
 if hasattr(self._cdata, name):
 return getattr(self._cdata, name)
 raise AttributeError(name)

 def get_palette_pdf_string(self):
 "Returns palette pre-formatted for use in PDF"
 buflen = len('< ') + len(' rrggbb') * self._cdata.ncolors + len('>')
 buf = ffi.buffer(self._cdata.cmapdatahex, buflen)
 return bytes(buf)

class PixArray(LeptonicaObject, Sequence):
 """Wrapper around PIXA (array of PIX)"""

 LEPTONICA_TYPENAME = 'PIXA'
 cdata_destroy = lept.pixaDestroy

 def __len__(self):
 return self._cdata[0].n

 def __getitem__(self, n):
 with _LeptonicaErrorTrap():
 return Pix(lept.pixaGetPix(self._cdata, n, lept.L_CLONE))

 def get_box(self, n):
 with _LeptonicaErrorTrap():
 return Box(lept.pixaGetBox(self._cdata, n, lept.L_CLONE))

class Box(LeptonicaObject):
 """Wrapper around Leptonica's BOX objects (a pixel rectangle)

 Uses x, y, w, h coordinates.
 """

 LEPTONICA_TYPENAME = 'BOX'
 cdata_destroy = lept.boxDestroy

 def __repr__(self):
 if self._cdata:
 return '<leptonica.Box x={0} y={1} w={2} h={3}>'.format(
 self.x, self.y, self.w, self.h
)
 return '<leptonica.Box NULL>'

 @property
 def x(self):
 return self._cdata.x

 @property
 def y(self):
 return self._cdata.y

 @property
 def w(self):
 return self._cdata.w

 @property
 def h(self):
 return self._cdata.h

class BoxArray(LeptonicaObject, Sequence):
 """Wrapper around Leptonica's BOXA (Array of BOX) objects."""

 LEPTONICA_TYPENAME = 'BOXA'
 cdata_destroy = lept.boxaDestroy

 def __repr__(self):
 if not self._cdata:
 return '<BoxArray>'
 boxes = (repr(box) for box in self)
 return '<BoxArray [' + ', '.join(boxes) + ']>'

 def __len__(self):
 return self._cdata.n

 def __getitem__(self, n):
 if not isinstance(n, int):
 raise TypeError('list indices must be integers')
 if 0 <= n < len(self):
 return Box(lept.boxaGetBox(self._cdata, n, lept.L_CLONE))
 raise IndexError(n)

class StringArray(LeptonicaObject, Sequence):
 """Leptonica SARRAY/string array"""

 LEPTONICA_TYPENAME = 'SARRAY'
 cdata_destroy = lept.sarrayDestroy

 def __len__(self):
 return self._cdata.n

 def __getitem__(self, n):
 if 0 <= n < len(self):
 return ffi.string(self._cdata.array[n])
 raise IndexError(n)

class Sel(LeptonicaObject):
 """Leptonica 'sel'/selection element for hit-miss transform"""

 LEPTONICA_TYPENAME = 'SEL'
 cdata_destroy = lept.selDestroy

 @classmethod
 def from_selstr(cls, selstr, name):
 # TODO this will strip a horizontal line of don't care's
 lines = [line.strip() for line in selstr.split('\n') if line.strip()]
 h = len(lines)
 w = len(lines[0])
 lengths = set(len(line) for line in lines)
 if len(lengths) != 1:
 raise ValueError("All lines in selstr must be same length")

 repacked = ''.join(line.strip() for line in lines)
 buf_selstr = ffi.from_buffer(repacked.encode('ascii'))
 buf_name = ffi.from_buffer(name.encode('ascii'))
 sel = lept.selCreateFromString(buf_selstr, h, w, buf_name)
 return cls(sel)

 @classmethod
 def create_brick(cls, h, w, cy, cx, type_):
 sel = lept.selCreateBrick(h, w, cy, cx, type_)
 return cls(sel)

 def __repr__(self):
 selstr = ffi.gc(lept.selPrintToString(self._cdata), lept.lept_free)
 return '<Sel \n' + ffi.string(selstr).decode('ascii') + '\n>'

@lru_cache(maxsize=1)
def get_leptonica_version():
 """Get Leptonica version string.

 Caveat: Leptonica expects the caller to free this memory. We don't,
 since that would involve binding to libc to access libc.free(),
 a pointless effort to reclaim 100 bytes of memory.
 """
 return ffi.string(lept.getLeptonicaVersion()).decode()

def deskew(infile, outfile, dpi):
 try:
 pix_source = Pix.open(infile)
 except LeptonicaIOError:
 raise LeptonicaIOError("Failed to open file: %s" % infile)

 if dpi < 150:
 reduction_factor = 1 # Don't downsample too much if DPI is already low
 else:
 reduction_factor = 0 # Use default
 pix_deskewed = pix_source.deskew(reduction_factor)

 try:
 pix_deskewed.write_implied_format(outfile)
 except LeptonicaIOError:
 raise LeptonicaIOError("Failed to open destination file: %s" % outfile)

def remove_background(
 infile,
 outfile,
 tile_size=(40, 60),
 gamma=1.0,
 black_threshold=70,
 white_threshold=190,
):
 try:
 pix = Pix.open(infile)
 except LeptonicaIOError:
 raise LeptonicaIOError("Failed to open file: %s" % infile)

 pix = pix.background_norm(tile_size=tile_size).gamma_trc(
 gamma, black_threshold, white_threshold
)

 try:
 pix.write_implied_format(outfile)
 except LeptonicaIOError:
 raise LeptonicaIOError("Failed to open destination file: %s" % outfile)

if __name__ == '__main__':
 parser = argparse.ArgumentParser(description="Python wrapper to access Leptonica")

 subparsers = parser.add_subparsers(
 title='commands', description='supported operations'
)

 parser_deskew = subparsers.add_parser('deskew')
 parser_deskew.add_argument(
 '-r',
 '--dpi',
 dest='dpi',
 action='store',
 type=int,
 default=300,
 help='input resolution',
)
 parser_deskew.add_argument('infile', help='image to deskew')
 parser_deskew.add_argument('outfile', help='deskewed output image')
 parser_deskew.set_defaults(func=deskew)

 args = parser.parse_args()
 args.func(args)

./usr/lib/python3/dist-packages/ocrmypdf/lib/__init__.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Bindings to external libraries"""

./usr/lib/python3/dist-packages/ocrmypdf/lib/_leptonica.py

auto-generated file
import _cffi_backend

ffi = _cffi_backend.FFI('ocrmypdf.lib._leptonica',
 _version = 0x2601,
 _types = b'\x00\x00\x01\x0D\x00\x01\x50\x03\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x01\x51\x03\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x01\x55\x03\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x01\x57\x03\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x01\x56\x03\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x04\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x09\x03\x00\x00\x18\x11\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x01\x52\x03\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x01\x11\x00\x00\x01\x03\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x0D\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x01\x5B\x03\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x0D\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x0D\x01\x00\x00\x05\x03\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x0D\x01\x00\x00\x62\x11\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x0D\x01\x00\x00\x0D\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x11\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x01\x5E\x03\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x01\x70\x03\x00\x00\x1C\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x01\x72\x03\x00\x00\x1C\x01\x00\x00\x00\x0F\x00\x00\x11\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x01\x59\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x01\x59\x03\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x01\x59\x0D\x00\x00\x11\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x9E\x11\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x47\x0D\x00\x00\x8C\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x8C\x11\x00\x00\x00\x0F\x00\x00\x47\x0D\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x01\x5D\x0D\x00\x00\x47\x11\x00\x00\x00\x0F\x00\x01\x5D\x0D\x00\x00\x00\x0F\x00\x00\x62\x0D\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x1C\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x1C\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x04\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x34\x03\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x62\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\xD0\x11\x00\x00\xD0\x11\x00\x00\xD0\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\xD0\x11\x00\x00\xD0\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x62\x11\x00\x00\x62\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x0D\x01\x00\x00\x07\x01\x00\x00\x62\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x01\x53\x03\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\xD0\x11\x00\x00\xD0\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x0D\x01\x00\x00\x18\x11\x00\x00\x18\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x01\x71\x03\x00\x00\x90\x03\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x8C\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x8C\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\xF9\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x8C\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x01\x6F\x03\x00\x01\x11\x11\x00\x00\x09\x11\x00\x00\x0D\x01\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x01\x26\x11\x00\x01\x11\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x01\x26\x11\x00\x01\x11\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x01\x75\x0D\x00\x00\x25\x11\x00\x00\x00\x0F\x00\x01\x75\x0D\x00\x00\x04\x03\x00\x00\x00\x0F\x00\x01\x75\x0D\x00\x00\xF9\x11\x00\x00\x00\x0F\x00\x01\x75\x0D\x00\x00\x18\x11\x00\x00\x00\x0F\x00\x01\x75\x0D\x00\x00\x11\x03\x00\x00\x00\x0F\x00\x01\x75\x0D\x00\x00\x9E\x11\x00\x00\x00\x0F\x00\x01\x75\x0D\x00\x00\x47\x03\x00\x00\x00\x0F\x00\x01\x75\x0D\x00\x01\x75\x03\x00\x00\x00\x0F\x00\x00\x00\x09\x00\x00\x01\x09\x00\x00\x0A\x09\x00\x01\x54\x03\x00\x00\x02\x09\x00\x00\x03\x09\x00\x00\x06\x09\x00\x00\x07\x09\x00\x00\x04\x09\x00\x01\x5A\x03\x00\x00\x08\x09\x00\x00\x09\x09\x00\x01\x5D\x03\x00\x01\x5E\x03\x00\x00\x02\x01\x00\x00\x0E\x01\x00\x00\x00\x0B\x00\x00\x01\x0B\x00\x00\x02\x0B\x00\x00\x03\x0B\x00\x00\x04\x0B\x00\x00\x05\x0B\x00\x00\x06\x0B\x00\x00\x62\x03\x00\x00\x0B\x01\x00\x00\x05\x01\x00\x00\x03\x01\x00\x01\x58\x03\x00\x01\x6D\x03\x00\x01\x6E\x03\x00\x00\x05\x09\x00\x01\x70\x03\x00\x00\x04\x01\x00\x01\x72\x03\x00\x00\x08\x01\x00\x00\x0C\x01\x00\x00\x06\x01\x00\x00\x00\x01',
 _globals = (b'\xFF\xFF\xFF\x0BL_BF_ANY',1,b'\xFF\xFF\xFF\x0BL_BF_CODABAR',9,b'\xFF\xFF\xFF\x0BL_BF_CODE128',2,b'\xFF\xFF\xFF\x0BL_BF_CODE2OF5',5,b'\xFF\xFF\xFF\x0BL_BF_CODE39',7,b'\xFF\xFF\xFF\x0BL_BF_CODE93',8,b'\xFF\xFF\xFF\x0BL_BF_CODEI2OF5',6,b'\xFF\xFF\xFF\x0BL_BF_EAN13',4,b'\xFF\xFF\xFF\x0BL_BF_EAN8',3,b'\xFF\xFF\xFF\x0BL_BF_UNKNOWN',0,b'\xFF\xFF\xFF\x0BL_BF_UPCA',10,b'\xFF\xFF\xFF\x0BL_CLONE',2,b'\xFF\xFF\xFF\x0BL_COPY',1,b'\xFF\xFF\xFF\x0BL_COPY_CLONE',3,b'\xFF\xFF\xFF\x0BL_DEFAULT_ENCODE',0,b'\xFF\xFF\xFF\x0BL_FLATE_ENCODE',3,b'\xFF\xFF\xFF\x0BL_G4_ENCODE',2,b'\xFF\xFF\xFF\x0BL_INSERT',0,b'\xFF\xFF\xFF\x0BL_JP2K_ENCODE',4,b'\xFF\xFF\xFF\x0BL_JPEG_ENCODE',1,b'\xFF\xFF\xFF\x0BL_NOCOPY',0,b'\xFF\xFF\xFF\x0BL_SEVERITY_ALL',1,b'\xFF\xFF\xFF\x0BL_SEVERITY_DEBUG',2,b'\xFF\xFF\xFF\x0BL_SEVERITY_ERROR',5,b'\xFF\xFF\xFF\x0BL_SEVERITY_EXTERNAL',0,b'\xFF\xFF\xFF\x0BL_SEVERITY_INFO',3,b'\xFF\xFF\xFF\x0BL_SEVERITY_NONE',6,b'\xFF\xFF\xFF\x0BL_SEVERITY_WARNING',4,b'\xFF\xFF\xFF\x0BL_USE_WIDTHS',1,b'\xFF\xFF\xFF\x0BL_USE_WINDOWS',2,b'\xFF\xFF\xFF\x0BREMOVE_CMAP_BASED_ON_SRC',4,b'\xFF\xFF\xFF\x0BREMOVE_CMAP_TO_BINARY',0,b'\xFF\xFF\xFF\x0BREMOVE_CMAP_TO_FULL_COLOR',2,b'\xFF\xFF\xFF\x0BREMOVE_CMAP_TO_GRAYSCALE',1,b'\xFF\xFF\xFF\x0BREMOVE_CMAP_WITH_ALPHA',3,b'\xFF\xFF\xFF\x0BSEL_DONT_CARE',0,b'\xFF\xFF\xFF\x0BSEL_HIT',1,b'\xFF\xFF\xFF\x0BSEL_MISS',2,b'\x00\x00\x00\x23boxClone',0,b'\x00\x01\x38\x23boxDestroy',0,b'\x00\x01\x3B\x23boxaDestroy',0,b'\x00\x00\x03\x23boxaGetBox',0,b'\x00\x01\x13\x23getImpliedFileFormat',0,b'\x00\x00\xB8\x23getLeptonicaVersion',0,b'\x00\x01\x3E\x23l_CIDataDestroy',0,b'\x00\x01\x16\x23l_generateCIDataForPdf',0,b'\x00\x01\x4D\x23lept_free',0,b'\x00\x00\xBA\x23makePixelSumTab8',0,b'\x00\x00\x2B\x23pixAnd',0,b'\x00\x00\x38\x23pixBackgroundNorm',0,b'\x00\x00\x30\x23pixCleanBackgroundToWhite',0,b'\x00\x00\x22\x23pixClipRectangle',0,b'\x00\x00\xFB\x23pixColorFraction',0,b'\x00\x00\x7F\x23pixColorMagnitude',0,b'\x00\x00\x1F\x23pixConvertRGBToLuminance',0,b'\x00\x00\x76\x23pixConvertTo8',0,b'\x00\x00\xCD\x23pixCorrelationBinary',0,b'\x00\x00\xE7\x23pixCountPixels',0,b'\x00\x00\x92\x23pixDeserializeFromMemory',0,b'\x00\x00\x76\x23pixDeskew',0,b'\x00\x01\x41\x23pixDestroy',0,b'\x00\x00\x44\x23pixDilate',0,b'\x00\x00\x1F\x23pixEndianByteSwapNew',0,b'\x00\x00\xD2\x23pixEqual',0,b'\x00\x00\x44\x23pixErode',0,b'\x00\x00\x96\x23pixExtractBarcodes',0,b'\x00\x00\x08\x23pixFindPageForeground',0,b'\x00\x00\xE2\x23pixFindSkew',0,b'\x00\x00\x49\x23pixGammaTRC',0,b'\x00\x00\xF4\x23pixGenerateCIData',0,b'\x00\x00\xD7\x23pixGetAverageMaskedRGB',0,b'\x00\x00\x50\x23pixGlobalNormRGB',0,b'\x00\x00\x44\x23pixHMT',0,b'\x00\x00\x27\x23pixInvert',0,b'\x00\x00\x15\x23pixLocateBarcodes',0,b'\x00\x00\x7A\x23pixMaskOverColorPixels',0,b'\x00\x00\x58\x23pixMaskedThreshOnBackgroundNorm',0,b'\x00\x00\xEC\x23pixNumSignificantGrayColors',0,b'\x00\x01\x04\x23pixOtsuAdaptiveThreshold',0,b'\x00\x00\x64\x23pixOtsuThreshOnBackgroundNorm',0,b'\x00\x00\x9A\x23pixProcessBarcodes',0,b'\x00\x00\x8B\x23pixRead',0,b'\x00\x00\xA1\x23pixReadBarcodes',0,b'\x00\x00\x8E\x23pixReadMem',0,b'\x00\x00\x1B\x23pixReadStream',0,b'\x00\x00\x76\x23pixRemoveColormap',0,b'\x00\x00\x7A\x23pixRemoveColormapGeneral',0,b'\x00\x00\xC7\x23pixRenderBoxa',0,b'\x00\x00\x27\x23pixRotate180',0,b'\x00\x00\x76\x23pixRotateOrth',0,b'\x00\x00\x71\x23pixScale',0,b'\x00\x01\x0E\x23pixSerializeToMemory',0,b'\x00\x00\x2B\x23pixSubtract',0,b'\x00\x01\x1C\x23pixWriteImpliedFormat',0,b'\x00\x01\x2B\x23pixWriteMem',0,b'\x00\x01\x31\x23pixWriteMemJpeg',0,b'\x00\x01\x25\x23pixWriteMemPng',0,b'\x00\x00\xBC\x23pixWriteStream',0,b'\x00\x00\xC1\x23pixWriteStreamJpeg',0,b'\x00\x01\x44\x23pixaDestroy',0,b'\x00\x00\x10\x23pixaGetBox',0,b'\x00\x00\x86\x23pixaGetPix',0,b'\x00\x01\x47\x23sarrayDestroy',0,b'\x00\x00\xAE\x23selCreateBrick',0,b'\x00\x00\xA8\x23selCreateFromString',0,b'\x00\x01\x4A\x23selDestroy',0,b'\x00\x00\xB5\x23selPrintToString',0,b'\x00\x01\x22\x23setMsgSeverity',0),
 _struct_unions = ((b'\x00\x00\x01\x50\x00\x00\x00\x02Box',b'\x00\x00\x05\x11x',b'\x00\x00\x05\x11y',b'\x00\x00\x05\x11w',b'\x00\x00\x05\x11h',b'\x00\x01\x72\x11refcount'),(b'\x00\x00\x01\x51\x00\x00\x00\x02Boxa',b'\x00\x00\x05\x11n',b'\x00\x00\x05\x11nalloc',b'\x00\x01\x72\x11refcount',b'\x00\x00\x25\x11box'),(b'\x00\x00\x01\x54\x00\x00\x00\x02L_Compressed_Data',b'\x00\x00\x05\x11type',b'\x00\x01\x6F\x11datacomp',b'\x00\x00\x90\x11nbytescomp',b'\x00\x01\x5D\x11data85',b'\x00\x00\x90\x11nbytes85',b'\x00\x01\x5D\x11cmapdata85',b'\x00\x01\x5D\x11cmapdatahex',b'\x00\x00\x05\x11ncolors',b'\x00\x00\x05\x11w',b'\x00\x00\x05\x11h',b'\x00\x00\x05\x11bps',b'\x00\x00\x05\x11spp',b'\x00\x00\x05\x11minisblack',b'\x00\x00\x05\x11predictor',b'\x00\x00\x90\x11nbytes',b'\x00\x00\x05\x11res'),(b'\x00\x00\x01\x55\x00\x00\x00\x02Pix',b'\x00\x01\x72\x11w',b'\x00\x01\x72\x11h',b'\x00\x01\x72\x11d',b'\x00\x01\x72\x11spp',b'\x00\x01\x72\x11wpl',b'\x00\x01\x72\x11refcount',b'\x00\x00\x05\x11xres',b'\x00\x00\x05\x11yres',b'\x00\x00\x05\x11informat',b'\x00\x00\x05\x11special',b'\x00\x01\x5D\x11text',b'\x00\x01\x6B\x11colormap',b'\x00\x01\x71\x11data'),(b'\x00\x00\x01\x58\x00\x00\x00\x02PixColormap',b'\x00\x01\x4E\x11array',b'\x00\x00\x05\x11depth',b'\x00\x00\x05\x11nalloc',b'\x00\x00\x05\x11n'),(b'\x00\x00\x01\x6E\x00\x00\x00\x10PixComp',),(b'\x00\x00\x01\x56\x00\x00\x00\x02Pixa',b'\x00\x00\x05\x11n',b'\x00\x00\x05\x11nalloc',b'\x00\x01\x72\x11refcount',b'\x00\x00\x18\x11pix',b'\x00\x00\x04\x11boxa'),(b'\x00\x00\x01\x57\x00\x00\x00\x02PixaComp',b'\x00\x00\x05\x11n',b'\x00\x00\x05\x11nalloc',b'\x00\x00\x05\x11offset',b'\x00\x01\x6C\x11pixc',b'\x00\x00\x04\x11boxa'),(b'\x00\x00\x01\x5A\x00\x00\x00\x02Sarray',b'\x00\x00\x05\x11nalloc',b'\x00\x00\x05\x11n',b'\x00\x00\x05\x11refcount',b'\x00\x01\x5C\x11array'),(b'\x00\x00\x01\x5B\x00\x00\x00\x02Sel',b'\x00\x00\x05\x11sy',b'\x00\x00\x05\x11sx',b'\x00\x00\x05\x11cy',b'\x00\x00\x05\x11cx',b'\x00\x01\x67\x11data',b'\x00\x01\x5D\x11name'),(b'\x00\x00\x01\x52\x00\x00\x00\x10_IO_FILE',)),
 _enums = (b'\x00\x00\x01\x60\x00\x00\x00\x16$1\x00L_DEFAULT_ENCODE,L_JPEG_ENCODE,L_G4_ENCODE,L_FLATE_ENCODE,L_JP2K_ENCODE',b'\x00\x00\x01\x61\x00\x00\x00\x16$2\x00REMOVE_CMAP_TO_BINARY,REMOVE_CMAP_TO_GRAYSCALE,REMOVE_CMAP_TO_FULL_COLOR,REMOVE_CMAP_WITH_ALPHA,REMOVE_CMAP_BASED_ON_SRC',b'\x00\x00\x01\x62\x00\x00\x00\x16$3\x00L_NOCOPY,L_INSERT,L_COPY,L_CLONE,L_COPY_CLONE',b'\x00\x00\x01\x63\x00\x00\x00\x16$4\x00L_USE_WIDTHS,L_USE_WINDOWS',b'\x00\x00\x01\x64\x00\x00\x00\x16$5\x00L_BF_UNKNOWN,L_BF_ANY,L_BF_CODE128,L_BF_EAN8,L_BF_EAN13,L_BF_CODE2OF5,L_BF_CODEI2OF5,L_BF_CODE39,L_BF_CODE93,L_BF_CODABAR,L_BF_UPCA',b'\x00\x00\x01\x65\x00\x00\x00\x16$6\x00L_SEVERITY_EXTERNAL,L_SEVERITY_ALL,L_SEVERITY_DEBUG,L_SEVERITY_INFO,L_SEVERITY_WARNING,L_SEVERITY_ERROR,L_SEVERITY_NONE',b'\x00\x00\x01\x66\x00\x00\x00\x16$7\x00SEL_DONT_CARE,SEL_HIT,SEL_MISS'),
 _typenames = (b'\x00\x00\x01\x50BOX',b'\x00\x00\x01\x51BOXA',b'\x00\x00\x01\x52FILE',b'\x00\x00\x01\x54L_COMP_DATA',b'\x00\x00\x01\x55PIX',b'\x00\x00\x01\x56PIXA',b'\x00\x00\x01\x57PIXAC',b'\x00\x00\x01\x58PIXCMAP',b'\x00\x00\x01\x5ASARRAY',b'\x00\x00\x01\x5BSEL',b'\x00\x00\x00\x34l_float32',b'\x00\x00\x01\x5Fl_float64',b'\x00\x00\x01\x69l_int16',b'\x00\x00\x00\x05l_int32',b'\x00\x00\x01\x68l_int64',b'\x00\x00\x01\x6Al_int8',b'\x00\x00\x00\x05l_ok',b'\x00\x00\x01\x74l_uint16',b'\x00\x00\x01\x72l_uint32',b'\x00\x00\x01\x73l_uint64',b'\x00\x00\x01\x70l_uint8'),
)

./usr/lib/python3/dist-packages/ocrmypdf/lib/compile_leptonica.py

#!/usr/bin/env python3
© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from pathlib import Path

from cffi import FFI

ffibuilder = FFI()
ffibuilder.cdef(
 """
typedef signed char l_int8;
typedef unsigned char l_uint8;
typedef short l_int16;
typedef unsigned short l_uint16;
typedef int l_int32;
typedef unsigned int l_uint32;
typedef float l_float32;
typedef double l_float64;
typedef long long l_int64;
typedef unsigned long long l_uint64;

typedef int l_ok; /*!< return type 0 if OK, 1 on error */

struct Pix
{
 l_uint32 w; /* width in pixels */
 l_uint32 h; /* height in pixels */
 l_uint32 d; /* depth in bits (bpp) */
 l_uint32 spp; /* number of samples per pixel */
 l_uint32 wpl; /* 32-bit words/line */
 l_uint32 refcount; /* reference count (1 if no clones) */
 l_int32 xres; /* image res (ppi) in x direction */
 /* (use 0 if unknown) */
 l_int32 yres; /* image res (ppi) in y direction */
 /* (use 0 if unknown) */
 l_int32 informat; /* input file format, IFF_* */
 l_int32 special; /* special instructions for I/O, etc */
 char *text; /* text string associated with pix */
 struct PixColormap *colormap; /* colormap (may be null) */
 l_uint32 *data; /* the image data */
};
typedef struct Pix PIX;

struct PixColormap
{
 void *array; /* colormap table (array of RGBA_QUAD) */
 l_int32 depth; /* of pix (1, 2, 4 or 8 bpp) */
 l_int32 nalloc; /* number of color entries allocated */
 l_int32 n; /* number of color entries used */
};
typedef struct PixColormap PIXCMAP;

/*! Array of pix */
struct Pixa
{
 l_int32 n; /*!< number of Pix in ptr array */
 l_int32 nalloc; /*!< number of Pix ptrs allocated */
 l_uint32 refcount; /*!< reference count (1 if no clones) */
 struct Pix **pix; /*!< the array of ptrs to pix */
 struct Boxa *boxa; /*!< array of boxes */
};
typedef struct Pixa PIXA;

/*! Array of compressed pix */
struct PixaComp
{
 l_int32 n; /*!< number of PixComp in ptr array */
 l_int32 nalloc; /*!< number of PixComp ptrs allocated */
 l_int32 offset; /*!< indexing offset into ptr array */
 struct PixComp **pixc; /*!< the array of ptrs to PixComp */
 struct Boxa *boxa; /*!< array of boxes */
};
typedef struct PixaComp PIXAC;

struct Box
{
 l_int32 x;
 l_int32 y;
 l_int32 w;
 l_int32 h;
 l_uint32 refcount; /* reference count (1 if no clones) */

};
typedef struct Box BOX;

/*! Array of Box */
struct Boxa
{
 l_int32 n; /*!< number of box in ptr array */
 l_int32 nalloc; /*!< number of box ptrs allocated */
 l_uint32 refcount; /*!< reference count (1 if no clones) */
 struct Box **box; /*!< box ptr array */
};
typedef struct Boxa BOXA;

/*! String array: an array of C strings */
struct Sarray
{
 l_int32 nalloc; /*!< size of allocated ptr array */
 l_int32 n; /*!< number of strings allocated */
 l_int32 refcount; /*!< reference count (1 if no clones) */
 char **array; /*!< string array */
};
typedef struct Sarray SARRAY;

/*! Pdf formatted encoding types */
enum {
 L_DEFAULT_ENCODE = 0, /*!< use default encoding based on image */
 L_JPEG_ENCODE = 1, /*!< use dct encoding: 8 and 32 bpp, no cmap */
 L_G4_ENCODE = 2, /*!< use ccitt g4 fax encoding: 1 bpp */
 L_FLATE_ENCODE = 3, /*!< use flate encoding: any depth, cmap ok */
 L_JP2K_ENCODE = 4 /*!< use jp2k encoding: 8 and 32 bpp, no cmap */
};

/*! Compressed image data */
struct L_Compressed_Data
{
 l_int32 type; /*!< encoding type: L_JPEG_ENCODE, etc */
 l_uint8 *datacomp; /*!< gzipped raster data */
 size_t nbytescomp; /*!< number of compressed bytes */
 char *data85; /*!< ascii85-encoded gzipped raster data */
 size_t nbytes85; /*!< number of ascii85 encoded bytes */
 char *cmapdata85; /*!< ascii85-encoded uncompressed cmap */
 char *cmapdatahex; /*!< hex pdf array for the cmap */
 l_int32 ncolors; /*!< number of colors in cmap */
 l_int32 w; /*!< image width */
 l_int32 h; /*!< image height */
 l_int32 bps; /*!< bits/sample; typ. 1, 2, 4 or 8 */
 l_int32 spp; /*!< samples/pixel; typ. 1 or 3 */
 l_int32 minisblack; /*!< tiff g4 photometry */
 l_int32 predictor; /*!< flate data has PNG predictors */
 size_t nbytes; /*!< number of uncompressed raster bytes */
 l_int32 res; /*!< resolution (ppi) */
};
typedef struct L_Compressed_Data L_COMP_DATA;

/*! Selection */
struct Sel
{
 l_int32 sy; /*!< sel height */
 l_int32 sx; /*!< sel width */
 l_int32 cy; /*!< y location of sel origin */
 l_int32 cx; /*!< x location of sel origin */
 l_int32 **data; /*!< {0,1,2}; data[i][j] in [row][col] order */
 char *name; /*!< used to find sel by name */
};
typedef struct Sel SEL;

enum {
 REMOVE_CMAP_TO_BINARY = 0, /*!< remove colormap for conv to 1 bpp */
 REMOVE_CMAP_TO_GRAYSCALE = 1, /*!< remove colormap for conv to 8 bpp */
 REMOVE_CMAP_TO_FULL_COLOR = 2, /*!< remove colormap for conv to 32 bpp */
 REMOVE_CMAP_WITH_ALPHA = 3, /*!< remove colormap and alpha */
 REMOVE_CMAP_BASED_ON_SRC = 4 /*!< remove depending on src format */
};

/*! Access and storage flags */
enum {
 L_NOCOPY = 0, /*!< do not copy the object; do not delete the ptr */
 L_INSERT = L_NOCOPY, /*!< stuff it in; do not copy or clone */
 L_COPY = 1, /*!< make/use a copy of the object */
 L_CLONE = 2, /*!< make/use clone (ref count) of the object */
 L_COPY_CLONE = 3 /*!< make a new array object (e.g., pixa) and fill */
 /*!< the array with clones (e.g., pix) */
};

/*! Flags for method of extracting barcode widths */
enum {
 L_USE_WIDTHS = 1, /*!< use histogram of barcode widths */
 L_USE_WINDOWS = 2 /*!< find best window for decoding transitions */
};

/*! Flags for barcode formats */
enum {
 L_BF_UNKNOWN = 0, /*!< unknown format */
 L_BF_ANY = 1, /*!< try decoding with all known formats */
 L_BF_CODE128 = 2, /*!< decode with Code128 format */
 L_BF_EAN8 = 3, /*!< decode with EAN8 format */
 L_BF_EAN13 = 4, /*!< decode with EAN13 format */
 L_BF_CODE2OF5 = 5, /*!< decode with Code 2 of 5 format */
 L_BF_CODEI2OF5 = 6, /*!< decode with Interleaved 2 of 5 format */
 L_BF_CODE39 = 7, /*!< decode with Code39 format */
 L_BF_CODE93 = 8, /*!< decode with Code93 format */
 L_BF_CODABAR = 9, /*!< decode with Code93 format */
 L_BF_UPCA = 10 /*!< decode with UPC A format */
};

enum {
 L_SEVERITY_EXTERNAL = 0, /* Get the severity from the environment */
 L_SEVERITY_ALL = 1, /* Lowest severity: print all messages */
 L_SEVERITY_DEBUG = 2, /* Print debugging and higher messages */
 L_SEVERITY_INFO = 3, /* Print informational and higher messages */
 L_SEVERITY_WARNING = 4, /* Print warning and higher messages */
 L_SEVERITY_ERROR = 5, /* Print error and higher messages */
 L_SEVERITY_NONE = 6 /* Highest severity: print no messages */
};

enum {
 SEL_DONT_CARE = 0,
 SEL_HIT = 1,
 SEL_MISS = 2
};

"""
)

ffibuilder.cdef(
 """
PIX * pixRead (const char *filename);
PIX * pixReadMem (const l_uint8 *data, size_t size);
PIX * pixReadStream (FILE *fp, l_int32 hint);
PIX * pixScale (PIX *pixs, l_float32 scalex, l_float32 scaley);
l_int32 pixFindSkew (PIX *pixs, l_float32 *pangle, l_float32 *pconf);
l_int32 pixWriteImpliedFormat (const char *filename, PIX *pix, l_int32 quality, l_int32 progressive);
l_int32 getImpliedFileFormat (const char *filename);
l_ok pixWriteStream (FILE *fp, PIX *pix, l_int32 format);
l_ok pixWriteStreamJpeg (FILE *fp, PIX *pixs, l_int32 quality, l_int32 progressive);
l_ok pixWriteMem (l_uint8 **pdata, size_t *psize, PIX *pix, l_int32 format);
l_ok pixWriteMemJpeg (l_uint8 **pdata, size_t *psize, PIX *pix, l_int32 quality, l_int32 progressive);
l_int32
pixWriteMemPng(l_uint8 **pdata,
 size_t *psize,
 PIX *pix,
 l_float32 gamma);

void pixDestroy (PIX **ppix);

l_ok
pixEqual(PIX *pix1,
 PIX *pix2,
 l_int32 *psame);

PIX *
pixEndianByteSwapNew(PIX *pixs);

PIX * pixDeskew (PIX *pixs, l_int32 redsearch);
char * getLeptonicaVersion ();
l_int32 pixCorrelationBinary(PIX *pix1, PIX *pix2, l_float32 *pval);
PIX *pixRotate180(PIX *pixd, PIX *pixs);
PIX *
pixRotateOrth(PIX *pixs,
 l_int32 quads);

l_int32 pixCountPixels (PIX *pix, l_int32 *pcount, l_int32 *tab8);
PIX * pixAnd (PIX *pixd, PIX *pixs1, PIX *pixs2);
l_int32 * makePixelSumTab8 (void);

PIX * pixDeserializeFromMemory (const l_uint32 *data, size_t nbytes);
l_int32 pixSerializeToMemory (PIX *pixs, l_uint32 **pdata, size_t *pnbytes);

PIX * pixConvertRGBToLuminance(PIX *pixs);

PIX * pixConvertTo8(PIX *pixs, l_int32 cmapflag);

PIX * pixRemoveColormap(PIX *pixs, l_int32 type);

l_int32
pixOtsuAdaptiveThreshold(PIX *pixs,
 l_int32 sx,
 l_int32 sy,
 l_int32 smoothx,
 l_int32 smoothy,
 l_float32 scorefract,
 PIX **ppixth,
 PIX **ppixd);

PIX *
pixOtsuThreshOnBackgroundNorm(PIX *pixs,
 PIX *pixim,
 l_int32 sx,
 l_int32 sy,
 l_int32 thresh,
 l_int32 mincount,
 l_int32 bgval,
 l_int32 smoothx,
 l_int32 smoothy,
 l_float32 scorefract,
 l_int32 *pthresh);

PIX *
pixMaskedThreshOnBackgroundNorm(PIX *pixs,
 PIX *pixim,
 l_int32 sx,
 l_int32 sy,
 l_int32 thresh,
 l_int32 mincount,
 l_int32 smoothx,
 l_int32 smoothy,
 l_float32 scorefract,
 l_int32 *pthresh);

PIX *
pixCleanBackgroundToWhite(PIX *pixs,
 PIX *pixim,
 PIX *pixg,
 l_float32 gamma,
 l_int32 blackval,
 l_int32 whiteval);

BOX *
pixFindPageForeground (PIX *pixs,
 l_int32 threshold,
 l_int32 mindist,
 l_int32 erasedist,
 l_int32 showmorph,
 PIXAC *pixac);

PIX *
pixClipRectangle(PIX *pixs,
 BOX *box,
 BOX **pboxc);

PIX *
pixBackgroundNorm(PIX *pixs,
 PIX *pixim,
 PIX *pixg,
 l_int32 sx,
 l_int32 sy,
 l_int32 thresh,
 l_int32 mincount,
 l_int32 bgval,
 l_int32 smoothx,
 l_int32 smoothy);

PIX *
pixGammaTRC(PIX *pixd,
 PIX *pixs,
 l_float32 gamma,
 l_int32 minval,
 l_int32 maxval);

l_int32
pixNumSignificantGrayColors(PIX *pixs,
 l_int32 darkthresh,
 l_int32 lightthresh,
 l_float32 minfract,
 l_int32 factor,
 l_int32 *pncolors);

l_int32
pixColorFraction(PIX *pixs,
 l_int32 darkthresh,
 l_int32 lightthresh,
 l_int32 diffthresh,
 l_int32 factor,
 l_float32 *ppixfract,
 l_float32 *pcolorfract);

PIX *
pixColorMagnitude(PIX *pixs,
 l_int32 rwhite,
 l_int32 gwhite,
 l_int32 bwhite,
 l_int32 type);

PIX *
pixMaskOverColorPixels(PIX *pixs,
 l_int32 threshdiff,
 l_int32 mindist);

l_int32
pixGetAverageMaskedRGB(PIX *pixs,
 PIX *pixm,
 l_int32 x,
 l_int32 y,
 l_int32 factor,
 l_int32 type,
 l_float32 *prval,
 l_float32 *pgval,
 l_float32 *pbval);

PIX *
pixGlobalNormRGB(PIX * 	pixd,
 PIX * 	pixs,
 l_int32 	rval,
 l_int32 	gval,
 l_int32 	bval,
 l_int32 	mapval);

PIX *
pixInvert(PIX * pixd,
 PIX * pixs);

PIX *
pixRemoveColormapGeneral(PIX *pixs,
 l_int32 type,
 l_int32 ifnocmap);

l_int32
pixGenerateCIData(PIX *pixs,
 l_int32 type,
 l_int32 quality,
 l_int32 ascii85,
 L_COMP_DATA **pcid);

SARRAY *
pixProcessBarcodes(PIX *pixs,
 l_int32 format,
 l_int32 method,
 SARRAY **psaw,
 l_int32 debugflag);

PIX *
pixaGetPix(PIXA *pixa,
 l_int32 index,
 l_int32 accesstype);

BOX*
pixaGetBox 	(PIXA * 	pixa,
		 l_int32 	index,
		 l_int32 	accesstype);

PIXA *
pixExtractBarcodes(PIX *pixs,
 l_int32 debugflag);

BOXA *
pixLocateBarcodes (PIX *pixs,
 l_int32 thresh,
 PIX **ppixb,
 PIX **ppixm);

SARRAY *
pixReadBarcodes(PIXA *pixa,
 l_int32 format,
 l_int32 method,
 SARRAY **psaw,
 l_int32 debugflag);

l_int32
l_generateCIDataForPdf(const char *fname,
 PIX *pix,
 l_int32 quality,
 L_COMP_DATA **pcid);

BOX *
boxClone (BOX *box);

BOX *
boxaGetBox (BOXA *boxa, l_int32 index, l_int32 accessflag);

SEL *
selCreateFromString (const char *text, l_int32 h, l_int32 w, const char *name);

SEL *
selCreateBrick (l_int32 h, l_int32 w, l_int32 cy, l_int32 cx, l_int32 type);

char *
selPrintToString(SEL *sel);

PIX *
pixDilate (PIX *pixd, PIX *pixs, SEL *sel);

PIX *
pixErode (PIX *pixd, PIX *pixs, SEL *sel);

PIX *
pixHMT (PIX *pixd, PIX *pixs, SEL *sel);

PIX *
pixSubtract (PIX *pixd, PIX *pixs1, PIX *pixs2);

void
boxDestroy(BOX **pbox);

void
boxaDestroy (BOXA **pboxa);

void
pixaDestroy(PIXA **ppixa);

l_ok
pixRenderBoxa (PIX *pix, BOXA *boxa, l_int32 width, l_int32 op);

void
l_CIDataDestroy(L_COMP_DATA **pcid);

void
sarrayDestroy(SARRAY **psa);

void
lept_free(void *ptr);

void selDestroy (SEL **psel);

l_int32
setMsgSeverity(l_int32 newsev);

"""
)

ffibuilder.set_source("ocrmypdf.lib._leptonica", None)

if __name__ == '__main__':
 ffibuilder.compile(verbose=True)
 if Path('ocrmypdf/lib/_leptonica.py').exists() and Path('src/ocrmypdf').exists():
 output = Path('ocrmypdf/lib/_leptonica.py')
 output.rename('src/ocrmypdf/lib/_leptonica.py')
 Path('ocrmypdf/lib').rmdir()
 Path('ocrmypdf').rmdir()

./usr/lib/python3/dist-packages/ocrmypdf/optimize.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import concurrent.futures
import sys
import tempfile
from collections import defaultdict
from os import fspath
from pathlib import Path

import pikepdf
from pikepdf import Dictionary, Name
from PIL import Image
from tqdm import tqdm

from . import leptonica
from ._jobcontext import PDFContext
from .exceptions import OutputFileAccessError
from .exec import jbig2enc, pngquant
from .helpers import safe_symlink

DEFAULT_JPEG_QUALITY = 75
DEFAULT_PNG_QUALITY = 70

def img_name(root, xref, ext):
 return fspath(root / f'{xref:08d}{ext}')

def png_name(root, xref):
 return img_name(root, xref, '.png')

def jpg_name(root, xref):
 return img_name(root, xref, '.jpg')

def tif_name(root, xref):
 return img_name(root, xref, '.tif')

def extract_image_filter(pike, root, log, image, xref):
 if image.Subtype != Name.Image:
 return None
 if image.Length < 100:
 log.debug("Skipping small image, xref %s", xref)
 return None

 pim = pikepdf.PdfImage(image)

 if len(pim.filter_decodeparms) > 1:
 log.debug("Skipping multiply filtered, xref %s", xref)
 return None
 filtdp = pim.filter_decodeparms[0]

 if pim.bits_per_component > 8:
 return None # Don't mess with wide gamut images

 if filtdp[0] == Name.JPXDecode:
 return None # Don't do JPEG2000

 if Name.Decode in image:
 return None # Don't mess with custom Decode tables

 return pim, filtdp

def extract_image_jbig2(*, pike, root, log, image, xref, options):
 result = extract_image_filter(pike, root, log, image, xref)
 if result is None:
 return None
 pim, filtdp = result

 if (
 pim.bits_per_component == 1
 and filtdp != Name.JBIG2Decode
 and jbig2enc.available()
):
 try:
 imgname = Path(root / f'{xref:08d}')
 with imgname.open('wb') as f:
 ext = pim.extract_to(stream=f)
 imgname.rename(imgname.with_suffix(ext))
 except pikepdf.UnsupportedImageTypeError:
 return None
 return xref, ext
 return None

def extract_image_generic(*, pike, root, log, image, xref, options):
 result = extract_image_filter(pike, root, log, image, xref)
 if result is None:
 return None
 pim, filtdp = result

 # Don't try to PNG-optimize 1bpp images, since JBIG2 does it better.
 if pim.bits_per_component == 1:
 return None

 try:
 pim.indexed # pikepdf 1.6.3 can't handle [/Indexed [/Array...]]
 except NotImplementedError:
 return None

 if filtdp[0] == Name.DCTDecode and options.optimize >= 2:
 # This is a simple heuristic derived from some training data, that has
 # about a 70% chance of guessing whether the JPEG is high quality,
 # and possibly recompressible, or not. The number itself doesn't mean
 # anything.
 # bytes_per_pixel = int(raw_jpeg.Length) / (w * h)
 # jpeg_quality_estimate = 117.0 * (bytes_per_pixel ** 0.213)
 # if jpeg_quality_estimate < 65:
 # return None

 # We could get the ICC profile here, but there's no need to look at it
 # for quality transcoding
 # if icc:
 # stream = BytesIO(raw_jpeg.read_raw_bytes())
 # iccbytes = icc.read_bytes()
 # with Image.open(stream) as im:
 # im.save(jpg_name(root, xref), icc_profile=iccbytes)
 try:
 imgname = Path(root / f'{xref:08d}')
 with imgname.open('wb') as f:
 ext = pim.extract_to(stream=f)
 imgname.rename(imgname.with_suffix(ext))
 except pikepdf.UnsupportedImageTypeError:
 return None
 return xref, ext
 elif (
 pim.indexed
 and pim.colorspace in pim.SIMPLE_COLORSPACES
 and options.optimize >= 3
):
 # Try to improve on indexed images - these are far from low hanging
 # fruit in most cases
 pim.as_pil_image().save(png_name(root, xref))
 return xref, '.png'
 elif not pim.indexed and pim.colorspace in pim.SIMPLE_COLORSPACES:
 # An optimization opportunity here, not currently taken, is directly
 # generating a PNG from compressed data
 pim.as_pil_image().save(png_name(root, xref))
 return xref, '.png'

 return None

def extract_images(pike, root, log, options, extract_fn):
 """Extract image using extract_fn

 Enumerate images on each page, lookup their xref/ID number in the PDF.
 Exclude images that are soft masks (i.e. alpha transparency related).
 Record the page number on which an image is first used, since images may be
 used on multiple pages (or multiple times on the same page).

 Current we do not check Form XObjects or other objects that may contain
 images, and we don't evaluate alternate images or thumbnails.

 extract_fn must decide if wants to extract the image in this context. If
 it does a tuple should be returned: (xref, ext) where .ext is the file
 extension. extract_fn must also extract the file it finds interesting.
 """

 include_xrefs = set()
 exclude_xrefs = set()
 pageno_for_xref = {}
 errors = 0
 for pageno, page in enumerate(pike.pages):
 try:
 xobjs = page.Resources.XObject
 except AttributeError:
 continue
 for _imname, image in dict(xobjs).items():
 if image.objgen[1] != 0:
 continue # Ignore images in an incremental PDF
 xref = image.objgen[0]
 if hasattr(image, 'SMask'):
 # Ignore soft masks
 smask_xref = image.SMask.objgen[0]
 exclude_xrefs.add(smask_xref)
 include_xrefs.add(xref)
 if xref not in pageno_for_xref:
 pageno_for_xref[xref] = pageno

 working_xrefs = include_xrefs - exclude_xrefs
 for xref in working_xrefs:
 image = pike.get_object((xref, 0))
 try:
 result = extract_fn(
 pike=pike, root=root, log=log, image=image, xref=xref, options=options
)
 except Exception as e:
 log.debug("Image xref %s, error %s", xref, repr(e))
 errors += 1
 else:
 if result:
 _, ext = result
 yield pageno_for_xref[xref], xref, ext

def extract_images_generic(pike, root, log, options):
 """Extract any >=2bpp image we think we can improve"""

 jpegs = []
 pngs = []
 for _, xref, ext in extract_images(pike, root, log, options, extract_image_generic):
 log.debug('xref = %s ext = %s', xref, ext)
 if ext == '.png':
 pngs.append(xref)
 elif ext == '.jpg':
 jpegs.append(xref)
 log.debug("Optimizable images: JPEGs: %s PNGs: %s", len(jpegs), len(pngs))
 return jpegs, pngs

def extract_images_jbig2(pike, root, log, options):
 """Extract any bitonal image that we think we can improve as JBIG2"""

 jbig2_groups = defaultdict(list)
 for pageno, xref, ext in extract_images(
 pike, root, log, options, extract_image_jbig2
):
 group = pageno // options.jbig2_page_group_size
 jbig2_groups[group].append((xref, ext))

 # Elide empty groups
 jbig2_groups = {
 group: xrefs for group, xrefs in jbig2_groups.items() if len(xrefs) > 0
 }
 log.debug("Optimizable images: JBIG2 groups: %s", (len(jbig2_groups),))
 return jbig2_groups

def _produce_jbig2_images(jbig2_groups, root, log, options):
 """Produce JBIG2 images from their groups"""

 def jbig2_group_futures(executor, root, groups):
 for group, xref_exts in groups.items():
 prefix = f'group{group:08d}'
 future = executor.submit(
 jbig2enc.convert_group,
 cwd=fspath(root),
 infiles=(img_name(root, xref, ext) for xref, ext in xref_exts),
 out_prefix=prefix,
)
 yield future

 def jbig2_single_futures(executor, root, groups):
 for group, xref_exts in groups.items():
 prefix = f'group{group:08d}'
 # Second loop is to ensure multiple images per page are unpacked
 for n, xref_ext in enumerate(xref_exts):
 xref, ext = xref_ext
 future = executor.submit(
 jbig2enc.convert_single,
 cwd=fspath(root),
 infile=img_name(root, xref, ext),
 outfile=root / f'{prefix}.{n:04d}',
)
 yield future

 if options.jbig2_page_group_size > 1:
 jbig2_futures = jbig2_group_futures
 else:
 jbig2_futures = jbig2_single_futures

 with concurrent.futures.ThreadPoolExecutor(max_workers=options.jobs) as executor:
 futures = jbig2_futures(executor, root, jbig2_groups)
 with tqdm(
 total=len(jbig2_groups),
 desc="JBIG2",
 unit='item',
 disable=not options.progress_bar,
) as pbar:
 for future in concurrent.futures.as_completed(futures):
 proc = future.result()
 if proc.stderr:
 log.debug(proc.stderr.decode())
 pbar.update()

def convert_to_jbig2(pike, jbig2_groups, root, log, options):
 """Convert images to JBIG2 and insert into PDF.

 When the JBIG2 page group size is > 1 we do several JBIG2 images at once
 and build a symbol dictionary that will span several pages. Each JBIG2
 image must reference to its symbol dictionary. If too many pages shared the
 same dictionary JBIG2 encoding becomes more expensive and less efficient.
 The default value of 10 was determined through testing. Currently this
 must be lossy encoding since jbig2enc does not support refinement coding.

 When the JBIG2 symbolic coder is not used, each JBIG2 stands on its own
 and needs no dictionary. Currently this must be lossless JBIG2.
 """

 _produce_jbig2_images(jbig2_groups, root, log, options)

 for group, xref_exts in jbig2_groups.items():
 prefix = f'group{group:08d}'
 jbig2_symfile = root / (prefix + '.sym')
 if jbig2_symfile.exists():
 jbig2_globals_data = jbig2_symfile.read_bytes()
 jbig2_globals = pikepdf.Stream(pike, jbig2_globals_data)
 jbig2_globals_dict = Dictionary(JBIG2Globals=jbig2_globals)
 elif options.jbig2_page_group_size == 1:
 jbig2_globals_dict = None
 else:
 raise FileNotFoundError(jbig2_symfile)

 for n, xref_ext in enumerate(xref_exts):
 xref, _ = xref_ext
 jbig2_im_file = root / (prefix + f'.{n:04d}')
 jbig2_im_data = jbig2_im_file.read_bytes()
 im_obj = pike.get_object(xref, 0)
 im_obj.write(
 jbig2_im_data, filter=Name.JBIG2Decode, decode_parms=jbig2_globals_dict
)

def transcode_jpegs(pike, jpegs, root, log, options):
 for xref in tqdm(
 jpegs, desc="JPEGs", unit='image', disable=not options.progress_bar
):
 in_jpg = Path(jpg_name(root, xref))
 opt_jpg = in_jpg.with_suffix('.opt.jpg')

 # This produces a debug warning from PIL
 # DEBUG:PIL.Image:Error closing: 'NoneType' object has no attribute
 # 'close'. Seems to be mostly harmless
 # https://github.com/python-pillow/Pillow/issues/1144
 with Image.open(fspath(in_jpg)) as im:
 im.save(fspath(opt_jpg), optimize=True, quality=options.jpeg_quality)

 if opt_jpg.stat().st_size > in_jpg.stat().st_size:
 log.debug("xref %s, jpeg, made larger - skip", xref)
 continue

 compdata = leptonica.CompressedData.open(opt_jpg)
 im_obj = pike.get_object(xref, 0)
 im_obj.write(compdata.read(), filter=Name.DCTDecode)

def transcode_pngs(pike, images, image_name_fn, root, log, options):
 modified = set()
 if options.optimize >= 2:
 png_quality = (
 max(10, options.png_quality - 10),
 min(100, options.png_quality + 10),
)
 with concurrent.futures.ThreadPoolExecutor(
 max_workers=options.jobs
) as executor:
 futures = []
 for xref in images:
 log.debug(image_name_fn(root, xref))
 futures.append(
 executor.submit(
 pngquant.quantize,
 image_name_fn(root, xref),
 png_name(root, xref),
 png_quality[0],
 png_quality[1],
)
)
 modified.add(xref)
 with tqdm(
 desc="PNGs",
 total=len(futures),
 unit='image',
 disable=not options.progress_bar,
) as pbar:
 for _future in concurrent.futures.as_completed(futures):
 pbar.update()

 for xref in modified:
 im_obj = pike.get_object(xref, 0)
 try:
 pix = leptonica.Pix.open(png_name(root, xref))
 if pix.mode == '1':
 compdata = pix.generate_pdf_ci_data(leptonica.lept.L_G4_ENCODE, 0)
 else:
 compdata = leptonica.CompressedData.open(png_name(root, xref))
 except leptonica.LeptonicaError as e:
 # Most likely this means file not found, i.e. quantize did not
 # produce an improved version
 log.error(e)
 continue

 # If re-coded image is larger don't use it - we test here because
 # pngquant knows the size of the temporary output file but not the actual
 # object in the PDF
 if len(compdata) > int(im_obj.stream_dict.Length):
 log.debug(
 f"pngquant: pngquant did not improve over original image "
 f"{len(compdata)} > {int(im_obj.stream_dict.Length)}"
)
 continue
 if compdata.type == leptonica.lept.L_FLATE_ENCODE:
 return rewrite_png(pike, im_obj, compdata, log)
 elif compdata.type == leptonica.lept.L_G4_ENCODE:
 return rewrite_png_as_g4(pike, im_obj, compdata, log)

def rewrite_png_as_g4(pike, im_obj, compdata, log):
 im_obj.BitsPerComponent = 1
 im_obj.Width = compdata.w
 im_obj.Height = compdata.h

 im_obj.write(compdata.read())

 log.debug(f"PNG to G4 {im_obj.objgen}")
 if Name.Predictor in im_obj:
 del im_obj.Predictor
 if Name.DecodeParms in im_obj:
 del im_obj.DecodeParms
 im_obj.DecodeParms = Dictionary(
 K=-1, BlackIs1=bool(compdata.minisblack), Columns=compdata.w
)

 im_obj.Filter = Name.CCITTFaxDecode
 return

def rewrite_png(pike, im_obj, compdata, log):
 # When a PNG is inserted into a PDF, we more or less copy the IDAT section from
 # the PDF and transfer the rest of the PNG headers to PDF image metadata.
 # One thing we have to do is tell the PDF reader whether a predictor was used
 # on the image before Flate encoding. (Typically one is.)
 # According to Leptonica source, PDF readers don't actually need us
 # to specify the correct predictor, they just need a value of either:
 # 1 - no predictor
 # 10-14 - there is a predictor
 # Leptonica's compdata->predictor only tells TRUE or FALSE
 # 10-14 means the actual predictor is specified in the data, so for any
 # number >= 10 the PDF reader will use whatever the PNG data specifies.
 # In practice Leptonica should use Paeth, 14, but 15 seems to be the
 # designated value for "optimal". So we will use 15.
 # See:
 # - PDF RM 7.4.4.4 Table 10
 # - https://github.com/DanBloomberg/leptonica/blob/master/src/pdfio2.c#L757
 predictor = 15 if compdata.predictor > 0 else 1
 dparms = Dictionary(Predictor=predictor)
 if predictor > 1:
 dparms.BitsPerComponent = compdata.bps # Yes, this is redundant
 dparms.Colors = compdata.spp
 dparms.Columns = compdata.w

 im_obj.BitsPerComponent = compdata.bps
 im_obj.Width = compdata.w
 im_obj.Height = compdata.h

 log.debug(
 f"PNG {im_obj.objgen}: palette={compdata.ncolors} spp={compdata.spp} bps={compdata.bps}"
)
 if compdata.ncolors > 0:
 # .ncolors is the number of colors in the palette, not the number of
 # colors used in a true color image. The palette string is always
 # given as RGB tuples even when the image is grayscale; see
 # https://github.com/DanBloomberg/leptonica/blob/master/src/colormap.c#L2067
 palette_pdf_string = compdata.get_palette_pdf_string()
 palette_data = pikepdf.Object.parse(palette_pdf_string)
 palette_stream = pikepdf.Stream(pike, bytes(palette_data))
 palette = [Name.Indexed, Name.DeviceRGB, compdata.ncolors - 1, palette_stream]
 cs = palette
 else:
 # ncolors == 0 means we are using a colorspace without a palette
 if compdata.spp == 1:
 cs = Name.DeviceGray
 elif compdata.spp == 3:
 cs = Name.DeviceRGB
 elif compdata.spp == 4:
 cs = Name.DeviceCMYK
 im_obj.ColorSpace = cs
 im_obj.write(compdata.read(), filter=Name.FlateDecode, decode_parms=dparms)

def optimize(input_file, output_file, context, save_settings):
 log = context.log
 options = context.options
 if options.optimize == 0:
 safe_symlink(input_file, output_file)
 return

 if options.jpeg_quality == 0:
 options.jpeg_quality = DEFAULT_JPEG_QUALITY if options.optimize < 3 else 40
 if options.png_quality == 0:
 options.png_quality = DEFAULT_PNG_QUALITY if options.optimize < 3 else 30
 if options.jbig2_page_group_size == 0:
 options.jbig2_page_group_size = 10 if options.jbig2_lossy else 1

 with pikepdf.Pdf.open(input_file) as pike:
 root = Path(output_file).parent / 'images'
 root.mkdir(exist_ok=True)

 jpegs, pngs = extract_images_generic(pike, root, log, options)
 transcode_jpegs(pike, jpegs, root, log, options)
 # if options.optimize >= 2:
 # Try pngifying the jpegs
 # transcode_pngs(pike, jpegs, jpg_name, root, log, options)
 transcode_pngs(pike, pngs, png_name, root, log, options)

 jbig2_groups = extract_images_jbig2(pike, root, log, options)
 convert_to_jbig2(pike, jbig2_groups, root, log, options)

 target_file = Path(output_file).with_suffix('.opt.pdf')
 pike.remove_unreferenced_resources()
 pike.save(target_file, **save_settings)

 input_size = Path(input_file).stat().st_size
 output_size = Path(target_file).stat().st_size
 if output_size == 0:
 raise OutputFileAccessError(
 f"Output file not created after optimizing. We probably ran "
 f"out of disk space in the temporary folder: {tempfile.gettempdir()}."
)
 ratio = input_size / output_size
 savings = 1 - output_size / input_size
 log.info(f"Optimize ratio: {ratio:.2f} savings: {(100 * savings):.1f}%")

 if savings < 0:
 log.info("Image optimization did not improve the file - discarded")
 # We still need to save the file
 with pikepdf.open(input_file) as pike:
 pike.remove_unreferenced_resources()
 pike.save(output_file, **save_settings)
 else:
 safe_symlink(target_file, output_file)

def main(infile, outfile, level, jobs=1):
 from tempfile import TemporaryDirectory
 from shutil import copy

 class OptimizeOptions:
 """Emulate ocrmypdf's options"""

 def __init__(
 self, input_file, jobs, optimize_, jpeg_quality, png_quality, jb2lossy
):
 self.input_file = input_file
 self.jobs = jobs
 self.optimize = optimize_
 self.jpeg_quality = jpeg_quality
 self.png_quality = png_quality
 self.jbig2_page_group_size = 0
 self.jbig2_lossy = jb2lossy
 self.quiet = True
 self.progress_bar = False

 options = OptimizeOptions(
 input_file=infile,
 jobs=jobs,
 optimize_=int(level),
 jpeg_quality=0, # Use default
 png_quality=0,
 jb2lossy=False,
)

 with TemporaryDirectory() as td:
 context = PDFContext(options, td, infile, None)
 tmpout = Path(td) / 'out.pdf'
 optimize(
 infile,
 tmpout,
 context,
 dict(
 compress_streams=True,
 preserve_pdfa=True,
 object_stream_mode=pikepdf.ObjectStreamMode.generate,
),
)
 copy(fspath(tmpout), fspath(outfile))

if __name__ == '__main__':
 main(sys.argv[1], sys.argv[2], sys.argv[3])

./usr/lib/python3/dist-packages/ocrmypdf/pdfa.py

© 2015 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""
Generate a PDFMARK file for Ghostscript >= 9.14, for PDF/A conversion

pdfmark is an extension to the Postscript language that describes some PDF
features like bookmarks and annotations. It was originally specified Adobe
Distiller, for Postscript to PDF conversion:
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/pdfmark_reference.pdf

Ghostscript uses pdfmark for PDF to PDF/A conversion as well. To use Ghostscript
to create a PDF/A, we need to create a pdfmark file with the necessary metadata.

This takes care of the many version-specific bugs and pecularities in
Ghostscript's handling of pdfmark.

"""

import base64
from pathlib import Path
from string import Template

import pikepdf
import pkg_resources

ICC_PROFILE_RELPATH = 'data/sRGB.icc'

SRGB_ICC_PROFILE = pkg_resources.resource_filename('ocrmypdf', ICC_PROFILE_RELPATH)

This is a template written in PostScript which is needed to create PDF/A
files, from the Ghostscript documentation. Lines beginning with % are
comments. Python substitution variables have a '$' prefix.
pdfa_def_template = u"""%!
% Define an ICC profile :
/ICCProfile $icc_profile
def

[/_objdef {icc_PDFA} /type /stream /OBJ pdfmark
[{icc_PDFA} << /N 3 >> /PUT pdfmark
[{icc_PDFA} ICCProfile /PUT pdfmark

% Define the output intent dictionary :

[/_objdef {OutputIntent_PDFA} /type /dict /OBJ pdfmark
[{OutputIntent_PDFA} <<
 /Type /OutputIntent % Must be so (the standard requires).
 /S /GTS_PDFA1 % Must be so (the standard requires).
 /DestOutputProfile {icc_PDFA} % Must be so (see above).
 /OutputConditionIdentifier ($icc_identifier)
>> /PUT pdfmark
[{Catalog} <</OutputIntents [{OutputIntent_PDFA}]>> /PUT pdfmark
"""

def generate_pdfa_ps(target_filename, icc='sRGB'):
 """Create a Postscript pdfmark file for Ghostscript PDF/A conversion

 A pdfmark file is a small Postscript program that provides some information
 Ghostscript needs to perform PDF/A conversion. The only information we put
 in specifies that we want the file to be a PDF/A, and we want to Ghostscript
 to convert objects to the sRGB colorspace if it runs into any object that
 it decides must be converted.

 See the Adobe pdfmark Reference for details:
 https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/pdfmark_reference.pdf

 :param target_filename: filename to save
 :param icc: ICC identifier such as 'sRGB'
 """
 if icc == 'sRGB':
 icc_profile = SRGB_ICC_PROFILE
 else:
 raise NotImplementedError("Only supporting sRGB")

 # Read the ICC profile, encode as ASCII85 and convert to a string which we
 # will insert in the .ps file
 bytes_icc_profile = Path(icc_profile).read_bytes()
 icc_profile = base64.a85encode(bytes_icc_profile, adobe=True).decode('ascii')

 t = Template(pdfa_def_template)
 ps = t.substitute(icc_profile=icc_profile, icc_identifier=icc)

 # We should have encoded everything to pure ASCII by this point, and
 # to be safe, only allow ASCII in PostScript
 Path(target_filename).write_text(ps, encoding='ascii')
 return target_filename

def file_claims_pdfa(filename):
 """Determines if the file claims to be PDF/A compliant

 This only checks if the XMP metadata contains a PDF/A marker. It does not
 do full PDF/A validation.
 """

 with pikepdf.open(filename) as pdf:
 pdfmeta = pdf.open_metadata()
 if not pdfmeta.pdfa_status:
 return {
 'pass': False,
 'output': 'pdf',
 'conformance': 'No PDF/A metadata in XMP',
 }
 valid_part_conforms = {'1A', '1B', '2A', '2B', '2U', '3A', '3B', '3U'}
 conformance = f'PDF/A-{pdfmeta.pdfa_status}'
 pdfa_dict = {}
 if pdfmeta.pdfa_status in valid_part_conforms:
 pdfa_dict['pass'] = True
 pdfa_dict['output'] = 'pdfa'
 pdfa_dict['conformance'] = conformance
 return pdfa_dict

./usr/lib/python3/dist-packages/ocrmypdf/pdfinfo/__init__.py

#!/usr/bin/env python3
© 2015 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from .info import Colorspace, Encoding, PdfInfo

./usr/lib/python3/dist-packages/ocrmypdf/pdfinfo/ghosttext.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import re
import xml.etree.ElementTree as ET

from ..exec import ghostscript

gslog = logging.getLogger()

Forgive me for I have sinned
I am using regular expressions to parse XML. However the XML in this case,
generated by Ghostscript, is self-consistent enough to be parseable.
regex_remove_char_tags = re.compile(
 br"""
 <char\b
 (?: [^>] # anything single character but >
 | \">\" # special case: trap ">"
)*
 /> # terminate with '/>'
""",
 re.VERBOSE,
)

def page_get_textblocks(infile, pageno, xmltext, height):
 """Get text boxes out of Ghostscript txtwrite xml"""

 root = xmltext
 if not hasattr(xmltext, 'findall'):
 return []

 def blocks():
 for span in root.findall('.//span'):
 bbox_str = span.attrib['bbox']
 font_size = span.attrib['size']
 pts = [int(pt) for pt in bbox_str.split()]
 pts[1] = pts[1] - int(float(font_size) + 0.5)
 bbox_topdown = tuple(pts)
 bb = bbox_topdown
 bbox_bottomup = (bb[0], height - bb[3], bb[2], height - bb[1])
 yield bbox_bottomup

 def joined_blocks():
 prev = None
 for bbox in blocks():
 if prev is None:
 prev = bbox
 if bbox[1] == prev[1] and bbox[3] == prev[3]:
 gap = prev[2] - bbox[0]
 height = abs(bbox[3] - bbox[1])
 if gap < height:
 # Join boxes
 prev = (prev[0], prev[1], bbox[2], bbox[3])
 continue
 # yield previously joined bboxes and start anew
 yield prev
 prev = bbox
 if prev is not None:
 yield prev

 return [block for block in joined_blocks()]

def extract_text_xml(infile, pdf, pageno=None, log=gslog):
 existing_text = ghostscript.extract_text(infile, pageno=None)
 existing_text = regex_remove_char_tags.sub(b' ', existing_text)

 try:
 root = ET.fromstringlist([b'<document>\n', existing_text, b'</document>\n'])
 page_xml = root.findall('page')
 except ET.ParseError as e:
 log.error(
 "An error occurred while attempting to retrieve existing text in "
 "the input file. Will attempt to continue assuming that there is "
 "no existing text in the file. The error was:"
)
 log.error(e)
 page_xml = [None] * len(pdf.pages)

 page_count_difference = len(pdf.pages) - len(page_xml)
 if page_count_difference != 0:
 log.error("The number of pages in the input file is inconsistent.")
 log.error(f"Expected {len(pdf.pages)}, txtwrite says {len(page_xml)}")
 if page_count_difference > 0:
 page_xml.extend([None] * page_count_difference)
 return page_xml

./usr/lib/python3/dist-packages/ocrmypdf/pdfinfo/info.py

#!/usr/bin/env python3
© 2015 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import re
from collections import namedtuple
from decimal import Decimal
from enum import Enum
from math import hypot, isclose
from os import fspath
from pathlib import Path
from warnings import warn

import pikepdf
from pikepdf import PdfMatrix
from tqdm import tqdm

from ocrmypdf.exceptions import EncryptedPdfError, MissingDependencyError

from . import ghosttext
from .layout import get_page_analysis, get_text_boxes

logger = logging.getLogger()

Colorspace = Enum('Colorspace', 'gray rgb cmyk lab icc index sep devn pattern jpeg2000')

Encoding = Enum(
 'Encoding', 'ccitt jpeg jpeg2000 jbig2 asciihex ascii85 lzw flate ' + 'runlength'
)

FRIENDLY_COLORSPACE = {
 '/DeviceGray': Colorspace.gray,
 '/CalGray': Colorspace.gray,
 '/DeviceRGB': Colorspace.rgb,
 '/CalRGB': Colorspace.rgb,
 '/DeviceCMYK': Colorspace.cmyk,
 '/Lab': Colorspace.lab,
 '/ICCBased': Colorspace.icc,
 '/Indexed': Colorspace.index,
 '/Separation': Colorspace.sep,
 '/DeviceN': Colorspace.devn,
 '/Pattern': Colorspace.pattern,
 '/G': Colorspace.gray, # Abbreviations permitted in inline images
 '/RGB': Colorspace.rgb,
 '/CMYK': Colorspace.cmyk,
 '/I': Colorspace.index,
}

FRIENDLY_ENCODING = {
 '/CCITTFaxDecode': Encoding.ccitt,
 '/DCTDecode': Encoding.jpeg,
 '/JPXDecode': Encoding.jpeg2000,
 '/JBIG2Decode': Encoding.jbig2,
 '/CCF': Encoding.ccitt, # Abbreviations permitted in inline images
 '/DCT': Encoding.jpeg,
 '/AHx': Encoding.asciihex,
 '/A85': Encoding.ascii85,
 '/LZW': Encoding.lzw,
 '/Fl': Encoding.flate,
 '/RL': Encoding.runlength,
}

FRIENDLY_COMP = {
 Colorspace.gray: 1,
 Colorspace.rgb: 3,
 Colorspace.cmyk: 4,
 Colorspace.lab: 3,
 Colorspace.index: 1,
}

UNIT_SQUARE = (1.0, 0.0, 0.0, 1.0, 0.0, 0.0)

def _is_unit_square(shorthand):
 values = map(float, shorthand)
 pairwise = zip(values, UNIT_SQUARE)
 return all([isclose(a, b, rel_tol=1e-3) for a, b in pairwise])

XobjectSettings = namedtuple('XobjectSettings', ['name', 'shorthand', 'stack_depth'])

InlineSettings = namedtuple('InlineSettings', ['iimage', 'shorthand', 'stack_depth'])

ContentsInfo = namedtuple(
 'ContentsInfo', ['xobject_settings', 'inline_images', 'found_vector']
)

TextboxInfo = namedtuple('TextboxInfo', ['bbox', 'is_visible', 'is_corrupt'])

class VectorInfo:
 def __init__(self):
 pass

def _normalize_stack(graphobjs):
 """Convert runs of qQ's in the stack into single graphobjs"""
 for operands, operator in graphobjs:
 operator = str(operator)
 if re.match(r'Q*q+$', operator): # Zero or more Q, one or more q
 for char in operator: # Split into individual
 yield ([], char) # Yield individual
 else:
 yield (operands, operator)

def _interpret_contents(contentstream, initial_shorthand=UNIT_SQUARE):
 """Interpret the PDF content stream.

 The stack represents the state of the PDF graphics stack. We are only
 interested in the current transformation matrix (CTM) so we only track
 this object; a full implementation would need to track many other items.

 The CTM is initialized to the mapping from user space to device space.
 PDF units are 1/72". In a PDF viewer or printer this matrix is initialized
 to the transformation to device space. For example if set to
 (1/72, 0, 0, 1/72, 0, 0) then all units would be calculated in inches.

 Images are always considered to be (0, 0) -> (1, 1). Before drawing an
 image there should be a 'cm' that sets up an image coordinate system
 where drawing from (0, 0) -> (1, 1) will draw on the desired area of the
 page.

 PDF units suit our needs so we initialize ctm to the identity matrix.

 According to the PDF specification, the maximum stack depth is 32. Other
 viewers tolerate some amount beyond this. We issue a warning if the
 stack depth exceeds the spec limit and set a hard limit beyond this to
 bound our memory requirements. If the stack underflows behavior is
 undefined in the spec, but we just pretend nothing happened and leave the
 CTM unchanged.
 """

 stack = []
 ctm = PdfMatrix(initial_shorthand)
 xobject_settings = []
 inline_images = []
 found_vector = False
 vector_ops = set('S s f F f* B B* b b*'.split())
 image_ops = set('BI ID EI q Q Do cm'.split())
 operator_whitelist = ' '.join(vector_ops | image_ops)

 for n, graphobj in enumerate(
 _normalize_stack(
 pikepdf.parse_content_stream(contentstream, operator_whitelist)
)
):
 operands, operator = graphobj
 if operator == 'q':
 stack.append(ctm)
 if len(stack) > 32: # See docstring
 if len(stack) > 128:
 raise RuntimeError(
 "PDF graphics stack overflowed hard limit, operator %i" % n
)
 warn("PDF graphics stack overflowed spec limit")
 elif operator == 'Q':
 try:
 ctm = stack.pop()
 except IndexError:
 # Keeping the ctm the same seems to be the only sensible thing
 # to do. Just pretend nothing happened, keep calm and carry on.
 warn("PDF graphics stack underflowed - PDF may be malformed")
 elif operator == 'cm':
 ctm = PdfMatrix(operands) @ ctm
 elif operator == 'Do':
 image_name = operands[0]
 settings = XobjectSettings(
 name=image_name, shorthand=ctm.shorthand, stack_depth=len(stack)
)
 xobject_settings.append(settings)
 elif operator == 'INLINE IMAGE': # BI/ID/EI are grouped into this
 iimage = operands[0]
 inline = InlineSettings(
 iimage=iimage, shorthand=ctm.shorthand, stack_depth=len(stack)
)
 inline_images.append(inline)
 elif operator in vector_ops:
 found_vector = True

 return ContentsInfo(
 xobject_settings=xobject_settings,
 inline_images=inline_images,
 found_vector=found_vector,
)

def _get_dpi(ctm_shorthand, image_size):
 """Given the transformation matrix and image size, find the image DPI.

 PDFs do not include image resolution information within image data.
 Instead, the PDF page content stream describes the location where the
 image will be rasterized, and the effective resolution is the ratio of the
 pixel size to raster target size.

 Normally a scanned PDF has the paper size set appropriately but this is
 not guaranteed. The most common case is a cropped image will change the
 page size (/CropBox) without altering the page content stream. That means
 it is not sufficient to assume that the image fills the page, even though
 that is the most common case.

 A PDF image may be scaled (always), cropped, translated, rotated in place
 to an arbitrary angle (rarely) and skewed. Only equal area mappings can
 be expressed, that is, it is not necessary to consider distortions where
 the effective DPI varies with position.

 To determine the image scale, transform an offset axis vector v0 (0, 0),
 width-axis vector v0 (1, 0), height-axis vector vh (0, 1) with the matrix,
 which gives the dimensions of the image in PDF units. From there we can
 compare to actual image dimensions. PDF uses
 row vector * matrix_tranposed unlike the traditional
 matrix * column vector.

 The offset, width and height vectors can be combined in a matrix and
 multiplied by the transform matrix. Then we want to calculated
 magnitude(width_vector - offset_vector)
 and
 magnitude(height_vector - offset_vector)

 When the above is worked out algebraically, the effect of translation
 cancels out, and the vector magnitudes become functions of the nonzero
 transformation matrix indices. The results of the derivation are used
 in this code.

 pdfimages -list does calculate the DPI in some way that is not completely
 naive, but it does not get the DPI of rotated images right, so cannot be
 used anymore to validate this. Photoshop works, or using Acrobat to
 rotate the image back to normal.

 It does not matter if the image is partially cropped, or even out of the
 /MediaBox.

 """

 a, b, c, d, _, _ = ctm_shorthand

 # Calculate the width and height of the image in PDF units
 image_drawn_width = hypot(a, b)
 image_drawn_height = hypot(c, d)

 # The scale of the image is pixels per unit of default user space (1/72")
 scale_w = image_size[0] / image_drawn_width
 scale_h = image_size[1] / image_drawn_height

 # DPI = scale * 72
 dpi_w = scale_w * 72.0
 dpi_h = scale_h * 72.0

 return dpi_w, dpi_h

class ImageInfo:
 DPI_PREC = Decimal('1.000')

 def __init__(self, *, name='', pdfimage=None, inline=None, shorthand=None):

 self._name = str(name)
 self._shorthand = shorthand

 if inline is not None:
 self._origin = 'inline'
 pim = inline.iimage
 elif pdfimage is not None:
 self._origin = 'xobject'
 pim = pikepdf.PdfImage(pdfimage)
 self._width = pim.width
 self._height = pim.height

 # If /ImageMask is true, then this image is a stencil mask
 # (Images that draw with this stencil mask will have a reference to
 # it in their /Mask, but we don't actually need that information)
 if pim.image_mask:
 self._type = 'stencil'
 else:
 self._type = 'image'

 self._bpc = int(pim.bits_per_component)
 try:
 self._enc = FRIENDLY_ENCODING.get(pim.filters[0], 'image')
 except IndexError:
 self._enc = '?'

 try:
 self._color = FRIENDLY_COLORSPACE.get(pim.colorspace, '?')
 except NotImplementedError:
 self._color = '?'
 if self._enc == Encoding.jpeg2000:
 self._color = Colorspace.jpeg2000

 self._comp = FRIENDLY_COMP.get(self._color, '?')

 # Bit of a hack... infer grayscale if component count is uncertain
 # but encoding must be monochrome. This happens if a monochrome image
 # has an ICC profile attached. Better solution would be to examine
 # the ICC profile.
 if self._comp == '?' and self._enc in (Encoding.ccitt, Encoding.jbig2):
 self._comp = FRIENDLY_COMP[Colorspace.gray]

 @property
 def name(self):
 return self._name

 @property
 def type_(self):
 return self._type

 @property
 def width(self):
 return self._width

 @property
 def height(self):
 return self._height

 @property
 def bpc(self):
 return self._bpc

 @property
 def color(self):
 return self._color

 @property
 def comp(self):
 return self._comp

 @property
 def enc(self):
 return self._enc

 @property
 def xres(self):
 return _get_dpi(self._shorthand, (self._width, self._height))[0]

 @property
 def yres(self):
 return _get_dpi(self._shorthand, (self._width, self._height))[1]

 def __repr__(self):
 class_locals = {
 attr: getattr(self, attr, None)
 for attr in dir(self)
 if not attr.startswith('_')
 }
 return (
 "<ImageInfo '{name}' {type_} {width}x{height} {color} "
 "{comp} {bpc} {enc} {xres}x{yres}>"
).format(**class_locals)

def _find_inline_images(contentsinfo):
 "Find inline images in the contentstream"

 for n, inline in enumerate(contentsinfo.inline_images):
 yield ImageInfo(
 name='inline-%02d' % n, shorthand=inline.shorthand, inline=inline
)

def _image_xobjects(container):
 """Search for all XObject-based images in the container

 Usually the container is a page, but it could also be a Form XObject
 that contains images. Filter out the Form XObjects which are dealt with
 elsewhere.

 Generate a sequence of tuples (image, xobj container), where container,
 where xobj is the name of the object and image is the object itself,
 since the object does not know its own name.

 """

 if '/Resources' not in container:
 return
 resources = container['/Resources']
 if '/XObject' not in resources:
 return
 xobjs = resources['/XObject'].as_dict()
 for xobj in xobjs:
 candidate = xobjs[xobj]
 if not '/Subtype' in candidate:
 continue
 if candidate['/Subtype'] == '/Image':
 pdfimage = candidate
 yield (pdfimage, xobj)

def _find_regular_images(container, contentsinfo):
 """Find images stored in the container's /Resources /XObject

 Usually the container is a page, but it could also be a Form XObject
 that contains images.

 Generates images with their DPI at time of drawing.
 """

 for pdfimage, xobj in _image_xobjects(container):

 # For each image that is drawn on this, check if we drawing the
 # current image - yes this is O(n^2), but n == 1 almost always
 for draw in contentsinfo.xobject_settings:
 if draw.name != xobj:
 continue

 if draw.stack_depth == 0 and _is_unit_square(draw.shorthand):
 # At least one PDF in the wild (and test suite) draws an image
 # when the graphics stack depth is 0, meaning that the image
 # gets drawn into a square of 1x1 PDF units (or 1/72",
 # or 0.35 mm). The equivalent DPI will be >100,000. Exclude
 # these from our DPI calculation for the page.
 continue

 yield ImageInfo(name=draw.name, pdfimage=pdfimage, shorthand=draw.shorthand)

def _find_form_xobject_images(pdf, container, contentsinfo):
 """Find any images that are in Form XObjects in the container

 The container may be a page, or a parent Form XObject.

 """
 if '/Resources' not in container:
 return
 resources = container['/Resources']
 if '/XObject' not in resources:
 return
 xobjs = resources['/XObject'].as_dict()
 for xobj in xobjs:
 candidate = xobjs[xobj]
 if candidate['/Subtype'] != '/Form':
 continue

 form_xobject = candidate
 for settings in contentsinfo.xobject_settings:
 if settings.name != xobj:
 continue

 # Find images once for each time this Form XObject is drawn.
 # This could be optimized to cache the multiple drawing events
 # but in practice both Form XObjects and multiple drawing of the
 # same object are both very rare.
 ctm_shorthand = settings.shorthand
 yield from _process_content_streams(
 pdf=pdf, container=form_xobject, shorthand=ctm_shorthand
)

def _process_content_streams(*, pdf, container, shorthand=None):
 """Find all individual instances of images drawn in the container

 Usually the container is a page, but it may also be a Form XObject.

 On a typical page images are stored inline or as regular images
 in an XObject.

 Form XObjects may include inline images, XObject images,
 and recursively, other Form XObjects; and also vector graphic objects.

 Every instance of an image being drawn somewhere is flattened and
 treated as a unique image, since if the same image is drawn multiple times
 on one page it may be drawn at differing resolutions, and our objective
 is to find the resolution at which the page can be rastered without
 downsampling.

 """

 if container.get('/Type') == '/Page' and '/Contents' in container:
 initial_shorthand = shorthand or UNIT_SQUARE
 elif container.get('/Type') == '/XObject' and container['/Subtype'] == '/Form':
 # Set the CTM to the state it was when the "Do" operator was
 # encountered that is drawing this instance of the Form XObject
 ctm = PdfMatrix(shorthand) if shorthand else PdfMatrix.identity()

 # A Form XObject may provide its own matrix to map form space into
 # user space. Get this if one exists
 form_shorthand = container.get('/Matrix', PdfMatrix.identity())
 form_matrix = PdfMatrix(form_shorthand)

 # Concatenate form matrix with CTM to ensure CTM is correct for
 # drawing this instance of the XObject
 ctm = form_matrix @ ctm
 initial_shorthand = ctm.shorthand
 else:
 return

 contentsinfo = _interpret_contents(container, initial_shorthand)

 if contentsinfo.found_vector:
 yield VectorInfo()
 yield from _find_inline_images(contentsinfo)
 yield from _find_regular_images(container, contentsinfo)
 yield from _find_form_xobject_images(pdf, container, contentsinfo)

def _page_has_text(text_blocks, page_width, page_height):
 """Smarter text detection that ignores text in margins"""

 pw, ph = float(page_width), float(page_height)

 margin_ratio = 0.125
 interior_bbox = (
 margin_ratio * pw, # left
 (1 - margin_ratio) * ph, # top
 (1 - margin_ratio) * pw, # right
 margin_ratio * ph, # bottom (first quadrant: bottom < top)
)

 def rects_intersect(a, b):
 """
 Where (a,b) are 4-tuple rects (left-0, top-1, right-2, bottom-3)
 https://stackoverflow.com/questions/306316/determine-if-two-rectangles-overlap-each-other
 Formula assumes all boxes are in first quadrant
 """
 return a[0] < b[2] and a[2] > b[0] and a[1] > b[3] and a[3] < b[1]

 has_text = False
 for bbox in text_blocks:
 if rects_intersect(bbox, interior_bbox):
 has_text = True
 break
 return has_text

def simplify_textboxes(miner, textbox_getter):
 """Extract only limited content from text boxes

 We do this to save memory and ensure that our objects are pickleable.
 """
 for box in textbox_getter(miner):
 first_line = box._objs[0]
 first_char = first_line._objs[0]

 visible = first_char.rendermode != 3
 corrupt = first_char.get_text() == '\ufffd'
 yield TextboxInfo(box.bbox, visible, corrupt)

def _pdf_get_pageinfo(pdf, pageno: int, infile, xmltext):
 pageinfo = {}
 pageinfo['pageno'] = pageno
 pageinfo['images'] = []

 page = pdf.pages[pageno]
 mediabox = [Decimal(d) for d in page.MediaBox.as_list()]
 width_pt = mediabox[2] - mediabox[0]
 height_pt = mediabox[3] - mediabox[1]

 if xmltext is not None:
 bboxes = ghosttext.page_get_textblocks(
 fspath(infile), pageno, xmltext=xmltext, height=height_pt
)
 pageinfo['bboxes'] = bboxes
 else:
 pscript5_mode = str(pdf.docinfo.get('/Creator')).startswith('PScript5')
 miner = get_page_analysis(infile, pageno, pscript5_mode)
 pageinfo['textboxes'] = list(simplify_textboxes(miner, get_text_boxes))
 bboxes = (box.bbox for box in pageinfo['textboxes'])

 pageinfo['has_text'] = _page_has_text(bboxes, width_pt, height_pt)

 userunit = page.get('/UserUnit', Decimal(1.0))
 if not isinstance(userunit, Decimal):
 userunit = Decimal(userunit)
 pageinfo['userunit'] = userunit
 pageinfo['width_inches'] = width_pt * userunit / Decimal(72.0)
 pageinfo['height_inches'] = height_pt * userunit / Decimal(72.0)

 try:
 pageinfo['rotate'] = int(page['/Rotate'])
 except KeyError:
 pageinfo['rotate'] = 0

 userunit_shorthand = (userunit, 0, 0, userunit, 0, 0)
 contentsinfo = [
 ci
 for ci in _process_content_streams(
 pdf=pdf, container=page, shorthand=userunit_shorthand
)
]

 pageinfo['has_vector'] = False
 if any(isinstance(ci, VectorInfo) for ci in contentsinfo):
 pageinfo['has_vector'] = True

 pageinfo['images'] = [im for im in contentsinfo if isinstance(im, ImageInfo)]
 if pageinfo['images']:
 xres = Decimal(max(image.xres for image in pageinfo['images']))
 yres = Decimal(max(image.yres for image in pageinfo['images']))
 pageinfo['xres'], pageinfo['yres'] = xres, yres
 pageinfo['width_pixels'] = int(round(xres * pageinfo['width_inches']))
 pageinfo['height_pixels'] = int(round(yres * pageinfo['height_inches']))

 return pageinfo

def _pdf_get_all_pageinfo(infile, detailed_analysis=False, log=None, progbar=False):
 pdf = pikepdf.open(infile) # Do not close in this function
 if pdf.is_encrypted:
 pdf.close()
 raise EncryptedPdfError() # Triggered by encryption with empty passwd
 if detailed_analysis:
 pages_xml = None
 else:
 pages_xml = ghosttext.extract_text_xml(infile, pdf, pageno=None, log=log)

 pages = []
 for n, _ in tqdm(
 enumerate(pdf.pages),
 total=len(pdf.pages),
 desc="Scan",
 unit='page',
 disable=not progbar,
):
 page_xml = pages_xml[n] if pages_xml else None
 page = PageInfo(pdf, n, infile, page_xml, detailed_analysis)
 pages.append(page)

 return pages, pdf

class PageInfo:
 def __init__(self, pdf, pageno, infile, xmltext, detailed_analysis=False):
 self._pageno = pageno
 self._infile = infile
 self._pageinfo = _pdf_get_pageinfo(pdf, pageno, infile, xmltext)
 self._detailed_analysis = detailed_analysis

 @property
 def pageno(self):
 return self._pageno

 @property
 def has_text(self):
 return self._pageinfo['has_text']

 @property
 def has_corrupt_text(self):
 if not self._detailed_analysis:
 raise NotImplementedError('Did not do detailed analysis')
 return any(tbox.is_corrupt for tbox in self._pageinfo['textboxes'])

 @property
 def has_vector(self):
 return self._pageinfo['has_vector']

 @property
 def width_inches(self):
 return self._pageinfo['width_inches']

 @property
 def height_inches(self):
 return self._pageinfo['height_inches']

 @property
 def width_pixels(self):
 return int(round(self.width_inches * self.xres))

 @property
 def height_pixels(self):
 return int(round(self.height_inches * self.yres))

 @property
 def rotation(self):
 return self._pageinfo.get('rotate', None)

 @rotation.setter
 def rotation(self, value):
 if value in (0, 90, 180, 270, 360, -90, -180, -270):
 self._pageinfo['rotate'] = value
 else:
 raise ValueError("rotation must be a cardinal angle")

 @property
 def images(self):
 return self._pageinfo['images']

 def get_textareas(self, visible=None, corrupt=None):
 def predicate(obj, want_visible, want_corrupt):
 result = True
 if want_visible is not None:
 if obj.is_visible != want_visible:
 result = False
 if want_corrupt is not None:
 if obj.is_corrupt != want_corrupt:
 result = False
 return result

 if 'textboxes' not in self._pageinfo:
 if visible is not None and corrupt is not None:
 raise NotImplementedError('Ghostscript textboxes cannot be classified')
 return self._pageinfo['bboxes']

 return (
 obj.bbox
 for obj in self._pageinfo['textboxes']
 if predicate(obj, visible, corrupt)
)

 @property
 def xres(self):
 return self._pageinfo.get('xres', None)

 @property
 def yres(self):
 return self._pageinfo.get('yres', None)

 @property
 def userunit(self):
 return self._pageinfo.get('userunit', None)

 @property
 def min_version(self):
 if self.userunit is not None:
 return '1.6'
 else:
 return '1.5'

 def __repr__(self):
 return (
 '<PageInfo ' 'pageno={} {}"x{}" rotation={} res={}x{} has_text={}>'
).format(
 self.pageno,
 self.width_inches,
 self.height_inches,
 self.rotation,
 self.xres,
 self.yres,
 self.has_text,
)

class PdfInfo:
 """Get summary information about a PDF"""

 def __init__(self, infile, detailed_page_analysis=False, log=logger, progbar=False):
 self._infile = infile
 self._pages, pdf = _pdf_get_all_pageinfo(
 infile, detailed_page_analysis, log=log, progbar=progbar
)
 self._needs_rendering = pdf.root.get('/NeedsRendering', False)
 self._has_acroform = False
 if '/AcroForm' in pdf.root:
 if len(pdf.root.AcroForm.get('/Fields', [])) > 0:
 self._has_acroform = True
 elif '/XFA' in pdf.root.AcroForm:
 self._has_acroform = True
 pdf.close()

 @property
 def pages(self):
 return self._pages

 @property
 def min_version(self):
 # The minimum PDF is the maximum version that any particular page needs
 return max(page.min_version for page in self.pages)

 @property
 def has_userunit(self):
 return any(page.userunit != 1.0 for page in self.pages)

 @property
 def has_acroform(self):
 return self._has_acroform

 @property
 def filename(self):
 if not isinstance(self._infile, (str, Path)):
 raise NotImplementedError("can't get filename from stream")
 return self._infile

 @property
 def needs_rendering(self):
 return self._needs_rendering

 def __getitem__(self, item):
 return self._pages[item]

 def __len__(self):
 return len(self._pages)

 def __repr__(self):
 return f"<PdfInfo('...'), page count={len(self)}>"

def main():
 import argparse

 parser = argparse.ArgumentParser()
 parser.add_argument('infile')
 args = parser.parse_args()
 info = _pdf_get_all_pageinfo(args.infile)
 from pprint import pprint

 pprint(info)

if __name__ == '__main__':
 main()

./usr/lib/python3/dist-packages/ocrmypdf/pdfinfo/layout.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import re
from math import copysign
from pathlib import Path
from unittest.mock import patch

import pdfminer
import pdfminer.encodingdb
import pdfminer.pdfdevice
import pdfminer.pdfinterp
from pdfminer.converter import PDFLayoutAnalyzer
from pdfminer.glyphlist import glyphname2unicode
from pdfminer.layout import LAParams, LTChar, LTPage, LTTextBox
from pdfminer.pdfdocument import PDFTextExtractionNotAllowed
from pdfminer.pdffont import PDFFont, PDFSimpleFont, PDFUnicodeNotDefined
from pdfminer.pdfpage import PDFPage
from pdfminer.utils import bbox2str, matrix2str

from ..exceptions import EncryptedPdfError

STRIP_NAME = re.compile(r'[0-9]+')

#
pdfminer 20181108 patches
#

if pdfminer.__version__ == '20181108':

 def name2unicode(name):
 """Fix pdfminer's name2unicode function

 Font cids that are mapped to names of the form /g123 seem to be, by convention
 characters with no corresponding Unicode entry. These can be subsetted fonts
 or symbolic fonts. There seems to be no way to map /g123 fonts to Unicode,
 barring a ToUnicode data structure.
 """
 if name in glyphname2unicode:
 return glyphname2unicode[name]
 if name.startswith('g') or name.startswith('a'):
 raise KeyError(name)
 if name.startswith('uni'):
 try:
 return chr(int(name[3:], 16))
 except ValueError: # Not hexadecimal
 raise KeyError(name)
 m = STRIP_NAME.search(name)
 if not m:
 raise KeyError(name)
 return chr(int(m.group(0)))

 pdfminer.encodingdb.name2unicode = name2unicode

 original_PDFFont_init = PDFFont.__init__

 def PDFFont__init__(self, descriptor, widths, default_width=None):
 original_PDFFont_init(self, descriptor, widths, default_width)
 # PDF spec says descent should be negative
 # A font with a positive descent implies it floats entirely above the
 # baseline, i.e. it's not really a baseline anymore. I have fonts that
 # claim a positive descent, but treating descent as positive always seems
 # to misposition text.
 if self.descent > 0:
 self.descent = -self.descent

 PDFFont.__init__ = PDFFont__init__

#
end of pdfminer 20181108 patches
#

original_PDFSimpleFont_init = PDFSimpleFont.__init__

def PDFSimpleFont__init__(self, descriptor, widths, spec):
 # Font encoding is specified either by a name of
 # built-in encoding or a dictionary that describes
 # the differences.
 original_PDFSimpleFont_init(self, descriptor, widths, spec)
 # pdfminer is incorrect. If there is no ToUnicode and no Encoding, do not
 # assume Unicode conversion is possible. RM 9.10.2
 if not self.unicode_map and 'Encoding' not in spec:
 self.cid2unicode = {}
 return

PDFSimpleFont.__init__ = PDFSimpleFont__init__

#
pdfminer patches when creator is PScript5.dll
#

def PDFType3Font__PScript5_get_height(self):
 h = self.bbox[3] - self.bbox[1]
 if h == 0:
 h = self.ascent - self.descent
 return h * copysign(1.0, self.vscale)

def PDFType3Font__PScript5_get_descent(self):
 return self.descent * copysign(1.0, self.vscale)

def PDFType3Font__PScript5_get_ascent(self):
 return self.ascent * copysign(1.0, self.vscale)

class LTStateAwareChar(LTChar):
 """A subclass of LTChar that tracks text render mode at time of drawing"""

 __slots__ = (
 'rendermode',
 '_text',
 'matrix',
 'fontname',
 'adv',
 'upright',
 'size',
 'width',
 'height',
 'bbox',
 'x0',
 'x1',
 'y0',
 'y1',
)

 def __init__(
 self,
 matrix,
 font,
 fontsize,
 scaling,
 rise,
 text,
 textwidth,
 textdisp,
 ncs,
 graphicstate,
 textstate,
):
 super().__init__(
 matrix,
 font,
 fontsize,
 scaling,
 rise,
 text,
 textwidth,
 textdisp,
 ncs,
 graphicstate,
)
 self.rendermode = textstate.render

 def is_compatible(self, obj):
 """Check if characters can be combined into a textline

 We consider characters compatible if:
 - the Unicode mapping is known, and both have the same render mode
 - the Unicode mapping is unknown but both are part of the same font
 """
 # pylint: disable=protected-access
 both_unicode_mapped = isinstance(self._text, str) and isinstance(obj._text, str)
 try:
 if both_unicode_mapped:
 return self.rendermode == obj.rendermode
 font0, _ = self._text
 font1, _ = obj._text
 return font0 == font1 and self.rendermode == obj.rendermode
 except (ValueError, AttributeError):
 return False

 def get_text(self):
 if isinstance(self._text, tuple):
 return '\ufffd' # standard 'Unknown symbol'
 return self._text

 def __repr__(self):
 return '<%s %s matrix=%s rendermode=%r font=%r adv=%s text=%r>' % (
 self.__class__.__name__,
 bbox2str(self.bbox),
 matrix2str(self.matrix),
 self.rendermode,
 self.fontname,
 self.adv,
 self.get_text(),
)

class TextPositionTracker(PDFLayoutAnalyzer):
 """A page layout analyzer that pays attention to text visibility"""

 def __init__(self, rsrcmgr, pageno=1, laparams=None):
 super().__init__(rsrcmgr, pageno, laparams)
 self.textstate = None
 self.result = None
 self.cur_item = None # not defined in pdfminer code as it should be

 def begin_page(self, page, ctm):
 super().begin_page(page, ctm)
 self.cur_item = LTPage(self.pageno, page.mediabox)

 def end_page(self, page):
 assert not self._stack, str(len(self._stack))
 assert isinstance(self.cur_item, LTPage), str(type(self.cur_item))
 if self.laparams is not None:
 self.cur_item.analyze(self.laparams)
 self.pageno += 1
 self.receive_layout(self.cur_item)

 def render_string(self, textstate, seq, ncs, graphicstate):
 self.textstate = textstate.copy()
 super().render_string(self.textstate, seq, ncs, graphicstate)

 def render_char(
 self, matrix, font, fontsize, scaling, rise, cid, ncs, graphicstate
):
 try:
 text = font.to_unichr(cid)
 assert isinstance(text, str), str(type(text))
 except PDFUnicodeNotDefined:
 text = self.handle_undefined_char(font, cid)
 textwidth = font.char_width(cid)
 textdisp = font.char_disp(cid)
 item = LTStateAwareChar(
 matrix,
 font,
 fontsize,
 scaling,
 rise,
 text,
 textwidth,
 textdisp,
 ncs,
 graphicstate,
 self.textstate,
)
 self.cur_item.add(item)
 return item.adv

 def handle_undefined_char(self, font, cid):
 # log.info('undefined: %r, %r', font, cid)
 return (font.fontname, cid)

 def receive_layout(self, ltpage):
 self.result = ltpage

 def get_result(self):
 return self.result

def get_page_analysis(infile, pageno, pscript5_mode):
 rman = pdfminer.pdfinterp.PDFResourceManager(caching=True)
 dev = TextPositionTracker(rman, laparams=LAParams())
 interp = pdfminer.pdfinterp.PDFPageInterpreter(rman, dev)

 if pscript5_mode:
 patcher = patch.multiple(
 'pdfminer.pdffont.PDFType3Font',
 spec=True,
 get_ascent=PDFType3Font__PScript5_get_ascent,
 get_descent=PDFType3Font__PScript5_get_descent,
 get_height=PDFType3Font__PScript5_get_height,
)
 patcher.start()

 try:
 with Path(infile).open('rb') as f:
 page = PDFPage.get_pages(f, pagenos=[pageno], maxpages=0)
 interp.process_page(next(page))
 except PDFTextExtractionNotAllowed:
 raise EncryptedPdfError()
 finally:
 if pscript5_mode:
 patcher.stop()

 return dev.get_result()

def get_text_boxes(obj):
 for child in obj:
 if isinstance(child, (LTTextBox)):
 yield child
 else:
 try:
 yield from get_text_boxes(child)
 except TypeError:
 continue

./usr/lib/python3/dist-packages/ocrmypdf/quality.py

© 2020 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import re
from typing import Iterable

"""Utilities to measure OCR quality"""

class OcrQualityDictionary:
 """Manages a dictionary for simple OCR quality checks."""

 def __init__(self, *, wordlist: Iterable[str] = []):
 """Construct a dictionary from a list of words.

 Words for which capitalization is important should be capitalized in the
 dictionary. Words that contain spaces or other punctuation will never match.
 """
 self.dictionary = set()
 self.dictionary.update(w for w in wordlist)

 def measure_words_matched(self, ocr_text: str) -> float:
 """Check how many unique words in the OCR text match a dictionary.

 Words with mixed capitalized are only considered a match if the test word
 matches that capitalization.

 Returns:
 number of words that match / number
 """
 text = re.sub(r"[0-9_]+", ' ', ocr_text)
 text = re.sub(r'\W+', ' ', text)
 text_words_list = re.split(r'\s+', text)
 text_words = {w for w in text_words_list if len(w) >= 3}

 matches = 0
 for w in text_words:
 if w in self.dictionary or (
 w != w.lower() and w.lower() in self.dictionary
):
 matches += 1
 if matches > 0:
 hit_ratio = matches / len(text_words)
 else:
 hit_ratio = 0.0
 return hit_ratio

./usr/lib/python3/dist-packages/ocrmypdf-9.6.0+dfsg.egg-info/PKG-INFO

Metadata-Version: 2.1
Name: ocrmypdf
Version: 9.6.0+dfsg
Summary: OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched
Home-page: https://github.com/jbarlow83/OCRmyPDF
Author: James R. Barlow
Author-email: jim@purplerock.ca
License: UNKNOWN
Project-URL: Documentation, https://ocrmypdf.readthedocs.io/
Project-URL: Source, https://github.com/jbarlow83/ocrmypdf
Project-URL: Tracker, https://github.com/jbarlow83/ocrmypdf/issues
Description:

 [![Build Status][azure]](https://dev.azure.com/jim0585/ocrmypdf/_build/latest?definitionId=2&branchName=master) [![PyPI version][pypi]](https://pypi.org/project/ocrmypdf/) ![Homebrew version][homebrew] ![ReadTheDocs][docs] ![Python versions][pyversions]

 [azure]: https://dev.azure.com/jim0585/ocrmypdf/_apis/build/status/jbarlow83.OCRmyPDF?branchName=master

 [travis]: https://travis-ci.org/jbarlow83/OCRmyPDF.svg?branch=master "Travis build status"

 [pypi]: https://img.shields.io/pypi/v/ocrmypdf.svg "PyPI version"

 [homebrew]: https://img.shields.io/homebrew/v/ocrmypdf.svg "Homebrew version"

 [docs]: https://readthedocs.org/projects/ocrmypdf/badge/?version=latest "RTD"

 [pyversions]: https://img.shields.io/pypi/pyversions/ocrmypdf "Supported Python versions"

 OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted.

        ```bash
        ocrmypdf                      # it's a scriptable command line program
           -l eng+fra                 # it supports multiple languages
           --rotate-pages             # it can fix pages that are misrotated
           --deskew                   # it can deskew crooked PDFs!
           --title "My PDF"           # it can change output metadata
           --jobs 4                   # it uses multiple cores by default
           --output-type pdfa         # it produces PDF/A by default
           input_scanned.pdf          # takes PDF input (or images)
           output_searchable.pdf      # produces validated PDF output
        ```

 [See the release notes for details on the latest changes](https://ocrmypdf.readthedocs.io/en/latest/release_notes.html).

 Main features

 - Generates a searchable [PDF/A](https://en.wikipedia.org/?title=PDF/A) file from a regular PDF
 - Places OCR text accurately below the image to ease copy / paste
 - Keeps the exact resolution of the original embedded images
 - When possible, inserts OCR information as a "lossless" operation without disrupting any other content
 - Optimizes PDF images, often producing files smaller than the input file
 - If requested, deskews and/or cleans the image before performing OCR
 - Validates input and output files
 - Distributes work across all available CPU cores
 - Uses [Tesseract OCR](https://github.com/tesseract-ocr/tesseract) engine to recognize more than [100 languages](https://github.com/tesseract-ocr/tessdata)
 - Scales properly to handle files with thousands of pages
 - Battle-tested on millions of PDFs

 For details: please consult the [documentation](https://ocrmypdf.readthedocs.io/en/latest/).

 Motivation

 I searched the web for a free command line tool to OCR PDF files: I found many, but none of them were really satisfying:

 - Either they produced PDF files with misplaced text under the image (making copy/paste impossible)
 - Or they did not handle accents and multilingual characters
 - Or they changed the resolution of the embedded images
 - Or they generated ridiculously large PDF files
 - Or they crashed when trying to OCR
 - Or they did not produce valid PDF files
 - On top of that none of them produced PDF/A files (format dedicated for long time storage)

 ...so I decided to develop my own tool.

 Installation

 Linux, Windows, macOS and FreeBSD are supported. Docker images are also available.

 Users of Debian 9 or later or Ubuntu 16.10 or later may simply

        ```bash
        apt-get install ocrmypdf
        ```

 and users of Fedora 29 or later may simply

        ```bash
        dnf install ocrmypdf
        ```

 and Homebrew users (macOS, Linux, Windows Subsystem for Linux) may simply

        ```bash
        brew install ocrmypdf
        ```

 For everyone else, [see our documentation](https://ocrmypdf.readthedocs.io/en/latest/installation.html) for installation steps.

 Languages

 OCRmyPDF uses Tesseract for OCR, and relies on its language packs. For Linux users, you can often find packages that provide language packs:

        ```bash
        # Display a list of all Tesseract language packs
        apt-cache search tesseract-ocr
        
        # Debian/Ubuntu users
        apt-get install tesseract-ocr-chi-sim  # Example: Install Chinese Simplified language pack
        
        # Arch Linux users
        pacman -S tesseract-data-eng tesseract-data-deu # Example: Install the English and German language packs
        ```

 You can then pass the `-l LANG` argument to OCRmyPDF to give a hint as to what languages it should search for. Multiple languages can be requested.

 Documentation and support

 Once OCRmyPDF is installed, the built-in help which explains the command syntax and options can be accessed via:

        ```bash
        ocrmypdf --help
        ```

 Our [documentation is served on Read the Docs](https://ocrmypdf.readthedocs.io/en/latest/index.html).

 Please report issues on our [GitHub issues](https://github.com/jbarlow83/OCRmyPDF/issues) page, and follow the issue template for quick response.

 Requirements

 In addition to the required Python version (3.6+), OCRmyPDF requires external program installations of Ghostscript, Tesseract OCR, QPDF, and Leptonica. OCRmyPDF is pure Python, but uses CFFI to portably generate library bindings. OCRmyPDF works on pretty much everything: Linux, macOS, Windows and FreeBSD.

 Press & Media

 - [Going paperless with OCRmyPDF](https://medium.com/@ikirichenko/going-paperless-with-ocrmypdf-e2f36143f46a)
 - [Converting a scanned document into a compressed searchable PDF with redactions](https://medium.com/@treyharris/converting-a-scanned-document-into-a-compressed-searchable-pdf-with-redactions-63f61c34fe4c)
 - [c't 1-2014, page 59](https://heise.de/-2279695): Detailed presentation of OCRmyPDF v1.0 in the leading German IT magazine c't
 - [heise Open Source, 09/2014: Texterkennung mit OCRmyPDF](https://heise.de/-2356670)

 Business enquiries

 OCRmyPDF would not be the software that it is today without companies and users choosing to provide support for feature development and consulting enquiries. We are happy to discuss all enquiries, whether for extending the existing feature set, or integrating OCRmyPDF into a larger system.

 License

 The OCRmyPDF software is licensed under the GNU GPLv3. Certain files are covered by other licenses, as noted in their source files.

 The license for each test file varies, and is noted in tests/resources/README.rst. The documentation is licensed under Creative Commons Attribution-ShareAlike 4.0 (CC-BY-SA 4.0).

 OCRmyPDF versions prior to 6.0 were distributed under the MIT License.

 Disclaimer

 The software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

Keywords: PDF,OCR,optical character recognition,PDF/A,scanning
Platform: UNKNOWN
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Console
Classifier: Intended Audience :: End Users/Desktop
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: System Administrators
Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
Classifier: Operating System :: MacOS :: MacOS X
Classifier: Operating System :: Microsoft :: Windows :: Windows 10
Classifier: Operating System :: POSIX
Classifier: Operating System :: POSIX :: BSD
Classifier: Operating System :: POSIX :: Linux
Classifier: Topic :: Scientific/Engineering :: Image Recognition
Classifier: Topic :: Text Processing :: Indexing
Classifier: Topic :: Text Processing :: Linguistic
Requires-Python: >= 3.6
Description-Content-Type: text/markdown

./usr/lib/python3/dist-packages/ocrmypdf-9.6.0+dfsg.egg-info/dependency_links.txt

./usr/lib/python3/dist-packages/ocrmypdf-9.6.0+dfsg.egg-info/entry_points.txt

[console_scripts]
ocrmypdf = ocrmypdf.__main__:run

./usr/lib/python3/dist-packages/ocrmypdf-9.6.0+dfsg.egg-info/not-zip-safe

./usr/lib/python3/dist-packages/ocrmypdf-9.6.0+dfsg.egg-info/requires.txt

./usr/lib/python3/dist-packages/ocrmypdf-9.6.0+dfsg.egg-info/top_level.txt

ocrmypdf

./usr/share/bash-completion/completions/ocrmypdf

ocrmypdf completion -*- shell-script -*-

set -o errexit

_ocrmypdf()
{
 local cur prev cword words split
 _init_completion -s || return

 case $prev in
 --version|-h|--help)
 return
 ;;
 --user-words|--user-patterns|--tesseract-config)
 _filedir
 return
 ;;
 --output-type)
 COMPREPLY=($(compgen -W 'pdfa pdf pdfa-1 pdfa-2 pdfa-3' -- \
 "$cur"))
 return
 ;;
 --pdf-renderer)
 COMPREPLY=($(compgen -W 'auto hocr sandwich' -- "$cur"))
 return
 ;;
 --pdfa-image-compression)
 COMPREPLY=($(compgen -W 'auto jpeg lossless' -- "$cur"))
 return
 ;;
 -O|--optimize|--tesseract-oem)
 COMPREPLY=($(compgen -W '{0..3}' -- "$cur"))
 return
 ;;
 --jpeg-quality|--png-quality)
 COMPREPLY=($(compgen -W '{0..100}' -- "$cur"))
 return
 ;;
 -l|--language)
 COMPREPLY=$(command tesseract --list-langs 2>/dev/null)
 COMPREPLY=($(compgen -W '${COMPREPLY[@]##*:}' -- "$cur"))
 return
 ;;
 --image-dpi|--oversample|--skip-big|--max-image-mpixels|\
 --tesseract-timeout|--rotate-pages-threshold)
 COMPREPLY=($(compgen -P "$cur" -W '{0..9}'))
 return
 ;;
 -j|--jobs)
 COMPREPLY=($(compgen -W '{1..'$(_ncpus)'}' -- "$cur"))
 return
 ;;
 -v|--verbose)
 COMPREPLY=($(compgen -W '{0..2}' -- "$cur")) # max level ?
 return
 ;;
 --tesseract-pagesegmode)
 COMPREPLY=($(compgen -W '{1..13}' -- "$cur"))
 return
 ;;
 --sidecar|--title|--author|--subject|--keywords|--unpaper-args|--pages|--fast-web-view)
 # argument required but no completions available
 return
 ;;
 esac

 $split && return

 if [[$cur == -*]]; then
 COMPREPLY=($(compgen -W '--language --image-dpi --output-type
 --sidecar --version --jobs --quiet --verbose --title --author
 --subject --keywords --rotate-pages --remove-background --deskew
 --clean --clean-final --unpaper-args --oversample --remove-vectors
 --threshold --force-ocr --skip-text --redo-ocr
 --skip-big --jpeg-quality --png-quality --jbig2-lossy
 --max-image-mpixels --tesseract-config --tesseract-pagesegmode
 --help --tesseract-oem --pdf-renderer --tesseract-timeout
 --rotate-pages-threshold --pdfa-image-compression --user-words
 --user-patterns --keep-temporary-files --output-type
 --no-progress-bar --pages --fast-web-view' \
 -- "$cur"))
 return
 else
 _filedir
 return
 fi
} &&
complete -F _ocrmypdf ocrmypdf

set +o errexit

ex: filetype=sh

./usr/share/doc/ocrmypdf/NEWS.Debian.gz

./usr/share/doc/ocrmypdf/NEWS.Debian

ocrmypdf (6.1.2-1) unstable; urgency=low

 The OCRMYPDF_TESSERACT, OCRMYPDF_QPDF, OCRMYPDF_GS and OCRMYPDF_UNPAPER
 environment variables are no longer respected. Use the PATH
 environment variable, or other means, to override the external
 programs OCRmyPDF uses.

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 31 Mar 2018 09:55:11 -0700

./usr/share/doc/ocrmypdf/changelog.Debian.gz

./usr/share/doc/ocrmypdf/changelog.Debian

ocrmypdf (9.6.0+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 29 Feb 2020 09:02:01 -0700

ocrmypdf (9.5.0+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Sun, 02 Feb 2020 19:39:00 -0700

ocrmypdf (9.4.0+dfsg-1) unstable; urgency=medium

 * New upstream release.
 * Update d/copyright for new files.
 * Drop dependency on qpdf.

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 17 Jan 2020 11:28:30 -0700

ocrmypdf (9.1.0+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #944534).
 - Tighten build-dep on python3-pikepdf to require 1.7.0.

 -- Sean Whitton <spwhitton@spwhitton.name> Tue, 12 Nov 2019 10:00:24 -0700

ocrmypdf (9.0.3+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #939044, #940497).
 * Add tesseract-ocr-deu to autopkgtest deps (Closes: #935749).

 -- Sean Whitton <spwhitton@spwhitton.name> Wed, 18 Sep 2019 16:32:25 -0700

ocrmypdf (9.0.1+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #934035).
 - Tighten build-dep on pikepdf to require 1.6.1.
 - Drop deps on ruffus.
 - Drop code in d/rules which passed --force to setup.py.
 * Add docs/images/logo* and misc/media/logo.afdesign to Files-Excluded.
 I cannot confirm that we can regenerate the files in docs/images/ from
 the .afdesign file using tools in Debian main, which latter is
 presumably the preferred form for modification.
 * Newly account for the following files in d/copyright:
 - misc/webservice.py
 - docs/images/bitmap_vs_svg.svg
 - tests/resources/link.pdf
 * Install new bash & fish completion.
 - New build-dep on dh-exec.
 * In response to upstream commit 56a56a4dcb:
 - drop d/rules code to prepare an importable copy of ocrmypdf for the
 docs build
 - patch docs/conf.py to use os.environ['DEB_VERSION_UPSTREAM'] instead
 of calling pkg_resources.get_distribution, which won't work before
 ocrmypdf is installed.

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 16 Aug 2019 10:36:12 +0100

ocrmypdf (8.0.1+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 26 Jan 2019 13:18:54 -0700

ocrmypdf (8.0.0+dfsg-3) unstable; urgency=medium

 * Require python3-pdfminer (>= 20181108+dfsg-3).

 -- Sean Whitton <spwhitton@spwhitton.name> Mon, 14 Jan 2019 19:27:28 -0700

ocrmypdf (8.0.0+dfsg-2) unstable; urgency=medium

 * Revert changes in previous upload that disabled usage of pdfminer.six.
 It turns out that the blocking problem was not #886291, but instead
 the problem fixed by the 20181108+dfsg-3 upload of src:pdfminer.
 Thanks to Daniele Tricoli for the fix.

 -- Sean Whitton <spwhitton@spwhitton.name> Mon, 14 Jan 2019 19:19:45 -0700

ocrmypdf (8.0.0+dfsg-1) unstable; urgency=medium

 * New upstream release.
 - Add tests/resources/enron1.pdf to Files-Excluded
 See https://github.com/pikepdf/pikepdf/issues/21
 - Patch out test_prevent_gs_invalid_xml
 This test requires tests/resources/enron1.pdf
 - Tighten dependency on tesseract-ocr.
 - Tighten {build-,}dep on pikepdf.
 * Drop dependencies on python3-pdfminer & patch pdfminer.six out of setup.py.
 OCRmyPDF's usage of pdfminer is broken due to #886291. The problem is
 not likely to be fixed in time for the buster freeze, so disable
 pdfminer functionality for now.
 Also see https://github.com/jbarlow83/OCRmyPDF/issues/339
 * Drop bogus Debian changes to upstream file tests/test_main.py by
 checking out the file from tag v8.0.0+dfsg (Closes: #918891).
 The changes were introduced in upstream releases 6.2.4 and 6.2.5 and
 dropped by 7.4.0. The merge of upstream version 7.4.0 into the Debian
 packaging branch was not done correctly, such that the changes
 remained.

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 11 Jan 2019 17:49:29 -0700

For older changelog entries, run 'apt-get changelog ocrmypdf'

./usr/share/doc/ocrmypdf/copyright

Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: OCRmyPDF
Upstream-Contact: James R. Barlow <barlow.jim@gmail.com>
Source: https://github.com/jbarlow83/OCRmyPDF
Files-Excluded:
 tests/resources/milk.pdf
 tests/resources/enron1.pdf
 docs/images/logo*
 misc/media/logo.afdesign

Files: *
Copyright:
 (C) 2013-2017 The OCRmyPDF Authors
 (C) 2013-2016, 2015-2017 2016, 2017, 2017-2018, 2018 James R. Barlow
 (C) 2019 Ian Alexander: https://github.com/ianalexander
License: GPL-3+

Files: misc/webservice.py
Copyright: Copyright (C) 2019 James R. Barlow
License: AGPL-3+

Files: docs tests/resources/*
Copyright: (C) 2013-2018 James R. Barlow
License: CC-BY-SA-4.0

Files: docs/images/bitmap_vs_svg.svg
Copyright: (C) 2006 Yug
License: CC-BY-SA-2.5

Files: src/ocrmypdf/hocrtransform.py
Copyright: (C) 2010 Jonathan Brinley <jonathanbrinley@gmail.com>
 (C) 2013-14 Julien Pfefferkorn
 (C) 2015-16 James R. Barlow
License: Expat

Files: src/ocrmypdf/pdfa.py
Copyright: (C) 2015 James R. Barlow
 (C) 1986-2017 The authors of GhostScript
License: GPL-3+

Files: src/ocrmypdf/_unicodefun.py
Copyright: (C) 2014 Armin Ronacher
 (C) 2017 James R. Barlow
License: BSD-3-clause

Files: tests/spoof/*
Copyright: (C) 2016, 2017, 2016-2018 James R. Barlow
License: Expat

Files: tests/resources/graph.pdf tests/resources/graph_ocred.pdf
Copyright: Public domain
License: public-domain
 Released into the public domain by author; see:
 <https://en.wikipedia.org/wiki/File:Pandas_text_analysis.png>.

Files: tests/resources/c02-22.pdf
 tests/resources/congress.jpg
 tests/resources/multipage.pdf
 tests/resources/palette.pdf
 tests/resources/jbig2.pdf
 tests/resources/encrypted_algo4.pdf
Copyright: Public domain
License: public-domain
 Copyright on these files has expired.

Files: tests/resources/linn.png
 tests/resources/linn.pdf
 tests/resources/linn.txt
 tests/resources/ccitt.pdf
 tests/resources/cardinal.pdf
 tests/resources/skew.pdf
 tests/resources/rotated_skew.pdf
 tests/resources/skew-encrypted.pdf
 tests/resources/poster.pdf
Copyright: (C) 1985 Forat Electronics
License: GFDL-1.2+ or CC-BY-SA-3.0

Files: tests/resources/lichtenstein.pdf
Copyright: (C) 2001 Andreas Tille
 (C) 2007 Alessio Damato
License: GFDL-1.2+ or CC-BY-SA-3.0

Files: tests/resources/masks.pdf
Copyright: held by the contributors to the German Wikipedia article "Linux"
 see: https://de.wikipedia.org/w/index.php?title=Linux&action=history
 (masks.pdf generated from Wikipedia article as of 2016-08-24)
License: CC-BY-SA-3.0

Files: tests/resources/epson.pdf
Copyright: held by the contributors to the Wikipedia article "Optical character recognition"
 see: https://en.wikipedia.org/w/index.php?title=Optical_character_recognition&action=history
 (epson.pdf generated from Wikipedia article as of 2016-09-14)
License: CC-BY-SA-3.0

Files: tests/resources/typewriter.png tests/resources/2400dpi.pdf
Copyright: (C) 2005 Ellywa
License: GFDL-1.2+ or CC-BY-SA-1.0 or CC-BY-SA-2.0 or CC-BY-SA-2.5 or CC-BY-SA-3.0

Files: tests/resources/overlay.pdf
Copyright: (C) 2017 Max Anderson
License: Expat

Files:
 tests/resources/baiona*.png
 tests/resources/baiona*.jpg
 tests/resources/link.pdf
Copyright: (C) 2014 Euskaldunaa
License: CC-BY-SA-4.0

Files: tests/resources/vector.pdf
Copyright: (C) 2018 Catscratch
License: Expat

Files: tests/resources/3small.pdf
Copyright: (C) 2014 Euskaldunaa
 (C) 2017 James R. Barlow
 (C) 2005 Ellywa
License: CC-BY-SA-4.0 and (GFDL-1.2+ or CC-BY-SA-1.0 or CC-BY-SA-2.0 or CC-BY-SA-2.5 or CC-BY-SA-3.0)
Comment: concatenation of baiona_gray.png, crom.png and typewriter.png/2400dpi.pdf

Files: src/ocrmypdf/data/sRGB.icc
Copyright: Kai-Uwe Behrmann <www.behrmann.name>
 Marti Maria <www.littlecms.com>
 Photogamut <www.photogamut.org>
 Graeme Gill <www.argyllcms.com>
 ColorSolutions <www.basICColor.com>
License: Zlib

Files: debian/*
Copyright: (C) 2016 Sean Whitton <spwhitton@spwhitton.name>
License: GPL-3+

License: GPL-3+
 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or (at
 your option) any later version.
 .
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.
 .
 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>
 .
 On Debian systems, the complete text of the GNU General
 Public License version 3 can be found in "/usr/share/common-licenses/GPL-3".

License: AGPL-3+
 GNU AFFERO GENERAL PUBLIC LICENSE
 Version 3, 19 November 2007
 .
 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.
 .
 Preamble
 .
 The GNU Affero General Public License is a free, copyleft license for
 software and other kinds of works, specifically designed to ensure
 cooperation with the community in the case of network server software.
 .
 The licenses for most software and other practical works are designed
 to take away your freedom to share and change the works. By contrast,
 our General Public Licenses are intended to guarantee your freedom to
 share and change all versions of a program--to make sure it remains free
 software for all its users.
 .
 When we speak of free software, we are referring to freedom, not
 price. Our General Public Licenses are designed to make sure that you
 have the freedom to distribute copies of free software (and charge for
 them if you wish), that you receive source code or can get it if you
 want it, that you can change the software or use pieces of it in new
 free programs, and that you know you can do these things.
 .
 Developers that use our General Public Licenses protect your rights
 with two steps: (1) assert copyright on the software, and (2) offer
 you this License which gives you legal permission to copy, distribute
 and/or modify the software.
 .
 A secondary benefit of defending all users' freedom is that
 improvements made in alternate versions of the program, if they
 receive widespread use, become available for other developers to
 incorporate. Many developers of free software are heartened and
 encouraged by the resulting cooperation. However, in the case of
 software used on network servers, this result may fail to come about.
 The GNU General Public License permits making a modified version and
 letting the public access it on a server without ever releasing its
 source code to the public.
 .
 The GNU Affero General Public License is designed specifically to
 ensure that, in such cases, the modified source code becomes available
 to the community. It requires the operator of a network server to
 provide the source code of the modified version running there to the
 users of that server. Therefore, public use of a modified version, on
 a publicly accessible server, gives the public access to the source
 code of the modified version.
 .
 An older license, called the Affero General Public License and
 published by Affero, was designed to accomplish similar goals. This is
 a different license, not a version of the Affero GPL, but Affero has
 released a new version of the Affero GPL which permits relicensing under
 this license.
 .
 The precise terms and conditions for copying, distribution and
 modification follow.
 .
 TERMS AND CONDITIONS
 .
 0. Definitions.
 .
 "This License" refers to version 3 of the GNU Affero General Public License.
 .
 "Copyright" also means copyright-like laws that apply to other kinds of
 works, such as semiconductor masks.
 .
 "The Program" refers to any copyrightable work licensed under this
 License. Each licensee is addressed as "you". "Licensees" and
 "recipients" may be individuals or organizations.
 .
 To "modify" a work means to copy from or adapt all or part of the work
 in a fashion requiring copyright permission, other than the making of an
 exact copy. The resulting work is called a "modified version" of the
 earlier work or a work "based on" the earlier work.
 .
 A "covered work" means either the unmodified Program or a work based
 on the Program.
 .
 To "propagate" a work means to do anything with it that, without
 permission, would make you directly or secondarily liable for
 infringement under applicable copyright law, except executing it on a
 computer or modifying a private copy. Propagation includes copying,
 distribution (with or without modification), making available to the
 public, and in some countries other activities as well.
 .
 To "convey" a work means any kind of propagation that enables other
 parties to make or receive copies. Mere interaction with a user through
 a computer network, with no transfer of a copy, is not conveying.
 .
 An interactive user interface displays "Appropriate Legal Notices"
 to the extent that it includes a convenient and prominently visible
 feature that (1) displays an appropriate copyright notice, and (2)
 tells the user that there is no warranty for the work (except to the
 extent that warranties are provided), that licensees may convey the
 work under this License, and how to view a copy of this License. If
 the interface presents a list of user commands or options, such as a
 menu, a prominent item in the list meets this criterion.
 .
 1. Source Code.
 .
 The "source code" for a work means the preferred form of the work
 for making modifications to it. "Object code" means any non-source
 form of a work.
 .
 A "Standard Interface" means an interface that either is an official
 standard defined by a recognized standards body, or, in the case of
 interfaces specified for a particular programming language, one that
 is widely used among developers working in that language.
 .
 The "System Libraries" of an executable work include anything, other
 than the work as a whole, that (a) is included in the normal form of
 packaging a Major Component, but which is not part of that Major
 Component, and (b) serves only to enable use of the work with that
 Major Component, or to implement a Standard Interface for which an
 implementation is available to the public in source code form. A
 "Major Component", in this context, means a major essential component
 (kernel, window system, and so on) of the specific operating system
 (if any) on which the executable work runs, or a compiler used to
 produce the work, or an object code interpreter used to run it.
 .
 The "Corresponding Source" for a work in object code form means all
 the source code needed to generate, install, and (for an executable
 work) run the object code and to modify the work, including scripts to
 control those activities. However, it does not include the work's
 System Libraries, or general-purpose tools or generally available free
 programs which are used unmodified in performing those activities but
 which are not part of the work. For example, Corresponding Source
 includes interface definition files associated with source files for
 the work, and the source code for shared libraries and dynamically
 linked subprograms that the work is specifically designed to require,
 such as by intimate data communication or control flow between those
 subprograms and other parts of the work.
 .
 The Corresponding Source need not include anything that users
 can regenerate automatically from other parts of the Corresponding
 Source.
 .
 The Corresponding Source for a work in source code form is that
 same work.
 .
 2. Basic Permissions.
 .
 All rights granted under this License are granted for the term of
 copyright on the Program, and are irrevocable provided the stated
 conditions are met. This License explicitly affirms your unlimited
 permission to run the unmodified Program. The output from running a
 covered work is covered by this License only if the output, given its
 content, constitutes a covered work. This License acknowledges your
 rights of fair use or other equivalent, as provided by copyright law.
 .
 You may make, run and propagate covered works that you do not
 convey, without conditions so long as your license otherwise remains
 in force. You may convey covered works to others for the sole purpose
 of having them make modifications exclusively for you, or provide you
 with facilities for running those works, provided that you comply with
 the terms of this License in conveying all material for which you do
 not control copyright. Those thus making or running the covered works
 for you must do so exclusively on your behalf, under your direction
 and control, on terms that prohibit them from making any copies of
 your copyrighted material outside their relationship with you.
 .
 Conveying under any other circumstances is permitted solely under
 the conditions stated below. Sublicensing is not allowed; section 10
 makes it unnecessary.
 .
 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
 .
 No covered work shall be deemed part of an effective technological
 measure under any applicable law fulfilling obligations under article
 11 of the WIPO copyright treaty adopted on 20 December 1996, or
 similar laws prohibiting or restricting circumvention of such
 measures.
 .
 When you convey a covered work, you waive any legal power to forbid
 circumvention of technological measures to the extent such circumvention
 is effected by exercising rights under this License with respect to
 the covered work, and you disclaim any intention to limit operation or
 modification of the work as a means of enforcing, against the work's
 users, your or third parties' legal rights to forbid circumvention of
 technological measures.
 .
 4. Conveying Verbatim Copies.
 .
 You may convey verbatim copies of the Program's source code as you
 receive it, in any medium, provided that you conspicuously and
 appropriately publish on each copy an appropriate copyright notice;
 keep intact all notices stating that this License and any
 non-permissive terms added in accord with section 7 apply to the code;
 keep intact all notices of the absence of any warranty; and give all
 recipients a copy of this License along with the Program.
 .
 You may charge any price or no price for each copy that you convey,
 and you may offer support or warranty protection for a fee.
 .
 5. Conveying Modified Source Versions.
 .
 You may convey a work based on the Program, or the modifications to
 produce it from the Program, in the form of source code under the
 terms of section 4, provided that you also meet all of these conditions:
 .
 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.
 .
 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".
 .
 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.
 .
 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.
 .
 A compilation of a covered work with other separate and independent
 works, which are not by their nature extensions of the covered work,
 and which are not combined with it such as to form a larger program,
 in or on a volume of a storage or distribution medium, is called an
 "aggregate" if the compilation and its resulting copyright are not
 used to limit the access or legal rights of the compilation's users
 beyond what the individual works permit. Inclusion of a covered work
 in an aggregate does not cause this License to apply to the other
 parts of the aggregate.
 .
 6. Conveying Non-Source Forms.
 .
 You may convey a covered work in object code form under the terms
 of sections 4 and 5, provided that you also convey the
 machine-readable Corresponding Source under the terms of this License,
 in one of these ways:
 .
 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.
 .
 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.
 .
 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.
 .
 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.
 .
 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.
 .
 A separable portion of the object code, whose source code is excluded
 from the Corresponding Source as a System Library, need not be
 included in conveying the object code work.
 .
 A "User Product" is either (1) a "consumer product", which means any
 tangible personal property which is normally used for personal, family,
 or household purposes, or (2) anything designed or sold for incorporation
 into a dwelling. In determining whether a product is a consumer product,
 doubtful cases shall be resolved in favor of coverage. For a particular
 product received by a particular user, "normally used" refers to a
 typical or common use of that class of product, regardless of the status
 of the particular user or of the way in which the particular user
 actually uses, or expects or is expected to use, the product. A product
 is a consumer product regardless of whether the product has substantial
 commercial, industrial or non-consumer uses, unless such uses represent
 the only significant mode of use of the product.
 .
 "Installation Information" for a User Product means any methods,
 procedures, authorization keys, or other information required to install
 and execute modified versions of a covered work in that User Product from
 a modified version of its Corresponding Source. The information must
 suffice to ensure that the continued functioning of the modified object
 code is in no case prevented or interfered with solely because
 modification has been made.
 .
 If you convey an object code work under this section in, or with, or
 specifically for use in, a User Product, and the conveying occurs as
 part of a transaction in which the right of possession and use of the
 User Product is transferred to the recipient in perpetuity or for a
 fixed term (regardless of how the transaction is characterized), the
 Corresponding Source conveyed under this section must be accompanied
 by the Installation Information. But this requirement does not apply
 if neither you nor any third party retains the ability to install
 modified object code on the User Product (for example, the work has
 been installed in ROM).
 .
 The requirement to provide Installation Information does not include a
 requirement to continue to provide support service, warranty, or updates
 for a work that has been modified or installed by the recipient, or for
 the User Product in which it has been modified or installed. Access to a
 network may be denied when the modification itself materially and
 adversely affects the operation of the network or violates the rules and
 protocols for communication across the network.
 .
 Corresponding Source conveyed, and Installation Information provided,
 in accord with this section must be in a format that is publicly
 documented (and with an implementation available to the public in
 source code form), and must require no special password or key for
 unpacking, reading or copying.
 .
 7. Additional Terms.
 .
 "Additional permissions" are terms that supplement the terms of this
 License by making exceptions from one or more of its conditions.
 Additional permissions that are applicable to the entire Program shall
 be treated as though they were included in this License, to the extent
 that they are valid under applicable law. If additional permissions
 apply only to part of the Program, that part may be used separately
 under those permissions, but the entire Program remains governed by
 this License without regard to the additional permissions.
 .
 When you convey a copy of a covered work, you may at your option
 remove any additional permissions from that copy, or from any part of
 it. (Additional permissions may be written to require their own
 removal in certain cases when you modify the work.) You may place
 additional permissions on material, added by you to a covered work,
 for which you have or can give appropriate copyright permission.
 .
 Notwithstanding any other provision of this License, for material you
 add to a covered work, you may (if authorized by the copyright holders of
 that material) supplement the terms of this License with terms:
 .
 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or
 .
 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or
 .
 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or
 .
 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or
 .
 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or
 .
 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.
 .
 All other non-permissive additional terms are considered "further
 restrictions" within the meaning of section 10. If the Program as you
 received it, or any part of it, contains a notice stating that it is
 governed by this License along with a term that is a further
 restriction, you may remove that term. If a license document contains
 a further restriction but permits relicensing or conveying under this
 License, you may add to a covered work material governed by the terms
 of that license document, provided that the further restriction does
 not survive such relicensing or conveying.
 .
 If you add terms to a covered work in accord with this section, you
 must place, in the relevant source files, a statement of the
 additional terms that apply to those files, or a notice indicating
 where to find the applicable terms.
 .
 Additional terms, permissive or non-permissive, may be stated in the
 form of a separately written license, or stated as exceptions;
 the above requirements apply either way.
 .
 8. Termination.
 .
 You may not propagate or modify a covered work except as expressly
 provided under this License. Any attempt otherwise to propagate or
 modify it is void, and will automatically terminate your rights under
 this License (including any patent licenses granted under the third
 paragraph of section 11).
 .
 However, if you cease all violation of this License, then your
 license from a particular copyright holder is reinstated (a)
 provisionally, unless and until the copyright holder explicitly and
 finally terminates your license, and (b) permanently, if the copyright
 holder fails to notify you of the violation by some reasonable means
 prior to 60 days after the cessation.
 .
 Moreover, your license from a particular copyright holder is
 reinstated permanently if the copyright holder notifies you of the
 violation by some reasonable means, this is the first time you have
 received notice of violation of this License (for any work) from that
 copyright holder, and you cure the violation prior to 30 days after
 your receipt of the notice.
 .
 Termination of your rights under this section does not terminate the
 licenses of parties who have received copies or rights from you under
 this License. If your rights have been terminated and not permanently
 reinstated, you do not qualify to receive new licenses for the same
 material under section 10.
 .
 9. Acceptance Not Required for Having Copies.
 .
 You are not required to accept this License in order to receive or
 run a copy of the Program. Ancillary propagation of a covered work
 occurring solely as a consequence of using peer-to-peer transmission
 to receive a copy likewise does not require acceptance. However,
 nothing other than this License grants you permission to propagate or
 modify any covered work. These actions infringe copyright if you do
 not accept this License. Therefore, by modifying or propagating a
 covered work, you indicate your acceptance of this License to do so.
 .
 10. Automatic Licensing of Downstream Recipients.
 .
 Each time you convey a covered work, the recipient automatically
 receives a license from the original licensors, to run, modify and
 propagate that work, subject to this License. You are not responsible
 for enforcing compliance by third parties with this License.
 .
 An "entity transaction" is a transaction transferring control of an
 organization, or substantially all assets of one, or subdividing an
 organization, or merging organizations. If propagation of a covered
 work results from an entity transaction, each party to that
 transaction who receives a copy of the work also receives whatever
 licenses to the work the party's predecessor in interest had or could
 give under the previous paragraph, plus a right to possession of the
 Corresponding Source of the work from the predecessor in interest, if
 the predecessor has it or can get it with reasonable efforts.
 .
 You may not impose any further restrictions on the exercise of the
 rights granted or affirmed under this License. For example, you may
 not impose a license fee, royalty, or other charge for exercise of
 rights granted under this License, and you may not initiate litigation
 (including a cross-claim or counterclaim in a lawsuit) alleging that
 any patent claim is infringed by making, using, selling, offering for
 sale, or importing the Program or any portion of it.
 .
 11. Patents.
 .
 A "contributor" is a copyright holder who authorizes use under this
 License of the Program or a work on which the Program is based. The
 work thus licensed is called the contributor's "contributor version".
 .
 A contributor's "essential patent claims" are all patent claims
 owned or controlled by the contributor, whether already acquired or
 hereafter acquired, that would be infringed by some manner, permitted
 by this License, of making, using, or selling its contributor version,
 but do not include claims that would be infringed only as a
 consequence of further modification of the contributor version. For
 purposes of this definition, "control" includes the right to grant
 patent sublicenses in a manner consistent with the requirements of
 this License.
 .
 Each contributor grants you a non-exclusive, worldwide, royalty-free
 patent license under the contributor's essential patent claims, to
 make, use, sell, offer for sale, import and otherwise run, modify and
 propagate the contents of its contributor version.
 .
 In the following three paragraphs, a "patent license" is any express
 agreement or commitment, however denominated, not to enforce a patent
 (such as an express permission to practice a patent or covenant not to
 sue for patent infringement). To "grant" such a patent license to a
 party means to make such an agreement or commitment not to enforce a
 patent against the party.
 .
 If you convey a covered work, knowingly relying on a patent license,
 and the Corresponding Source of the work is not available for anyone
 to copy, free of charge and under the terms of this License, through a
 publicly available network server or other readily accessible means,
 then you must either (1) cause the Corresponding Source to be so
 available, or (2) arrange to deprive yourself of the benefit of the
 patent license for this particular work, or (3) arrange, in a manner
 consistent with the requirements of this License, to extend the patent
 license to downstream recipients. "Knowingly relying" means you have
 actual knowledge that, but for the patent license, your conveying the
 covered work in a country, or your recipient's use of the covered work
 in a country, would infringe one or more identifiable patents in that
 country that you have reason to believe are valid.
 .
 If, pursuant to or in connection with a single transaction or
 arrangement, you convey, or propagate by procuring conveyance of, a
 covered work, and grant a patent license to some of the parties
 receiving the covered work authorizing them to use, propagate, modify
 or convey a specific copy of the covered work, then the patent license
 you grant is automatically extended to all recipients of the covered
 work and works based on it.
 .
 A patent license is "discriminatory" if it does not include within
 the scope of its coverage, prohibits the exercise of, or is
 conditioned on the non-exercise of one or more of the rights that are
 specifically granted under this License. You may not convey a covered
 work if you are a party to an arrangement with a third party that is
 in the business of distributing software, under which you make payment
 to the third party based on the extent of your activity of conveying
 the work, and under which the third party grants, to any of the
 parties who would receive the covered work from you, a discriminatory
 patent license (a) in connection with copies of the covered work
 conveyed by you (or copies made from those copies), or (b) primarily
 for and in connection with specific products or compilations that
 contain the covered work, unless you entered into that arrangement,
 or that patent license was granted, prior to 28 March 2007.
 .
 Nothing in this License shall be construed as excluding or limiting
 any implied license or other defenses to infringement that may
 otherwise be available to you under applicable patent law.
 .
 12. No Surrender of Others' Freedom.
 .
 If conditions are imposed on you (whether by court order, agreement or
 otherwise) that contradict the conditions of this License, they do not
 excuse you from the conditions of this License. If you cannot convey a
 covered work so as to satisfy simultaneously your obligations under this
 License and any other pertinent obligations, then as a consequence you may
 not convey it at all. For example, if you agree to terms that obligate you
 to collect a royalty for further conveying from those to whom you convey
 the Program, the only way you could satisfy both those terms and this
 License would be to refrain entirely from conveying the Program.
 .
 13. Remote Network Interaction; Use with the GNU General Public License.
 .
 Notwithstanding any other provision of this License, if you modify the
 Program, your modified version must prominently offer all users
 interacting with it remotely through a computer network (if your version
 supports such interaction) an opportunity to receive the Corresponding
 Source of your version by providing access to the Corresponding Source
 from a network server at no charge, through some standard or customary
 means of facilitating copying of software. This Corresponding Source
 shall include the Corresponding Source for any work covered by version 3
 of the GNU General Public License that is incorporated pursuant to the
 following paragraph.
 .
 Notwithstanding any other provision of this License, you have
 permission to link or combine any covered work with a work licensed
 under version 3 of the GNU General Public License into a single
 combined work, and to convey the resulting work. The terms of this
 License will continue to apply to the part which is the covered work,
 but the work with which it is combined will remain governed by version
 3 of the GNU General Public License.
 .
 14. Revised Versions of this License.
 .
 The Free Software Foundation may publish revised and/or new versions of
 the GNU Affero General Public License from time to time. Such new versions
 will be similar in spirit to the present version, but may differ in detail to
 address new problems or concerns.
 .
 Each version is given a distinguishing version number. If the
 Program specifies that a certain numbered version of the GNU Affero General
 Public License "or any later version" applies to it, you have the
 option of following the terms and conditions either of that numbered
 version or of any later version published by the Free Software
 Foundation. If the Program does not specify a version number of the
 GNU Affero General Public License, you may choose any version ever published
 by the Free Software Foundation.
 .
 If the Program specifies that a proxy can decide which future
 versions of the GNU Affero General Public License can be used, that proxy's
 public statement of acceptance of a version permanently authorizes you
 to choose that version for the Program.
 .
 Later license versions may give you additional or different
 permissions. However, no additional obligations are imposed on any
 author or copyright holder as a result of your choosing to follow a
 later version.
 .
 15. Disclaimer of Warranty.
 .
 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
 APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
 HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
 OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
 IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
 ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
 .
 16. Limitation of Liability.
 .
 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
 WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
 THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
 GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
 USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
 DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
 PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
 EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGES.
 .
 17. Interpretation of Sections 15 and 16.
 .
 If the disclaimer of warranty and limitation of liability provided
 above cannot be given local legal effect according to their terms,
 reviewing courts shall apply local law that most closely approximates
 an absolute waiver of all civil liability in connection with the
 Program, unless a warranty or assumption of liability accompanies a
 copy of the Program in return for a fee.
 .
 END OF TERMS AND CONDITIONS
 .
 How to Apply These Terms to Your New Programs
 .
 If you develop a new program, and you want it to be of the greatest
 possible use to the public, the best way to achieve this is to make it
 free software which everyone can redistribute and change under these terms.
 .
 To do so, attach the following notices to the program. It is safest
 to attach them to the start of each source file to most effectively
 state the exclusion of warranty; and each file should have at least
 the "copyright" line and a pointer to where the full notice is found.
 .
 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>
 .
 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.
 .
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU Affero General Public License for more details.
 .
 You should have received a copy of the GNU Affero General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.
 .
 Also add information on how to contact you by electronic and paper mail.
 .
 If your software can interact with users remotely through a computer
 network, you should also make sure that it provides a way for users to
 get its source. For example, if your program is a web application, its
 interface could display a "Source" link that leads users to an archive
 of the code. There are many ways you could offer source, and different
 solutions will be better for different programs; see section 13 for the
 specific requirements.
 .
 You should also get your employer (if you work as a programmer) or school,
 if any, to sign a "copyright disclaimer" for the program, if necessary.
 For more information on this, and how to apply and follow the GNU AGPL, see
 <http://www.gnu.org/licenses/>.

License: Expat
 Permission is hereby granted, free of charge, to any person obtaining
 a copy of this software and associated documentation files (the
 "Software"), to deal in the Software without restriction, including
 without limitation the rights to use, copy, modify, merge, publish,
 distribute, sublicense, and/or sell copies of the Software, and to
 permit persons to whom the Software is furnished to do so, subject to
 the following conditions:
 .
 The above copyright notice and this permission notice shall be
 included in all copies or substantial portions of the Software.
 .
 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

License: GFDL-1.2+
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2 or
 any later version published by the Free Software Foundation; with no
 Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 .
 On Debian systems, the complete text of the GNU Free Documentation
 License version 1.2 can be found in
 "/usr/share/common-licenses/GFDL-1.2".

License: CC-BY-SA-1.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE IS PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. "Licensor" means the individual or entity that offers
 the Work under the terms of this License. "Original Author" means
 the individual or entity who created the Work. "Work" means the
 copyrightable work of authorship offered under the terms of this
 License. "You" means an individual or entity exercising rights
 under this License who has not previously violated the terms of
 this License with respect to the Work, or who has received express
 permission from the Licensor to exercise rights under this License
 despite a previous violation.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works;
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions. The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any reference to such Licensor or
 the Original Author, as requested. If You create a Derivative
 Work, upon notice from any Licensor You must, to the extent
 practicable, remove from the Derivative Work any reference to such
 Licensor or the Original Author, as requested. You may
 distribute, publicly display, publicly perform, or publicly
 digitally perform a Derivative Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of
 each Derivative Work You distribute, publicly display, publicly
 perform, or publicly digitally perform. You may not offer or
 impose any terms on the Derivative Works that alter or restrict
 the terms of this License or the recipients' exercise of the
 rights granted hereunder, and You must keep intact all notices
 that refer to this License and to the disclaimer of
 warranties. You may not distribute, publicly display, publicly
 perform, or publicly digitally perform the Derivative Work with
 any technological measures that control access or use of the Work
 in a manner inconsistent with the terms of this License
 Agreement. The above applies to the Derivative Work as
 incorporated in a Collective Work, but this does not require the
 Collective Work apart from the Derivative Work itself to be made
 subject to the terms of this License. If you distribute, publicly
 display, publicly perform, or publicly digitally perform the Work
 or any Derivative Works or Collective Works, You must keep intact
 all copyright notices for the Work and give the Original Author
 credit reasonable to the medium or means You are utilizing by
 conveying the name (or pseudonym if applicable) of the Original
 Author if supplied; the title of the Work if supplied; in the case
 of a Derivative Work, a credit identifying the use of the Work in
 the Derivative Work (e.g., "French translation of the Work by
 Original Author," or "Screenplay based on original Work by
 Original Author"). Such credit may be implemented in any
 reasonable manner; provided, however, that in the case of a
 Derivative Work or Collective Work, at a minimum such credit will
 appear where any other comparable authorship credit appears and in
 a manner at least as prominent as such other comparable authorship
 credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 By offering the Work for public release under this License,
 Licensor represents and warrants that, to the best of
 Licensor's knowledge after reasonable inquiry: Licensor has
 secured all rights in the Work necessary to grant the license
 rights hereunder and to permit the lawful exercise of the
 rights granted hereunder without You having any obligation to
 pay any royalties, compulsory license fees, residuals or any
 other payments; The Work does not infringe the copyright,
 trademark, publicity rights, common law rights or any other
 right of any third party or constitute defamation, invasion of
 privacy or other tortious injury to any third party. EXCEPT
 AS EXPRESSLY STATED IN THIS LICENSE OR OTHERWISE AGREED IN
 WRITING OR REQUIRED BY APPLICABLE LAW, THE WORK IS LICENSED ON
 AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER
 EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
 WARRANTIES REGARDING THE CONTENTS OR ACCURACY OF THE WORK.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, AND EXCEPT FOR DAMAGES ARISING FROM LIABILITY TO A
 THIRD PARTY RESULTING FROM BREACH OF THE WARRANTIES IN SECTION 5, IN
 NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
 SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
 ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR
 HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: CC-BY-SA-2.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. For the avoidance of doubt, where the Work is a musical
 composition or sound recording, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered
 a Derivative Work for the purpose of this License. "Licensor"
 means the individual or entity that offers the Work under the
 terms of this License. "Original Author" means the individual or
 entity who created the Work. "Work" means the copyrightable work
 of authorship offered under the terms of this License. "You"
 means an individual or entity exercising rights under this License
 who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from
 the Licensor to exercise rights under this License despite a
 previous violation. "License Elements" means the following
 high-level license attributes as selected by Licensor and
 indicated in the title of this License: Attribution, ShareAlike.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works.
 .
 For the avoidance of doubt, where the work is a musical
 composition: Performance Royalties Under Blanket
 Licenses. Licensor waives the exclusive right to collect,
 whether individually or via a performance rights society
 (e.g. ASCAP, BMI, SESAC), royalties for the public performance
 or public digital performance (e.g. webcast) of the Work.
 Mechanical Rights and Statutory Royalties. Licensor waives the
 exclusive right to collect, whether individually or via a
 music rights society or designated agent (e.g. Harry Fox
 Agency), royalties for any phonorecord You create from the
 Work ("cover version") and distribute, subject to the
 compulsory license created by 17 USC Section 115 of the US
 Copyright Act (or the equivalent in other jurisdictions).
 Webcasting Rights and Statutory Royalties. For the avoidance
 of doubt, where the Work is a sound recording, Licensor waives
 the exclusive right to collect, whether individually or via a
 performance-rights society (e.g. SoundExchange), royalties for
 the public digital performance (e.g. webcast) of the Work,
 subject to the compulsory license created by 17 USC Section
 114 of the US Copyright Act (or the equivalent in other
 jurisdictions).
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions.The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any reference to such Licensor or
 the Original Author, as requested. If You create a Derivative
 Work, upon notice from any Licensor You must, to the extent
 practicable, remove from the Derivative Work any reference to such
 Licensor or the Original Author, as requested. You may
 distribute, publicly display, publicly perform, or publicly
 digitally perform a Derivative Work only under the terms of this
 License, a later version of this License with the same License
 Elements as this License, or a Creative Commons iCommons license
 that contains the same License Elements as this License
 (e.g. Attribution-ShareAlike 2.0 Japan). You must include a copy
 of, or the Uniform Resource Identifier for, this License or other
 license specified in the previous sentence with every copy or
 phonorecord of each Derivative Work You distribute, publicly
 display, publicly perform, or publicly digitally perform. You may
 not offer or impose any terms on the Derivative Works that alter
 or restrict the terms of this License or the recipients' exercise
 of the rights granted hereunder, and You must keep intact all
 notices that refer to this License and to the disclaimer of
 warranties. You may not distribute, publicly display, publicly
 perform, or publicly digitally perform the Derivative Work with
 any technological measures that control access or use of the Work
 in a manner inconsistent with the terms of this License
 Agreement. The above applies to the Derivative Work as
 incorporated in a Collective Work, but this does not require the
 Collective Work apart from the Derivative Work itself to be made
 subject to the terms of this License. If you distribute, publicly
 display, publicly perform, or publicly digitally perform the Work
 or any Derivative Works or Collective Works, You must keep intact
 all copyright notices for the Work and give the Original Author
 credit reasonable to the medium or means You are utilizing by
 conveying the name (or pseudonym if applicable) of the Original
 Author if supplied; the title of the Work if supplied; to the
 extent reasonably practicable, the Uniform Resource Identifier, if
 any, that Licensor specifies to be associated with the Work,
 unless such URI does not refer to the copyright notice or
 licensing information for the Work; and in the case of a
 Derivative Work, a credit identifying the use of the Work in the
 Derivative Work (e.g., "French translation of the Work by Original
 Author," or "Screenplay based on original Work by Original
 Author"). Such credit may be implemented in any reasonable manner;
 provided, however, that in the case of a Derivative Work or
 Collective Work, at a minimum such credit will appear where any
 other comparable authorship credit appears and in a manner at
 least as prominent as such other comparable authorship credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS
 THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
 CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
 INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
 FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
 LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF
 ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
 THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
 TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: CC-BY-SA-2.5
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. For the avoidance of doubt, where the Work is a musical
 composition or sound recording, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered
 a Derivative Work for the purpose of this License. "Licensor"
 means the individual or entity that offers the Work under the
 terms of this License. "Original Author" means the individual or
 entity who created the Work. "Work" means the copyrightable work
 of authorship offered under the terms of this License. "You"
 means an individual or entity exercising rights under this License
 who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from
 the Licensor to exercise rights under this License despite a
 previous violation. "License Elements" means the following
 high-level license attributes as selected by Licensor and
 indicated in the title of this License: Attribution, ShareAlike.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works.
 .
 For the avoidance of doubt, where the work is a musical
 composition: Performance Royalties Under Blanket
 Licenses. Licensor waives the exclusive right to collect,
 whether individually or via a performance rights society
 (e.g. ASCAP, BMI, SESAC), royalties for the public performance
 or public digital performance (e.g. webcast) of the Work.
 Mechanical Rights and Statutory Royalties. Licensor waives the
 exclusive right to collect, whether individually or via a
 music rights society or designated agent (e.g. Harry Fox
 Agency), royalties for any phonorecord You create from the
 Work ("cover version") and distribute, subject to the
 compulsory license created by 17 USC Section 115 of the US
 Copyright Act (or the equivalent in other jurisdictions).
 Webcasting Rights and Statutory Royalties. For the avoidance
 of doubt, where the Work is a sound recording, Licensor waives
 the exclusive right to collect, whether individually or via a
 performance-rights society (e.g. SoundExchange), royalties for
 the public digital performance (e.g. webcast) of the Work,
 subject to the compulsory license created by 17 USC Section
 114 of the US Copyright Act (or the equivalent in other
 jurisdictions).
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions.The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any credit as required by clause
 4(c), as requested. If You create a Derivative Work, upon notice
 from any Licensor You must, to the extent practicable, remove from
 the Derivative Work any credit as required by clause 4(c), as
 requested. You may distribute, publicly display, publicly
 perform, or publicly digitally perform a Derivative Work only
 under the terms of this License, a later version of this License
 with the same License Elements as this License, or a Creative
 Commons iCommons license that contains the same License Elements
 as this License (e.g. Attribution-ShareAlike 2.5 Japan). You must
 include a copy of, or the Uniform Resource Identifier for, this
 License or other license specified in the previous sentence with
 every copy or phonorecord of each Derivative Work You distribute,
 publicly display, publicly perform, or publicly digitally
 perform. You may not offer or impose any terms on the Derivative
 Works that alter or restrict the terms of this License or the
 recipients' exercise of the rights granted hereunder, and You must
 keep intact all notices that refer to this License and to the
 disclaimer of warranties. You may not distribute, publicly
 display, publicly perform, or publicly digitally perform the
 Derivative Work with any technological measures that control
 access or use of the Work in a manner inconsistent with the terms
 of this License Agreement. The above applies to the Derivative
 Work as incorporated in a Collective Work, but this does not
 require the Collective Work apart from the Derivative Work itself
 to be made subject to the terms of this License. If you
 distribute, publicly display, publicly perform, or publicly
 digitally perform the Work or any Derivative Works or Collective
 Works, You must keep intact all copyright notices for the Work and
 provide, reasonable to the medium or means You are utilizing: (i)
 the name of the Original Author (or pseudonym, if applicable) if
 supplied, and/or (ii) if the Original Author and/or Licensor
 designate another party or parties (e.g. a sponsor institute,
 publishing entity, journal) for attribution in Licensor's
 copyright notice, terms of service or by other reasonable means,
 the name of such party or parties; the title of the Work if
 supplied; to the extent reasonably practicable, the Uniform
 Resource Identifier, if any, that Licensor specifies to be
 associated with the Work, unless such URI does not refer to the
 copyright notice or licensing information for the Work; and in the
 case of a Derivative Work, a credit identifying the use of the
 Work in the Derivative Work (e.g., "French translation of the Work
 by Original Author," or "Screenplay based on original Work by
 Original Author"). Such credit may be implemented in any
 reasonable manner; provided, however, that in the case of a
 Derivative Work or Collective Work, at a minimum such credit will
 appear where any other comparable authorship credit appears and in
 a manner at least as prominent as such other comparable authorship
 credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS
 THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
 CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
 INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
 FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
 LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF
 ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
 THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
 TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: CC-BY-SA-3.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
 LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
 THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH
 TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 a. "Adaptation" means a work based upon the Work, or upon the Work and
 other pre-existing works, such as a translation, adaptation,
 derivative work, arrangement of music or other alterations of a
 literary or artistic work, or phonogram or performance and includes
 cinematographic adaptations or any other form in which the Work may be
 recast, transformed, or adapted including in any form recognizably
 derived from the original, except that a work that constitutes a
 Collection will not be considered an Adaptation for the purpose of
 this License. For the avoidance of doubt, where the Work is a musical
 work, performance or phonogram, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered an
 Adaptation for the purpose of this License.
 .
 b. "Collection" means a collection of literary or artistic works, such
 as encyclopedias and anthologies, or performances, phonograms or
 broadcasts, or other works or subject matter other than works listed
 in Section 1(f) below, which, by reason of the selection and
 arrangement of their contents, constitute intellectual creations, in
 which the Work is included in its entirety in unmodified form along
 with one or more other contributions, each constituting separate and
 independent works in themselves, which together are assembled into a
 collective whole. A work that constitutes a Collection will not be
 considered an Adaptation (as defined below) for the purposes of this
 License.
 .
 c. "Creative Commons Compatible License" means a license that is
 listed at http://creativecommons.org/compatiblelicenses that has been
 approved by Creative Commons as being essentially equivalent to this
 License, including, at a minimum, because that license: (i) contains
 terms that have the same purpose, meaning and effect as the License
 Elements of this License; and, (ii) explicitly permits the relicensing
 of adaptations of works made available under that license under this
 License or a Creative Commons jurisdiction license with the same
 License Elements as this License.
 .
 d. "Distribute" means to make available to the public the original and
 copies of the Work or Adaptation, as appropriate, through sale or
 other transfer of ownership.
 .
 e. "License Elements" means the following high-level license
 attributes as selected by Licensor and indicated in the title of this
 License: Attribution, ShareAlike.
 .
 f. "Licensor" means the individual, individuals, entity or entities
 that offer(s) the Work under the terms of this License.
 .
 g. "Original Author" means, in the case of a literary or artistic
 work, the individual, individuals, entity or entities who created the
 Work or if no individual or entity can be identified, the publisher;
 and in addition (i) in the case of a performance the actors, singers,
 musicians, dancers, and other persons who act, sing, deliver, declaim,
 play in, interpret or otherwise perform literary or artistic works or
 expressions of folklore; (ii) in the case of a phonogram the producer
 being the person or legal entity who first fixes the sounds of a
 performance or other sounds; and, (iii) in the case of broadcasts, the
 organization that transmits the broadcast.
 .
 h. "Work" means the literary and/or artistic work offered under the
 terms of this License including without limitation any production in
 the literary, scientific and artistic domain, whatever may be the mode
 or form of its expression including digital form, such as a book,
 pamphlet and other writing; a lecture, address, sermon or other work
 of the same nature; a dramatic or dramatico-musical work; a
 choreographic work or entertainment in dumb show; a musical
 composition with or without words; a cinematographic work to which are
 assimilated works expressed by a process analogous to cinematography;
 a work of drawing, painting, architecture, sculpture, engraving or
 lithography; a photographic work to which are assimilated works
 expressed by a process analogous to photography; a work of applied
 art; an illustration, map, plan, sketch or three-dimensional work
 relative to geography, topography, architecture or science; a
 performance; a broadcast; a phonogram; a compilation of data to the
 extent it is protected as a copyrightable work; or a work performed by
 a variety or circus performer to the extent it is not otherwise
 considered a literary or artistic work.
 .
 i. "You" means an individual or entity exercising rights under this
 License who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from the
 Licensor to exercise rights under this License despite a previous
 violation.
 .
 j. "Publicly Perform" means to perform public recitations of the Work
 and to communicate to the public those public recitations, by any
 means or process, including by wire or wireless means or public
 digital performances; to make available to the public Works in such a
 way that members of the public may access these Works from a place and
 at a place individually chosen by them; to perform the Work to the
 public by any means or process and the communication to the public of
 the performances of the Work, including by public digital performance;
 to broadcast and rebroadcast the Work by any means including signs,
 sounds or images.
 .
 k. "Reproduce" means to make copies of the Work by any means including
 without limitation by sound or visual recordings and the right of
 fixation and reproducing fixations of the Work, including storage of a
 protected performance or phonogram in digital form or other electronic
 medium.
 .
 2. Fair Dealing Rights. Nothing in this License is intended to reduce,
 limit, or restrict any uses free from copyright or rights arising from
 limitations or exceptions that are provided for in connection with the
 copyright protection under copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 a. to Reproduce the Work, to incorporate the Work into one or more
 Collections, and to Reproduce the Work as incorporated in the
 Collections;
 .
 b. to create and Reproduce Adaptations provided that any such
 Adaptation, including any translation in any medium, takes reasonable
 steps to clearly label, demarcate or otherwise identify that changes
 were made to the original Work. For example, a translation could be
 marked "The original work was translated from English to Spanish," or
 a modification could indicate "The original work has been modified.";
 .
 c. to Distribute and Publicly Perform the Work including as
 incorporated in Collections; and,
 .
 d. to Distribute and Publicly Perform Adaptations.
 .
 e. For the avoidance of doubt:
 .
 i. Non-waivable Compulsory License Schemes. In those jurisdictions in
 which the right to collect royalties through any statutory or
 compulsory licensing scheme cannot be waived, the Licensor reserves
 the exclusive right to collect such royalties for any exercise by You
 of the rights granted under this License;
 .
 ii. Waivable Compulsory License Schemes. In those jurisdictions in
 which the right to collect royalties through any statutory or
 compulsory licensing scheme can be waived, the Licensor waives the
 exclusive right to collect such royalties for any exercise by You of
 the rights granted under this License; and,
 .
 iii. Voluntary License Schemes. The Licensor waives the right to
 collect royalties, whether individually or, in the event that the
 Licensor is a member of a collecting society that administers
 voluntary licensing schemes, via that society, from any exercise by
 You of the rights granted under this License.
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. Subject to Section 8(f), all rights not
 expressly granted by Licensor are hereby reserved.
 .
 4. Restrictions. The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 a. You may Distribute or Publicly Perform the Work only under the
 terms of this License. You must include a copy of, or the Uniform
 Resource Identifier (URI) for, this License with every copy of the
 Work You Distribute or Publicly Perform. You may not offer or impose
 any terms on the Work that restrict the terms of this License or the
 ability of the recipient of the Work to exercise the rights granted to
 that recipient under the terms of the License. You may not sublicense
 the Work. You must keep intact all notices that refer to this License
 and to the disclaimer of warranties with every copy of the Work You
 Distribute or Publicly Perform. When You Distribute or Publicly
 Perform the Work, You may not impose any effective technological
 measures on the Work that restrict the ability of a recipient of the
 Work from You to exercise the rights granted to that recipient under
 the terms of the License. This Section 4(a) applies to the Work as
 incorporated in a Collection, but this does not require the Collection
 apart from the Work itself to be made subject to the terms of this
 License. If You create a Collection, upon notice from any Licensor You
 must, to the extent practicable, remove from the Collection any credit
 as required by Section 4(c), as requested. If You create an
 Adaptation, upon notice from any Licensor You must, to the extent
 practicable, remove from the Adaptation any credit as required by
 Section 4(c), as requested.
 .
 b. You may Distribute or Publicly Perform an Adaptation only under the
 terms of: (i) this License; (ii) a later version of this License with
 the same License Elements as this License; (iii) a Creative Commons
 jurisdiction license (either this or a later license version) that
 contains the same License Elements as this License (e.g.,
 Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible
 License. If you license the Adaptation under one of the licenses
 mentioned in (iv), you must comply with the terms of that license. If
 you license the Adaptation under the terms of any of the licenses
 mentioned in (i), (ii) or (iii) (the "Applicable License"), you must
 comply with the terms of the Applicable License generally and the
 following provisions: (I) You must include a copy of, or the URI for,
 the Applicable License with every copy of each Adaptation You
 Distribute or Publicly Perform; (II) You may not offer or impose any
 terms on the Adaptation that restrict the terms of the Applicable
 License or the ability of the recipient of the Adaptation to exercise
 the rights granted to that recipient under the terms of the Applicable
 License; (III) You must keep intact all notices that refer to the
 Applicable License and to the disclaimer of warranties with every copy
 of the Work as included in the Adaptation You Distribute or Publicly
 Perform; (IV) when You Distribute or Publicly Perform the Adaptation,
 You may not impose any effective technological measures on the
 Adaptation that restrict the ability of a recipient of the Adaptation
 from You to exercise the rights granted to that recipient under the
 terms of the Applicable License. This Section 4(b) applies to the
 Adaptation as incorporated in a Collection, but this does not require
 the Collection apart from the Adaptation itself to be made subject to
 the terms of the Applicable License.
 .
 c. If You Distribute, or Publicly Perform the Work or any Adaptations
 or Collections, You must, unless a request has been made pursuant to
 Section 4(a), keep intact all copyright notices for the Work and
 provide, reasonable to the medium or means You are utilizing: (i) the
 name of the Original Author (or pseudonym, if applicable) if supplied,
 and/or if the Original Author and/or Licensor designate another party
 or parties (e.g., a sponsor institute, publishing entity, journal) for
 attribution ("Attribution Parties") in Licensor's copyright notice,
 terms of service or by other reasonable means, the name of such party
 or parties; (ii) the title of the Work if supplied; (iii) to the
 extent reasonably practicable, the URI, if any, that Licensor
 specifies to be associated with the Work, unless such URI does not
 refer to the copyright notice or licensing information for the Work;
 and (iv) , consistent with Ssection 3(b), in the case of an
 Adaptation, a credit identifying the use of the Work in the Adaptation
 (e.g., "French translation of the Work by Original Author," or
 "Screenplay based on original Work by Original Author"). The credit
 required by this Section 4(c) may be implemented in any reasonable
 manner; provided, however, that in the case of a Adaptation or
 Collection, at a minimum such credit will appear, if a credit for all
 contributing authors of the Adaptation or Collection appears, then as
 part of these credits and in a manner at least as prominent as the
 credits for the other contributing authors. For the avoidance of
 doubt, You may only use the credit required by this Section for the
 purpose of attribution in the manner set out above and, by exercising
 Your rights under this License, You may not implicitly or explicitly
 assert or imply any connection with, sponsorship or endorsement by the
 Original Author, Licensor and/or Attribution Parties, as appropriate,
 of You or Your use of the Work, without the separate, express prior
 written permission of the Original Author, Licensor and/or Attribution
 Parties.
 .
 d. Except as otherwise agreed in writing by the Licensor or as may be
 otherwise permitted by applicable law, if You Reproduce, Distribute or
 Publicly Perform the Work either by itself or as part of any
 Adaptations or Collections, You must not distort, mutilate, modify or
 take other derogatory action in relation to the Work which would be
 prejudicial to the Original Author's honor or reputation. Licensor
 agrees that in those jurisdictions (e.g. Japan), in which any exercise
 of the right granted in Section 3(b) of this License (the right to
 make Adaptations) would be deemed to be a distortion, mutilation,
 modification or other derogatory action prejudicial to the Original
 Author's honor and reputation, the Licensor will waive or not assert,
 as appropriate, this Section, to the fullest extent permitted by the
 applicable national law, to enable You to reasonably exercise Your
 right under Section 3(b) of this License (right to make Adaptations)
 but not otherwise.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
 LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
 WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
 STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
 TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
 NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
 OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
 DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
 WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 a. This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Adaptations or
 Collections from You under this License, however, will not have their
 licenses terminated provided such individuals or entities remain in
 full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8
 will survive any termination of this License.
 .
 b. Subject to the above terms and conditions, the license granted here
 is perpetual (for the duration of the applicable copyright in the
 Work). Notwithstanding the above, Licensor reserves the right to
 release the Work under different license terms or to stop distributing
 the Work at any time; provided, however that any such election will
 not serve to withdraw this License (or any other license that has
 been, or is required to be, granted under the terms of this License),
 and this License will continue in full force and effect unless
 terminated as stated above.
 .
 8. Miscellaneous
 .
 a. Each time You Distribute or Publicly Perform the Work or a
 Collection, the Licensor offers to the recipient a license to the Work
 on the same terms and conditions as the license granted to You under
 this License.
 .
 b. Each time You Distribute or Publicly Perform an Adaptation,
 Licensor offers to the recipient a license to the original Work on the
 same terms and conditions as the license granted to You under this
 License.
 .
 c. If any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability of
 the remainder of the terms of this License, and without further action
 by the parties to this agreement, such provision shall be reformed to
 the minimum extent necessary to make such provision valid and
 enforceable.
 .
 d. No term or provision of this License shall be deemed waived and no
 breach consented to unless such waiver or consent shall be in writing
 and signed by the party to be charged with such waiver or consent.
 .
 e. This License constitutes the entire agreement between the parties
 with respect to the Work licensed here. There are no understandings,
 agreements or representations with respect to the Work not specified
 here. Licensor shall not be bound by any additional provisions that
 may appear in any communication from You. This License may not be
 modified without the mutual written agreement of the Licensor and You.
 .
 f. The rights granted under, and the subject matter referenced, in
 this License were drafted utilizing the terminology of the Berne
 Convention for the Protection of Literary and Artistic Works (as
 amended on September 28, 1979), the Rome Convention of 1961, the WIPO
 Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty
 of 1996 and the Universal Copyright Convention (as revised on July 24,
 1971). These rights and subject matter take effect in the relevant
 jurisdiction in which the License terms are sought to be enforced
 according to the corresponding provisions of the implementation of
 those treaty provisions in the applicable national law. If the
 standard suite of rights granted under applicable copyright law
 includes additional rights not granted under this License, such
 additional rights are deemed to be included in the License; this
 License is not intended to restrict the license of any rights under
 applicable law.

License: Zlib
 The zlib/libpng License
 .
 This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.
 .
 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:
 .
 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
 .
 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
 .
 3. This notice may not be removed or altered from any source
 distribution.
 .
 NO WARRANTY
 .
 BECAUSE THE DATA IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
 FOR THE DATA, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
 OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
 PROVIDE THE DATA "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
 OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
 TO THE QUALITY AND PERFORMANCE OF THE DATA IS WITH YOU. SHOULD THE
 DATA PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
 REPAIR OR CORRECTION.
 .
 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
 WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
 REDISTRIBUTE THE DATA AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
 INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
 OUT OF THE USE OR INABILITY TO USE THE DATA (INCLUDING BUT NOT LIMITED
 TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
 YOU OR THIRD PARTIES OR A FAILURE OF THE DATA TO OPERATE WITH ANY OTHER
 PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGES.

License: CC-BY-SA-4.0
 By exercising the Licensed Rights (defined below), You accept and agree to be
 bound by the terms and conditions of this Creative Commons
 Attribution-ShareAlike 4.0 International Public License ("Public License"). To
 the extent this Public License may be interpreted as a contract, You are
 granted the Licensed Rights in consideration of Your acceptance of these terms
 and conditions, and the Licensor grants You such rights in consideration of
 benefits the Licensor receives from making the Licensed Material available
 under these terms and conditions.
 .
 Section 1 â�� Definitions.
 .
 a. Adapted Material means material subject to Copyright and Similar Rights
 that is derived from or based upon the Licensed Material and in which the
 Licensed Material is translated, altered, arranged, transformed, or
 otherwise modified in a manner requiring permission under the Copyright and
 Similar Rights held by the Licensor. For purposes of this Public License,
 where the Licensed Material is a musical work, performance, or sound
 recording, Adapted Material is always produced where the Licensed Material
 is synched in timed relation with a moving image.
 b. Adapter's License means the license You apply to Your Copyright and Similar
 Rights in Your contributions to Adapted Material in accordance with the
 terms and conditions of this Public License.
 c. BY-SA Compatible License means a license listed at creativecommons.org/
 compatiblelicenses, approved by Creative Commons as essentially the
 equivalent of this Public License.
 d. Copyright and Similar Rights means copyright and/or similar rights closely
 related to copyright including, without limitation, performance, broadcast,
 sound recording, and Sui Generis Database Rights, without regard to how the
 rights are labeled or categorized. For purposes of this Public License, the
 rights specified in Section 2(b)(1)-(2) are not Copyright and Similar
 Rights.
 e. Effective Technological Measures means those measures that, in the absence
 of proper authority, may not be circumvented under laws fulfilling
 obligations under Article 11 of the WIPO Copyright Treaty adopted on
 December 20, 1996, and/or similar international agreements.
 f. Exceptions and Limitations means fair use, fair dealing, and/or any other
 exception or limitation to Copyright and Similar Rights that applies to
 Your use of the Licensed Material.
 g. License Elements means the license attributes listed in the name of a
 Creative Commons Public License. The License Elements of this Public
 License are Attribution and ShareAlike.
 h. Licensed Material means the artistic or literary work, database, or other
 material to which the Licensor applied this Public License.
 i. Licensed Rights means the rights granted to You subject to the terms and
 conditions of this Public License, which are limited to all Copyright and
 Similar Rights that apply to Your use of the Licensed Material and that the
 Licensor has authority to license.
 j. Licensor means the individual(s) or entity(ies) granting rights under this
 Public License.
 k. Share means to provide material to the public by any means or process that
 requires permission under the Licensed Rights, such as reproduction, public
 display, public performance, distribution, dissemination, communication, or
 importation, and to make material available to the public including in ways
 that members of the public may access the material from a place and at a
 time individually chosen by them.
 l. Sui Generis Database Rights means rights other than copyright resulting
 from Directive 96/9/EC of the European Parliament and of the Council of 11
 March 1996 on the legal protection of databases, as amended and/or
 succeeded, as well as other essentially equivalent rights anywhere in the
 world.
 m. You means the individual or entity exercising the Licensed Rights under
 this Public License. Your has a corresponding meaning.
 .
 Section 2 â�� Scope.
 .
 a. License grant.
 1. Subject to the terms and conditions of this Public License, the
 Licensor hereby grants You a worldwide, royalty-free,
 non-sublicensable, non-exclusive, irrevocable license to exercise the
 Licensed Rights in the Licensed Material to:
 A. reproduce and Share the Licensed Material, in whole or in part; and
 B. produce, reproduce, and Share Adapted Material.
 2. Exceptions and Limitations. For the avoidance of doubt, where
 Exceptions and Limitations apply to Your use, this Public License does
 not apply, and You do not need to comply with its terms and conditions.
 3. Term. The term of this Public License is specified in Section 6(a).
 4. Media and formats; technical modifications allowed. The Licensor
 authorizes You to exercise the Licensed Rights in all media and formats
 whether now known or hereafter created, and to make technical
 modifications necessary to do so. The Licensor waives and/or agrees not
 to assert any right or authority to forbid You from making technical
 modifications necessary to exercise the Licensed Rights, including
 technical modifications necessary to circumvent Effective Technological
 Measures. For purposes of this Public License, simply making
 modifications authorized by this Section 2(a)(4) never produces Adapted
 Material.
 5. Downstream recipients.
 A. Offer from the Licensor â�� Licensed Material. Every recipient of the
 Licensed Material automatically receives an offer from the Licensor
 to exercise the Licensed Rights under the terms and conditions of
 this Public License.
 B. Additional offer from the Licensor â�� Adapted Material. Every
 recipient of Adapted Material from You automatically receives an
 offer from the Licensor to exercise the Licensed Rights in the
 Adapted Material under the conditions of the Adapterâ��s License You
 apply.
 C. No downstream restrictions. You may not offer or impose any
 additional or different terms or conditions on, or apply any
 Effective Technological Measures to, the Licensed Material if doing
 so restricts exercise of the Licensed Rights by any recipient of
 the Licensed Material.
 6. No endorsement. Nothing in this Public License constitutes or may be
 construed as permission to assert or imply that You are, or that Your
 use of the Licensed Material is, connected with, or sponsored,
 endorsed, or granted official status by, the Licensor or others
 designated to receive attribution as provided in Section 3(a)(1)(A)(i).
 b. Other rights.
 .
 1. Moral rights, such as the right of integrity, are not licensed under
 this Public License, nor are publicity, privacy, and/or other similar
 personality rights; however, to the extent possible, the Licensor
 waives and/or agrees not to assert any such rights held by the Licensor
 to the limited extent necessary to allow You to exercise the Licensed
 Rights, but not otherwise.
 2. Patent and trademark rights are not licensed under this Public License.
 3. To the extent possible, the Licensor waives any right to collect
 royalties from You for the exercise of the Licensed Rights, whether
 directly or through a collecting society under any voluntary or
 waivable statutory or compulsory licensing scheme. In all other cases
 the Licensor expressly reserves any right to collect such royalties.
 .
 Section 3 â�� License Conditions.
 .
 Your exercise of the Licensed Rights is expressly made subject to the following
 conditions.
 .
 a. Attribution.
 .
 1. If You Share the Licensed Material (including in modified form), You
 must:
 .
 A. retain the following if it is supplied by the Licensor with the
 Licensed Material:
 i. identification of the creator(s) of the Licensed Material and
 any others designated to receive attribution, in any reasonable
 manner requested by the Licensor (including by pseudonym if
 designated);
 ii. a copyright notice;
 iii. a notice that refers to this Public License;
 iv. a notice that refers to the disclaimer of warranties;
 v. a URI or hyperlink to the Licensed Material to the extent
 reasonably practicable;
 B. indicate if You modified the Licensed Material and retain an
 indication of any previous modifications; and
 C. indicate the Licensed Material is licensed under this Public
 License, and include the text of, or the URI or hyperlink to, this
 Public License.
 2. You may satisfy the conditions in Section 3(a)(1) in any reasonable
 manner based on the medium, means, and context in which You Share the
 Licensed Material. For example, it may be reasonable to satisfy the
 conditions by providing a URI or hyperlink to a resource that includes
 the required information.
 3. If requested by the Licensor, You must remove any of the information
 required by Section 3(a)(1)(A) to the extent reasonably practicable.
 b. ShareAlike.
 .
 In addition to the conditions in Section 3(a), if You Share Adapted
 Material You produce, the following conditions also apply.
 .
 1. The Adapterâ��s License You apply must be a Creative Commons license with
 the same License Elements, this version or later, or a BY-SA Compatible
 License.
 2. You must include the text of, or the URI or hyperlink to, the Adapter's
 License You apply. You may satisfy this condition in any reasonable
 manner based on the medium, means, and context in which You Share
 Adapted Material.
 3. You may not offer or impose any additional or different terms or
 conditions on, or apply any Effective Technological Measures to,
 Adapted Material that restrict exercise of the rights granted under the
 Adapter's License You apply.
 .
 Section 4 â�� Sui Generis Database Rights.
 .
 Where the Licensed Rights include Sui Generis Database Rights that apply to
 Your use of the Licensed Material:
 .
 a. for the avoidance of doubt, Section 2(a)(1) grants You the right to
 extract, reuse, reproduce, and Share all or a substantial portion of the
 contents of the database;
 b. if You include all or a substantial portion of the database contents in a
 database in which You have Sui Generis Database Rights, then the database
 in which You have Sui Generis Database Rights (but not its individual
 contents) is Adapted Material, including for purposes of Section 3(b); and
 c. You must comply with the conditions in Section 3(a) if You Share all or a
 substantial portion of the contents of the database.
 .
 For the avoidance of doubt, this Section 4 supplements and does not replace
 Your obligations under this Public License where the Licensed Rights include
 other Copyright and Similar Rights.
 .
 Section 5 â�� Disclaimer of Warranties and Limitation of Liability.
 .
 a. Unless otherwise separately undertaken by the Licensor, to the extent
 possible, the Licensor offers the Licensed Material as-is and as-available,
 and makes no representations or warranties of any kind concerning the
 Licensed Material, whether express, implied, statutory, or other. This
 includes, without limitation, warranties of title, merchantability, fitness
 for a particular purpose, non-infringement, absence of latent or other
 defects, accuracy, or the presence or absence of errors, whether or not
 known or discoverable. Where disclaimers of warranties are not allowed in
 full or in part, this disclaimer may not apply to You.
 b. To the extent possible, in no event will the Licensor be liable to You on
 any legal theory (including, without limitation, negligence) or otherwise
 for any direct, special, indirect, incidental, consequential, punitive,
 exemplary, or other losses, costs, expenses, or damages arising out of this
 Public License or use of the Licensed Material, even if the Licensor has
 been advised of the possibility of such losses, costs, expenses, or
 damages. Where a limitation of liability is not allowed in full or in part,
 this limitation may not apply to You.
 .
 c. The disclaimer of warranties and limitation of liability provided above
 shall be interpreted in a manner that, to the extent possible, most closely
 approximates an absolute disclaimer and waiver of all liability.
 .
 Section 6 â�� Term and Termination.
 .
 a. This Public License applies for the term of the Copyright and Similar
 Rights licensed here. However, if You fail to comply with this Public
 License, then Your rights under this Public License terminate
 automatically.
 b. Where Your right to use the Licensed Material has terminated under Section
 6(a), it reinstates:
 .
 1. automatically as of the date the violation is cured, provided it is
 cured within 30 days of Your discovery of the violation; or
 2. upon express reinstatement by the Licensor.
 For the avoidance of doubt, this Section 6(b) does not affect any right the
 Licensor may have to seek remedies for Your violations of this Public
 License.
 c. For the avoidance of doubt, the Licensor may also offer the Licensed
 Material under separate terms or conditions or stop distributing the
 Licensed Material at any time; however, doing so will not terminate this
 Public License.
 d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.
 .
 Section 7 â�� Other Terms and Conditions.
 .
 a. The Licensor shall not be bound by any additional or different terms or
 conditions communicated by You unless expressly agreed.
 b. Any arrangements, understandings, or agreements regarding the Licensed
 Material not stated herein are separate from and independent of the terms
 and conditions of this Public License.
 .
 Section 8 â�� Interpretation.
 .
 a. For the avoidance of doubt, this Public License does not, and shall not be
 interpreted to, reduce, limit, restrict, or impose conditions on any use of
 the Licensed Material that could lawfully be made without permission under
 this Public License.
 b. To the extent possible, if any provision of this Public License is deemed
 unenforceable, it shall be automatically reformed to the minimum extent
 necessary to make it enforceable. If the provision cannot be reformed, it
 shall be severed from this Public License without affecting the
 enforceability of the remaining terms and conditions.
 c. No term or condition of this Public License will be waived and no failure
 to comply consented to unless expressly agreed to by the Licensor.
 d. Nothing in this Public License constitutes or may be interpreted as a
 limitation upon, or waiver of, any privileges and immunities that apply to
 the Licensor or You, including from the legal processes of any jurisdiction
 or authority.

License: BSD-3-clause
 Some rights reserved.
 .
 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are
 met:
 .
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 .
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.
 .
 * The names of the contributors may not be used to endorse or
 promote products derived from this software without specific
 prior written permission.
 .
 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

./usr/share/fish/completions/ocrmypdf.fish

complete -c ocrmypdf -x -n '__fish_is_first_arg' -l version
complete -c ocrmypdf -x -n '__fish_is_first_arg' -s h -s "?" -l help

complete -c ocrmypdf -r -l sidecar -d "write OCR to text file"
complete -c ocrmypdf -x -s q -l quiet

complete -c ocrmypdf -s r -l rotate-pages -d "rotate pages to correct orientation"
complete -c ocrmypdf -s d -l deskew -d "fix small horizontal alignment skew"
complete -c ocrmypdf -s c -l clean -d "clean document images before OCR"
complete -c ocrmypdf -s i -l clean-final -d "clean document images and keep result"
complete -c ocrmypdf -l remove-vectors -d "don't send vector objects to OCR"
complete -c ocrmypdf -l threshold -d "threshold images before OCR"

complete -c ocrmypdf -s f -l force-ocr -d "OCR documents that already have printable text"
complete -c ocrmypdf -s s -l skip-ocr -d "skip OCR on pages that text, otherwise try OCR"
complete -c ocrmypdf -l redo-ocr -d "redo OCR on any pages that seem to have OCR already"

complete -c ocrmypdf -s k -l keep-temporary-files -d "keep temporary files (debug)"

function __fish_ocrmypdf_languages
 set langs (tesseract --list-langs ^/dev/null)
 set arr (string split '\n' $langs)
 for lang in $arr[2..-1]
 echo $lang
 end
end
complete -c ocrmypdf -x -s l -l language -a '(__fish_ocrmypdf_languages)' -d "language"

complete -c ocrmypdf -x -l image-dpi -d "assume this DPI if input image DPI is unknown"

function __fish_ocrmypdf_output_type
 echo -e "pdfa\t"(_ "output a PDF/A (default)")
 echo -e "pdf\t"(_ "output a standard PDF")
 echo -e "pdfa-1\t"(_ "output a PDF/A-1b")
 echo -e "pdfa-2\t"(_ "output a PDF/A-2b")
 echo -e "pdfa-3\t"(_ "output a PDF/A-3b")
end
complete -c ocrmypdf -x -l output-type -a '(__fish_ocrmypdf_output_type)' -d "select PDF output options"

function __fish_ocrmypdf_pdf_renderer
 echo -e "auto\t"(_ "auto select PDF renderer")
 echo -e "hocr\t"(_ "use hocr renderer")
 echo -e "sandwich\t"(_ "use sandwich renderer")
end
complete -c ocrmypdf -x -l pdf-renderer -a '(__fish_ocrmypdf_pdf_renderer)' -d "select PDF renderer options"

function __fish_ocrmypdf_optimize
 echo -e "0\t"(_ "do not optimize")
 echo -e "1\t"(_ "do safe, lossless optimizations (default)")
 echo -e "2\t"(_ "do some lossy optimizations")
 echo -e "3\t"(_ "do aggressive lossy optimizations (including lossy JBIG2)")
end
complete -c ocrmypdf -x -s O -l optimize -a '(__fish_ocrmypdf_optimize)' -d "select optimization level"

function __fish_ocrmypdf_verbose
 echo -e "0\t"(_ "standard output messages")
 echo -e "1\t"(_ "troubleshooting output messages")
 echo -e "2\t"(_ "debugging output messages")
end
complete -c ocrmypdf -x -s v -l verbose -a '(__fish_ocrmypdf_verbose)' -d "set verbosity level"

complete -c ocrmypdf -x -l no-progress-bar -d "disable the progress bar"

function __fish_ocrmypdf_pdfa_compression
 echo -e "auto\t"(_ "let Ghostscript decide how to compress images")
 echo -e "jpeg\t"(_ "convert color and grayscale images to JPEG")
 echo -e "lossless\t"(_ "convert color and grayscale images to lossless (PNG)")
end
complete -c ocrmypdf -x -l pdfa-image-compression -a '(__fish_ocrmypdf_pdfa_compression)' -d "set PDF/A image compression options"

complete -c ocrmypdf -x -s j -l jobs -d "how many worker processes to use"
complete -c ocrmypdf -x -l title -d "set metadata"
complete -c ocrmypdf -x -l author -d "set metadata"
complete -c ocrmypdf -x -l subject -d "set metadata"
complete -c ocrmypdf -x -l keywords -d "set metadata"
complete -c ocrmypdf -x -l oversample -d "oversample images to this DPI"
complete -c ocrmypdf -x -l skip-big -d "skip OCR on pages larger than this many MPixels"

complete -c ocrmypdf -x -l jpeg-quality -d "JPEG quality [0..100]"
complete -c ocrmypdf -x -l png-quality -d "PNG quality [0..100]"
complete -c ocrmypdf -x -l jbig2-lossy -d "enable lossy JBIG2 (see docs)"
complete -c ocrmypdf -x -l max-image-mpixels -d "image decompression bomb threshold"
complete -c ocrmypdf -x -l pages -d "apply OCR to only the specified pages"
complete -c ocrmypdf -x -l tesseract-config -d "set custom tesseract config file"

function __fish_ocrmypdf_tesseract_pagesegmode
 echo -e "0\t"(_ "orientation and script detection (OSD) only")
 echo -e "1\t"(_ "automatic page segmentation with OSD")
 echo -e "2\t"(_ "automatic page segmentation, but no OSD, or OCR")
 echo -e "3\t"(_ "fully automatic page segmentation, but no OSD (default)")
 echo -e "4\t"(_ "assume a single column of text of variable sizes")
 echo -e "5\t"(_ "assume a single uniform block of vertically aligned text")
 echo -e "6\t"(_ "assume a single uniform block of text")
 echo -e "7\t"(_ "treat the image as a single text line")
 echo -e "8\t"(_ "treat the image as a single word")
 echo -e "9\t"(_ "treat the image as a single word in a circle")
 echo -e "10\t"(_ "treat the image as a single character")
 echo -e "11\t"(_ "sparse text - find as much text as possible in no particular order")
 echo -e "12\t"(_ "sparse text with OSD")
 echo -e "13\t"(_ "raw line - treat the image as a single text line")
end
complete -c ocrmypdf -x -l tesseract-pagesegmode -a '(__fish_ocrmypdf_tesseract_pagesegmode)' -d "set tesseract --psm"

function __fish_ocrmypdf_tesseract_oem
 echo -e "0\t"(_ "legacy engine only")
 echo -e "1\t"(_ "neural nets LSTM engine only")
 echo -e "2\t"(_ "legacy + LSTM engines")
 echo -e "3\t"(_ "default, based on what is available")
end
complete -c ocrmypdf -x -l tesseract-oem -a '(__fish_ocrmypdf_tesseract_oem)' -d "set tesseract --oem"
complete -c ocrmypdf -x -l tesseract-timeout -d "maximum number of seconds to wait for OCR"
complete -c ocrmypdf -x -l rotate-pages-threshold -d "page rotation confidence"

complete -c ocrmypdf -r -l user-words -d "specify location of user words file"
complete -c ocrmypdf -r -l user-patterns -d "specify location of user patterns file"
complete -c ocrmypdf -x -l fast-web-view -d "if file size if above this amount in MB, linearize PDF"

complete -c ocrmypdf -x -a "(__fish_complete_suffix .pdf)"

./usr/share/man/man1/ocrmypdf.1.gz

./usr/share/man/man1/ocrmypdf.1

.\" DO NOT MODIFY THIS FILE! It was generated by help2man 1.47.8.
.TH OCRMYPDF "1" "January 2019" "ocrmypdf 8.0.0+dfsg" "User Commands"
.SH NAME
ocrmypdf \- add an OCR text layer to PDF files
.SH DESCRIPTION
usage: ocrmypdf [\-h] [\-l LANGUAGE] [\-\-image\-dpi DPI]
.IP
[\-\-output\-type {pdfa,pdf,pdfa\-1,pdfa\-2,pdfa\-3}]
[\-\-sidecar [FILE]] [\-\-version] [\-j N] [\-q] [\-v [VERBOSE]]
[\-\-title TITLE] [\-\-author AUTHOR] [\-\-subject SUBJECT]
[\-\-keywords KEYWORDS] [\-r] [\-\-remove\-background] [\-d] [\-c]
[\-i] [\-\-oversample DPI] [\-\-remove\-vectors] [\-\-mask\-barcodes]
[\-\-threshold] [\-f] [\-s] [\-\-redo\-ocr] [\-\-skip\-big MPixels]
[\-O {0,1,2,3}] [\-\-jpeg\-quality Q] [\-\-png\-quality Q]
[\-\-jbig2\-lossy] [\-\-max\-image\-mpixels MPixels]
[\-\-tesseract\-config CFG] [\-\-tesseract\-pagesegmode PSM]
[\-\-tesseract\-oem MODE] [\-\-pdf\-renderer {auto,hocr,sandwich}]
[\-\-tesseract\-timeout SECONDS]
[\-\-rotate\-pages\-threshold CONFIDENCE]
[\-\-pdfa\-image\-compression {auto,jpeg,lossless}]
[\-\-user\-words FILE] [\-\-user\-patterns FILE] [\-k]
[\-\-flowchart FLOWCHART]
input_pdf_or_image output_pdf
.PP
Generates a searchable PDF or PDF/A from a regular PDF.
.PP
OCRmyPDF rasterizes each page of the input PDF, optionally corrects page
rotation and performs image processing, runs the Tesseract OCR engine on the
image, and then creates a PDF from the OCR information.
.SS "positional arguments:"
.TP
input_pdf_or_image
PDF file containing the images to be OCRed (or '\-' to
read from standard input)
.TP
output_pdf
Output searchable PDF file (or '\-' to write to
standard output). Existing files will be ovewritten.
If same as input file, the input file will be updated
only if processing is successful.
.SS "optional arguments:"
.TP
\fB\-h\fR, \fB\-\-help\fR
show this help message and exit
.TP
\fB\-l\fR LANGUAGE, \fB\-\-language\fR LANGUAGE
Language(s) of the file to be OCRed (see tesseract
\fB\-\-list\-langs\fR for all language packs installed in your
system). Use \fB\-l\fR eng+deu for multiple languages.
.TP
\fB\-\-image\-dpi\fR DPI
For input image instead of PDF, use this DPI instead
of file's.
.TP
\fB\-\-output\-type\fR {pdfa,pdf,pdfa\-1,pdfa\-2,pdfa\-3}
Choose output type. 'pdfa' creates a PDF/A\-2b
compliant file for long term archiving (default,
recommended) but may not suitable for users who want
their file altered as little as possible. 'pdfa' also
has problems with full Unicode text. 'pdf' attempts to
preserve file contents as much as possible. 'pdf\-a1'
creates a PDF/A1\-b file. 'pdf\-a2' is equivalent to
\&'pdfa'. 'pdf\-a3' creates a PDF/A3\-b file.
.TP
\fB\-\-sidecar\fR [FILE]
Generate sidecar text files that contain the same text
recognized by Tesseract. This may be useful for
building a OCR text database. If FILE is omitted, the
sidecar file be named {output_file}.txt If FILE is set
to '\-', the sidecar is written to stdout (a convenient
way to preview OCR quality). The output file and
sidecar may not both use stdout at the same time.
.TP
\fB\-\-version\fR
Print program version and exit
.SS "Job control options:"
.TP
\fB\-j\fR N, \fB\-\-jobs\fR N
Use up to N CPU cores simultaneously (default: use
all).
.TP
\fB\-q\fR, \fB\-\-quiet\fR
Suppress INFO messages
.TP
\fB\-v\fR [VERBOSE], \fB\-\-verbose\fR [VERBOSE]
Print more verbose messages for each additional
verbose level
.SS "Metadata options:"
.IP
Set output PDF/A metadata (default: copy input document's metadata)
.TP
\fB\-\-title\fR TITLE
Set document title (place multiple words in quotes)
.TP
\fB\-\-author\fR AUTHOR
Set document author
.TP
\fB\-\-subject\fR SUBJECT
Set document subject description
.TP
\fB\-\-keywords\fR KEYWORDS
Set document keywords
.SS "Image preprocessing options:"
.IP
Options to improve the quality of the final PDF and OCR
.TP
\fB\-r\fR, \fB\-\-rotate\-pages\fR
Automatically rotate pages based on detected text
orientation
.TP
\fB\-\-remove\-background\fR
Attempt to remove background from gray or color pages,
setting it to white
.TP
\fB\-d\fR, \fB\-\-deskew\fR
Deskew each page before performing OCR
.TP
\fB\-c\fR, \fB\-\-clean\fR
Clean pages from scanning artifacts before performing
OCR, and send the cleaned page to OCR, but do not
include the cleaned page in the output
.TP
\fB\-i\fR, \fB\-\-clean\-final\fR
Clean page as above, and incorporate the cleaned image
in the final PDF. Might remove desired content.
.TP
\fB\-\-oversample\fR DPI
Oversample images to at least the specified DPI, to
improve OCR results slightly
.TP
\fB\-\-remove\-vectors\fR
EXPERIMENTAL. Mask out any vector objects in the PDF
so that they will not be included in OCR. This can
eliminate false characters.
.TP
\fB\-\-mask\-barcodes\fR
EXPERIMENTAL. Mask out any barcodes that appear in the
PDF so they are not considered during OCR. Barcodes
can introduce false characters into OCR.
.TP
\fB\-\-threshold\fR
EXPERIMENTAL. Threshold image to 1bpp before sending
it to Tesseract for OCR. Can improve OCR quality
compared to Tesseract's thresholder.
.SS "OCR options:"
.IP
Control how OCR is applied
.TP
\fB\-f\fR, \fB\-\-force\-ocr\fR
Rasterize any text or vector objects on each page,
apply OCR, and save the rastered output (this rewrites
the PDF)
.TP
\fB\-s\fR, \fB\-\-skip\-text\fR
Skip OCR on any pages that already contain text, but
include the page in final output; useful for PDFs that
contain a mix of images, text pages, and/or previously
OCRed pages
.TP
\fB\-\-redo\-ocr\fR
Attempt to detect and remove the hidden OCR layer from
files that were previously OCRed with OCRmyPDF or
another program. Apply OCR to text found in raster
images. Existing visible text objects will not be
changed. If there is no existing OCR, OCR will be
added.
.TP
\fB\-\-skip\-big\fR MPixels
Skip OCR on pages larger than the specified amount of
megapixels, but include skipped pages in final output
.SS "Optimization options:"
.IP
Control how the PDF is optimized after OCR
.TP
\fB\-O\fR {0,1,2,3}, \fB\-\-optimize\fR {0,1,2,3}
Control how PDF is optimized after processing:0 \- do
not optimize; 1 \- do safe, lossless optimizations
(default); 2 \- do some lossy optimizations; 3 \- do
aggressive lossy optimizations (including lossy JBIG2)
.TP
\fB\-\-jpeg\-quality\fR Q
Adjust JPEG quality level for JPEG optimization. 100
is best quality and largest output size; 1 is lowest
quality and smallest output; 0 uses the default.
.TP
\fB\-\-png\-quality\fR Q
Adjust PNG quality level to use when quantizing PNGs.
Values have same meaning as with \fB\-\-jpeg\-quality\fR
.TP
\fB\-\-jbig2\-lossy\fR
Enable JBIG2 lossy mode (better compression, not
suitable for some use cases \- see documentation).
.SS "Advanced:"
.IP
Advanced options to control Tesseract's OCR behavior
.TP
\fB\-\-max\-image\-mpixels\fR MPixels
Set maximum number of pixels to unpack before treating
an image as a decompression bomb
.TP
\fB\-\-tesseract\-config\fR CFG
Additional Tesseract configuration files \fB\-\-\fR see
documentation
.TP
\fB\-\-tesseract\-pagesegmode\fR PSM
Set Tesseract page segmentation mode (see tesseract
\fB\-\-help\fR)
.TP
\fB\-\-tesseract\-oem\fR MODE
Set Tesseract 4.0 OCR engine mode: 0 \- original
Tesseract only; 1 \- neural nets LSTM only; 2 \-
Tesseract + LSTM; 3 \- default.
.TP
\fB\-\-pdf\-renderer\fR {auto,hocr,sandwich}
Choose OCR PDF renderer \- the default option is to let
OCRmyPDF choose. See documentation for discussion.
.TP
\fB\-\-tesseract\-timeout\fR SECONDS
Give up on OCR after the timeout, but copy the
preprocessed page into the final output
.TP
\fB\-\-rotate\-pages\-threshold\fR CONFIDENCE
Only rotate pages when confidence is above this value
(arbitrary units reported by tesseract)
.TP
\fB\-\-pdfa\-image\-compression\fR {auto,jpeg,lossless}
Specify how to compress images in the output PDF/A.
\&'auto' lets OCRmyPDF decide. 'jpeg' changes all
grayscale and color images to JPEG compression.
\&'lossless' uses PNG\-style lossless compression for all
images. Monochrome images are always compressed using
a lossless codec. Compression settings are applied to
all pages, including those for which OCR was skipped.
Not supported for \fB\-\-output\-type\fR=\fI\,pdf\/\fR ; that setting
preserves the original compression of all images.
.TP
\fB\-\-user\-words\fR FILE
Specify the location of the Tesseract user words file.
This is a list of words Tesseract should consider
while performing OCR in addition to its standard
language dictionaries. This can improve OCR quality
especially for specialized and technical documents.
.TP
\fB\-\-user\-patterns\fR FILE
Specify the location of the Tesseract user patterns
file.
.SS "Debugging:"
.IP
Arguments to help with troubleshooting and debugging
.TP
\fB\-k\fR, \fB\-\-keep\-temporary\-files\fR
Keep temporary files (helpful for debugging)
.TP
\fB\-\-flowchart\fR FLOWCHART
Generate the pipeline execution flowchart
.PP
OCRmyPDF attempts to keep the output file at about the same size. If a file
contains losslessly compressed images, and output file will be losslessly
compressed as well.
.PP
PDF is a page description file that attempts to preserve a layout exactly.
A PDF can contain vector objects (such as text or lines) and raster objects
(images). A page might have multiple images. OCRmyPDF is prepared to deal
with the wide variety of PDFs that exist in the wild.
.PP
When a PDF page contains text, OCRmyPDF assumes that the page has already
been OCRed or is a "born digital" page that should not be OCRed. The default
behavior is to exit in this case without producing a file. You can use the
option \fB\-\-skip\-text\fR to ignore pages with text, or \fB\-\-force\-ocr\fR to rasterize
all objects on the page and produce an image\-only PDF as output.
.IP
ocrmypdf \fB\-\-skip\-text\fR file_with_some_text_pages.pdf output.pdf
.IP
ocrmypdf \fB\-\-force\-ocr\fR word_document.pdf output.pdf
.PP
If you are concerned about long\-term archiving of PDFs, use the default option
\fB\-\-output\-type\fR pdfa which converts the PDF to a standardized PDF/A\-2b. This
converts images to sRGB colorspace, removes some features from the PDF such
as Javascript or forms. If you want to minimize the number of changes made to
your PDF, use \fB\-\-output\-type\fR pdf.
.PP
If OCRmyPDF is given an image file as input, it will attempt to convert the
image to a PDF before processing. For more control over the conversion of
images to PDF, use img2pdf, or other image to PDF software.
.PP
For example, this command uses img2pdf to convert all .png files beginning
with the 'page' prefix to a PDF, fitting each image on A4\-sized paper, and
sending the result to OCRmyPDF through a pipe.
.IP
img2pdf \fB\-\-pagesize\fR A4 page*.png | ocrmypdf \- myfile.pdf
.SS "HTML documentation is located at:"
.IP
\fI\,/usr/share/doc/ocrmypdf/html/index.html\/\fP
.PP
after installing the ocrmypdf\-doc package.

./usr/lib/python3/dist-packages/ocrmypdf/data/sRGB.icc

